(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

GDPI: Signature based Deep Packet Inspection using
GPUs

Nausheen Shoaib, Jawwad Shamsi, Tahir Mustafa, Akhter Zaman, Jazib ul Hasan, and Mishal Gohar
System Research Laboratory
Deaprtment of Computer Science
FAST-National University of Computer and Emerging Sciences
Karachi, Pakistan

Abstract—Deep Packet Inspection (DPI) is necessitated for
many networked application systems in order to prevent from
cyber threats. The signature based Network Intrusion and De-
tection System (NIDS) works on packet inspection and pattern
matching mechanisms for the detection of malicious content in
network traffic. The rapid growth of high speed networks in
data centers demand an efficient high speed packet processing
mechanism which is also capable of malicious packets detection.
In this paper, we proposed a framework GDPI for efficient
packet processing which inspects all incoming packet’s payload
with known signature patterns, commonly available is Snort. The
framework is developed using enhanced GPU programming tech-
niques, such as asynchronous packet processing using streams,
minimizing CPU to GPU latency using pinned memory and zero
copy, and memory coalescing with shared memory which reduces
read operation from global memory of the GPU. The overall
performance of GDPI is tested on heterogeneous NVIDIA GPUs,
like Tegra Tkl, GTX 780, and Tesla K40 and observed that the
highest throughput is achieved with Tesla K40. The design code
of GDPI is made available for research community.

Keywords—Packet processing; Graphic Processing Units
(GPUs); deep packet inspection; network security; parallel com-
puting; heterogeneity; CUDA

I. INTRODUCTION

Deep Packet Inspection (DPI) is a challenging task which
involves network packet filtering mechanism. The incoming
packets specially the payload part is inspected for malicious
content. The payload of packet is processed in order to
determine the authenticity of the packet at application layer.
This process of payload inspection needs to be effective and
efficient in terms of speed. The packet payload inspection is
performed repeatedly for every incoming packet. Considering
the wide scale usage of DPI application, a significant high
speed packet processing mechanism is needed.

Existing techniques of DPI systems use Graphic Processing
Units (GPUs) [1]-[3] for performance improvement in terms
of high throughput. Despite of its speedup and performance
efficiency, deployment of DPI method over GPUs using CUDA
C-programming platform is quite thought-provoking for devel-
opers. GPUs are also used in various computation-intensive
applications like IP lookup, general packet classification [9]
and pattern matching for DPI systems. Pattern matching con-
sumes 70% [5] of the execution time which can be reduced by
exploiting parallelism in GPUs.Various algorithms have been
proposed for pattern matching [4]-[6] such as Rabin Karp [7],

Knuth-Morris-Pratt (KMP) [8], [9] developed with CUDA C
programming platform.

Most of the DPI systems such as Gnort [10], and other
system are not open source [11] that can be used. There is
an extensive need for efficient DPI mechanism which fully
exploits GPU functionality using modern GPU programming
techniques. The DPI system must consists of modular pro-
gramming approach so newer pattern matching algorithms can
be integrated to check the efficiency and should be available
for further investigation.

In this paper, the research is motivated with above men-
tioned challenges and requirements. To this end,a framework
is proposed named “GDPI” for deep packet inspection.The
general architecture of GDPI is briefly shown in Fig. 1. The
caching [12], [13] of incoming network packets boost the
network performance as stream of packet is transferred from
CPU memory to GPU memory. The asynchronous call of
CUDA functions increases the transfer speed as CPU is not
locked while streams are transferred to GPU memory for
further packet processing.The framework used two common
methods for packet transfer that is pinned memory and zero
copy mechanisms. The packets are processed to identify mali-
cious contents in the payload of packet using known patterns or
signatures. We used an open source SNORT [14] database for
known malicious patterns or signatures. The incoming packet’s
payload is inspected using open source CUDA based pattern
matching algorithms, KMP and Rabin Karp. The framework is
designed considering modular programming approach in a way
that either of pattern matching algorithms,KMP or Rabin Karp
can be selected for the patterns to be matched.The modular
approach facilitates the integration of different pattern match-
ing algorithms as per need.The memory coalescing technique
is used for patterns residing in GPU shared memory to be
matched with incoming packets, which also reduces the read
operations and increases the overall packet processing speed.
If packet payload contains malicious content, it is dropped
or discarded otherwise forwarded to the next hop.Table 1
briefly elaborates the research challenges, goals and research
contributions of this paper. The main contribution of this paper
are:

e Developed an efficient and effective open source GPU
based DPI solution for research community.

e Used a modular programming approach considering
the selection of either of pattern matching algorithm

www.ijacsa.thesai.org

210 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE 1.

Vol. 8, No. 11, 2017

CHALLENGES, GOALS, RESEARCH CONTRIBUTIONS

S.No | Challenges Goals

Research Contributions

1 High throughput

efficient way

To develop network application based on
hardware accelerators using GPUs which is
capable of processing network traffic in an

The use of graphics process-
ing units ensures the high
level of parallelism

matching algorithms for Deep
Packet Inspection

2 Prevention from malicious | To inspect all incoming network traffic in | Deep Packet Inspection to ex-
content order to prevent from cyber threats amine incoming packet pay-

load
3 Use an efficient pattern | To analyze the efficient pattern matching | Modular approach used to de-

algorithm that can be integrated with the
framework in order to observe the overall

velop the GDPI

for GPU based DPI investigations

performance
4 Parallel processing of packets | To use enhance GPU programming tech- | GPU programming techniques
using GPUs niques in a effective way such as stream processing,
zero copy,memory coalescing
is incorporated
5 Availability of program code | Research community can access it for further | Open Source

such as KMP or Rabin Karp in this case.

e Enhanced GPU programming techniques like asyn-
chronous stream processing, zero copy, memory co-
alescing used to fully exploit parallelism.

e Performed extensive experiments using heterogeneous
NVIDIA GPUs like Jetson Tk1l, GTX 780, and Tesla
K40.

The rest of this paper is organized as follows: Section
II consists of related work which discusses the recent trends
in high performance intrusion detection systems, regular ex-
pression matching methods for deep packet inspection, packet
processing techniques on GPUs, pattern matching algorithms
for DPI and machine learning methods used for DPI. Section
IIT contains the proposed Methodology which includes packet
capturing, packet transfer from CPU memory to GPU memory
and pattern matching. Finally, Section IV includes the exper-
iments performed using different NVIDIA GPUs. Section V
follows with conclusion and future work.

II. RELATED WORK

We divide the related work in four broad categories.Each
category briefly elaborates the approaches used in DPI sys-
tems. The categories are: high performance intrusion detection,
regular expression matching for DPI, packet processing using
GPUs, pattern matching algorithms over GPUs, and machine
learning methods for DPI. Table 2 briefly explains the feature
comparison of proposed framework with existing solutions.

A. High Performance Intrusion Detection

Network Intrusion Detection systems (NIDS) are well
known source for monitoring inbound and outbound network
traffics in order to prevent from DDOS and other types of
attacks. Numerous solutions are available for the detection
of malicious content in network monitoring systems like
Snort [15], Suricata, BRO [16] are widely used NIDS.Due to
continuous growth in network applications, high throughput is
needed for the processing of network applications. The emer-
gence of graphics processing units has increasingly in demand
for every aspect in network processing [17] applications. A
GPU based intrusion detection system, Gnort, Kargus [18]
has been developed to accelerate packet processing speeds in
NIDS.

The research is inspired with these existing solutions and
designed a framework for signature based DPI using GPUs.
Gnort and other GPU based DPI solutions are not open
source,so we are not aware of its performance comparison
with our framework which is open source and available for
the research community. We developed it using modular ap-
proach which facilitates the integration of any pattern matching
algorithm to improve its performance. Our framework is tested
on different types of kepler architecture of NVIDIA GPUs like
Tegra Tk1, GTX780, Tesla K40.

B. Regular Expression Matching for Deep Packet Inspection

In order to improve the efficiency of signature based NIDS,
numerous automaton approaches has been adopted for its
effectiveness. Deterministic finite automata (DFA) and non-
deterministic finite automata (NFA) are two popular methods
used in NIDS. In both approaches, regular expression string
matching is done but with different performance and memory
usage properties.Regular expression matching on deterministic
finite automata (DFA) [19] is used for fast packet processing at
wire speed.The researchers proposed DFA estimator and a reg-
ular expression based grouping algorithm. The DFA estimator
calculates size based on regular expression and grouping algo-
rithm without building actual DFA and showed improvement in
terms of memory size and speed. For further enhancing speeds
in string matching while controlling memory expense, a finite
state machine (FSM) based scheme is developed which scans
multiple characters in parallel by running small sized FSMs.
This approach reduced the memory consumption cost and thus
increased its efficiency. Tunable finite automata (TFA) [20] has
solved state explosion and prediction performance problem.
TFA allows multiple concurrent active states unlike DFA which
allow only one active state, and achieved 98% reduction in
memory consumption. The head body finite automaton [11]
used multicore general purpose processors (GPP) for paral-
lelism and single instruction multiple data (SIMD) operations.
The head body matching is based on pre-defined DFA depth
value and head size for partitioning and parallel processing
and observed 58% significant increase in throughput.

The research is motivated with the generalized DPI meth-
ods [21] and used string matching based on hashing ap-
proach using general purpose graphics processing units (GPG-
PUs).The hashing method calculates the hash value of each
string of currently inspected incoming payload. The hash

www.ijacsa.thesai.org

211 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

™

| CUDA Function CUDA Function |
Peap Library for Packet for Packet
Functicns Caching transfer to GPU Matching
f
NIC | CPU Memory Cache | GPUMemory ki Y| Bleck/
[Packet_IN) [Packets) (Packets) (Packets} Content{Pa Discard
yload)
. N
- Forward to
I..\,_ =l next hop ’_/;"
Fig. 1. General architecture of GDPI.
adl
Web NIC
l 1- Pkt Cagture Global Memory
@ > @ '1‘?:3:. } Malicious
2- Pkt trgnsfer to|GPU Tw. = Ao
3- Pkt copy |to Shared Memory
v Shared Memory
e
Pattern Matching
4- Copy Result to |CPU \I,
Action | Result
CcPU GPU

Fig. 2. Modular process flow of proposed framework GDPI.

value of payload is compared (binary search can be done for
matching) byte by byte with the precomputed hash value of
corresponding signature patterns. The other approach includes
string search algorithm which looks for the occurrences of
strings and compared with signature patterns.

C. Packet Processing using GPUs

GPU computing [22] has become an integral part of
computing systems.There has been remarkable increase in
throughput and performance capabilities of network applica-
tions as well. GPUs brought the new prospects for packet
processing by offloading [23], [24] computation needs to
the GPUs as it offers extreme thread level parallelism on
hundreds of core. Packets are processed in a batch [25] to

reduce per packet memory management overhead. Effective
packet processing for network application has complex oper-
ations like TTL decrement, checksum recalculation, broadcast
management, handling of IP options like ICMP or ARP.
The network operations needed modular pipeline processing
[26] for synchronous and asynchronous packets with in-order
execution by leveraging GPUs. The growth of virtualization
for network appliances lead the use of software based virtual
switches. These virtual switches needed high packet iO rate
and a classification scheme for high throughput as the size and
dimension of forwarding table is continuously growing in case
of SDN. The packet classifiers attained high throughput by
ensuring the coalesced memory [27] access in order to reduce
latency for off chip memory.

www.ijacsa.thesai.org

212 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

The research is highly inspired with enhanced GPU based
CUDA programming techniques which can be used for fast
and effective packet processing. We used CUDA function APIs
for batch processing of packets. This helped us to increase the
packet transfer rate from CPU memory to GPU memory. The
batch of packets are sent to GPU memory instead of sending
single packet per thread improves the overall performance.
The packet offloading from CPU to GPU memory using page
locked or pinned memory via asynchronous CUDA functions
increased the transfer rate. Another CUDA technique for CPU
to GPU transfer is Zero Copy [28], [29] in which space is
allocated to both CPU and GPU and does have to transfer the
data, reduces CPU cycles and save memory bandwidth.The
memory accesses for pattern matching is coalesced which
decreased memory access latency and speedup the packet
processing capabilities of the framework.

D. Pattern Matching Algorithms over GPUs

String matching is an important technique for various appli-
cations.Traditional string matching algorithms requires back-
tracking and the comparison process [30] repeatedly effects
the efficacy of the algorithm.There are various algorithms for
Pattern matching such Aho-Corasick [31], Boyer-Moore [32].
Middlebox services for network applications typically inspects
for known patterns which can be present anywhere in payload.
The Aho-Corasick algorithm constructs a DFA and provides an
optimal performance as it frequently refers memory and causes
large number of cache misses. DFC algorithm [17] resolved
this problem by minimizing CPU stalls and maximizing CPU
level parallelism. The computation time for processing large
number of patterns has been sufficiently decreased by using
high end parallel SIMD architecture of GPUs. KMP and Rabin
Karp, etc. showed the speedup for pattern matching when
integrated with these high end GPUs.

Another GPU based algorithm HMPA [33] outperformed
CPU only and GPU only implementations as it adopted the
hybrid approach. The packet filtering and full pattern matching
is performed by CPU and GPU respectively, but overall
performance is limited. For this purpose, a variant of HMPA
is designed known as CHMPA [3] which estimates CPU and
GPU processing capabilities and self allocates the process at
runtime.The varying payload length also become a bottleneck
which is resolved by LHMPA [11].It restricts those packets
whose payload length exceeds predefined length bound. The
variable length payload for pattern matching is resolved by
using a probabilistic data structure bloom filter [1] using
multiple hash functions.

The research is encouraged with the recent and efficient
algorithms for pattern matching. We used CUDA based KMP
and Rabin Karp algorithm. KMP is a single pattern matching
algorithm but we developed it as a variant of KMP for multi-
pattern matching. The hashing method for DPI is fulfilled by
Rabin Karp algorithm. The GDPI framework used a modular
approach that either of algorithm can be selected to identify
the overall performance and efficacy of the framework.

E. Machine Learning Methods for DPI

Network traffic classification has become significantly im-
portant with rapid growth of current internet network and on-

Vol. 8, No. 11, 2017

line applications. Advance Machine Learning techniques pro-
vide a new dimension for detection of attacks at various levels.
The machine learning techniques such as naive bayes, support
vector machine (SVM), C4.5 decision trees have been used for
the classification of attacks and observed high accuracy factor
with C4.5 [34] classifier. The flow based anomaly detection
systems adopted a deep learning approach know as deep neural
network [35] and observed 75.5% accuracy and has high
potential in software defined network (SDN) environment. The
network traffic characterization and application identification
can also be achieved through convolutional neural network
(CNN) [36] with both encrypted and unencrypted network
traffic.

We are highly motivated with this new paradigm for
classification of attacks from cyber threats prevention. In this
paper, we have not used any machine learning or deep learning
techniques but we can incorporate these techniques in our
future work.

1II. METHODOLOGY

This section explains development design of GDPI using
CUDA C programming platform. CUDA is a parallel comput-
ing application platform developed by Nvidia to use CUDA
enabled graphics processing unit.

A. Packet Capturing at NIC

The packets are generated by an open source network
traffic generator tool Ostinato at Network Interface Card (NIC).
Fig. 2 shows that the stream of packets are created using
cudaStream() API. The API creates stream of packets at CPU
memory. The stream of packets is transferred to GPU memory
for further processing and reduces the overhead of sending
single packet per thread. It increased the packet transfer
rate and also decreased the CPU to GPU latency due to
asynchronous CUDA function operations.

B. Packet Transfer from CPU to GPU Memory

The CUDA based application framework manages concur-
rency by executing asynchronous functions for stream process-
ing.The stream of incoming packets is transferred from CPU
memory to GPU memory in two ways: the first method is to
transfer by using page locked host memory also called pinned
memory. The CUDA API is cudaMemcpyAsync() which is
a asynchronous transfer and helps improved the transfer rate
and reduce the latency from CPU to GPU memory. The second
method is to transfer the stream of packets using Zero copy
mechanism. The Zero Copy is a way to map host memory and
access it directly over PCle without doing an explicit memory
transfer as it allows CUDA kernel to directly access host
memory, instead of reading data from GPU global memory.
The CUDA API for zero copy is cudaHostGetDevicePointer()
creates a memory to access the data between CPU and GPU.
We used both methods to transfer the incoming packets and
open source signatures to the GPU memory.

C. Pattern Matching

The open source SNORT signature’s database is used
for the detection of malicious content in packet payload.The

www.ijacsa.thesai.org

213|Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

TABLE II. FEATURE COMPARISON OF EXISTING SOLUTIONS WITH GDPI
S.No | Feature Set Snort | Bro | Suricata | Kargus | Gnort | GDPI
1 GPU based system - - v v v v
2 Open source v v - - - v
3 Modular approach - - N/A N/A v
4 Enhance GPU programming techniques N/A - N/A N/A v
5 Evaluation on heterogeneous GPUs N/A - N/A - v
140 124 g 250
120 a
£ 200
100 875 =
755 a
70
80 2 g 150 -
&0 53 £
328 375 ﬁ M Meon stream
a0 8271 27 269294299 | 305,, . S
1 3 £ M Streams
20 -—
2 5o
: :
dgdH TP S HF PPN HN DS HH H
\.:& \"0 . (PN,\Q g & ,\,?’0 ’\Q@m.& 'L,be ’\:’GQ’\,Q)@'L)\Q 1%0 ?’GQ »0(9 = ol
EETNY NIRRT YT Y Y YN YR 1000 Patterns 10000 Pattemns
H1,000Patterns M 10,000Patterns Pattern Sets

Fig. 3. Packet processing time with varying no. of threads and blocks on
group of pattern sets.

hexadecimal format of malicious signature is loaded into
CPU memory.The string matching algorithms used for pattern
matching are KMP and Rabin Karp. The preprocessing in-
cludes the computation of prefix table and hash values of signa-
ture over GPU, while using KMP or Rabin Karp, respectively.
The modular approach is used and either of the algorithms
can be selected for pattern matching.By copying preprocessed
signature patterns to GPU’s shared memory, reduces read oper-
ations while searching using memory coalescing mechanisms.
For patterns pl,.....pn, and GPU grid consisting of threads
tl.....tk, each thread i iterates j times, assigned pattern pi+(j*n)
which then applies the searching algorithm on it.

The packet payload is compared by using string matching
algorithms developed for GPUs such Rabin Karp and KMP.
After the packet is transferred to the GPU memory, a kernel
is launched with 4 Blocks of 512 threads by default (unless
configured otherwise). Each thread in a grid scans for a specific
malicious signature using the selected algorithm KMP or Rabin
Karp and then returns the action to be performed on the
packet. The performance is increased due to coalesced memory
access technique together with shared memory. The results are
copied back to host. The respective stream managing thread
then analyze the result. In case of malicious content found in
payload of the packet, the connection is closed by sending a
reset control signal TCP_RST and TCP_FIN to both end points
to finally close the connection.

IV. EXPERIMENTS

The framework is initially tested on NVIDIA Tegra TK1, a
mobile embedded system with 192 cores and 2GB of memory.
We also evaluated GDPI on commodity hardware with Ubuntu
server 14.0.4 with linux kernel installed on it.The supported
programming platform CUDA 7.5 is installed for GPU pro-
gramming. These machines are equipped with NVIDIA GTX

Fig. 4. Number of packets processed for pattern matching on group of pattern
sets.

3

]

L2

o B Zero Copy

£

=

.E’ B 'Without Zero Copy
A

g

E 1 Zero Copy + Shared
- Memo

-E Y

£ Without Zero Copy+

Shared Memory

Default
Stream Streams Streams Streams Streams

2 3 4 8

Fig. 5.
memory.

Packet processing time with and without zero copy and shared

780 with 2304 cores and NVIDIA Tesla K40c with 2880 cores.
The memory installed in these commodity hardware is 8GB.

A. Packet Streams

Initially, the incoming packets is sent to GPU using sin-
gle packet per thread by varying grid configuration (blocks,
threads). Fig. 3 shows the packet processing time with different
number of blocks and threads configuration of a grid. We
observed the time taken for packet processing on signature
pattern set of 1000 and 10,000. Initially, the grid is launched
with single block and 100 threads and then gradually the
grid configuration is varied. The packet processing speed is
gradually increased and showed improved performance as
shown in Fig. 3.

After that we implemented stream processing through asyn-
chronous CUDA function API cudaStream(). The API created
the stream of packets and then transfer to GPU memory.

www.ijacsa.thesai.org

214 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

400

350
300 -
250 -
200 7 B Non-Zero Copy
150

B Zero Copy
100 .
A AN
o - :
Default 2 3 4 5 6 8
Stream Stream Stream Stream Stream Stream Stream

Numberof Packets Processed in 1 sec

0.18
@ 016
a
f’ 014 -\
£ \
~ 012
¥ \
o ¢ i | \
i
g 0.08 \ —+—kKMP
[
4 0086 \ —— Rabin Karp
o
&2 0.04 ‘
[}

4
0 .
CPU letson GTX 780 Tesla K40
CPU and Heterogeneous GPUs

Fig. 6. No. of packets processed with coalescing memory.

The stream processing of packets showed the performance
improvement when compared with single packet per thread.
Fig. 4 shows the number of packets processed per second on
pattern set of 1,000 and 10,000, respectively. The processing
time of packet streams reduced the overhead of sending single
packet per thread.The packet streams has clearly showed
significant increase in packet processing time.

B. Packet Transfer using Pinned Memory and Zero Copy

The incoming packets stream transferred from CPU to GPU
memory using pinned memory and zero copy mechanism. The
packet stream transfer rate is improved using zero copy.The
incoming packets and pattern sets are in shared memory of
GPU. Fig. 5 shows that multiple streams are sent to the GPU
shared memory for comparison with pattern sets.The packets
processing time using zero copy with shared memory showed
an increase in performance as compared to non-zero copy.

C. Pattern Matching using Memory Coalescing

The signature patterns were copied from device global
memory to shared memory for patterns to be compared with
incoming packet streams. When malicious signature patterns
copied to shared memory. Fig. 6 shows that the memory
coalescing technique together with zero copy and patterns
reside in shared memory increased the overall performance
of packet processing.

D. DPI Module Performance on Hetrogeneous GPUs

Fig. 7 shows the single packet processing time is evaluated
on CPU cores and different NVIDIA GPUs kepler architecture
like, Jetson Tk1, GTX780 and Tesla K40 with pattern matching
algorithms, KMP and Rabin Karp. GDPI framework showed
improved results on Tesla GPU with Rabin Karp algorithm.

V. CONCLUSION AND FUTURE WORK

This paper proposed a framework GDPI for signature based
deep packet inspection using GPUs. The framework GDPI
scans incoming packet for the detection of malicious content in
the payload of packet using Snort signatures. The framework
is designed using a modular programming approach so any of
the pattern matching algorithm can be integrated to observe
the performance improvements.The implementation is mainly

Fig. 7. GDPI performance on CPU and Heterogeneous GPUs.

focused on the recent GPU programming techniques such as
stream processing, memory overlapping methods zero copy,
etc. and observed speedup in packet transfer from from CPU to
GPU memory. The asynchronous nature of CUDA operations
violates the serialization process. The use of shared memory
where patterns and packets are copied reduced read operations
from global memory. The memory coalescing technique also
resulted in reduction of bandwidth and thus speedup the
matching process which is considered as main bottleneck in
DPI systems. The framework is tested on heterogeneous kepler
architectures of NVIDIA GPUs such as Tegra Tkl, GTX 780
and Tesla K40. The experiment results achieved maximum
speed of packet processing when tested over Tesla K40 with
Rabin Karp algorithm. The GDPI framework is open source
for research community for further investigation.

As network security is of vital concern for cloud and
bigdata applications.The research community is continuously
working on recent methods and practices for deep packet
inspection. Machine learning (ML) and deep learning (DL)
techniques providing a new paradigm to Network Intrusion
Detection Systems. ML and DL techniques are used for the
classification of attacks in order to prevent from cyber threats.
Network intrusion detection systems performance needs im-
provement in terms of accuracy, which can be achieved with
the use of deep learning techniques for intrusion or fraud
detection. These systems can be implemented and tested in
real time SDN environment to evaluate the effectiveness of
the system in terms of accuracy, latency, and throughput. The
proposed GDPI framework is not using any machine leaning or
deep learning classification techniques such as support vector
machine and deep convolutional neural network (DNN). The
incorporation of these techniques can significantly increase
the effectiveness of the proposed framework in real time
environment.

ACKNOWLEDGMENT

This work was supported by NVIDIA Teaching and Re-
search Center. The work is also supported by Higher Education
Commission (HEC) Pakistan under the grant number NRPU-
5946.

www.ijacsa.thesai.org

215|Page

(1]

(2]

[3]

(4]

[3]

(6]

(71

(8]

(91

[10

(1]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

(IJACSA) International Journal of Advanced Computer Science and Applications,

REFERENCES

Hung, Che-Lun, Chun-Yuan Lin, and Po-Chang Wu. ”An Efficient GPU-
Based Multiple Pattern Matching Algorithm for Packet Filtering.” Journal
of Signal Processing Systems 86, no. 2-3 (2017): 347-358

Lee, Chun-Liang, and Tzu-Hao Yang. A Flexible Pattern-Matching
Algorithm for Network Intrusion Detection Systems Using Multi-Core
Processors.” Algorithms 10, no. 2 (2017)

Lin, Yi-Shan, Chun-Liang Lee, and Yaw-Chung Chen. A capability-
based hybrid CPU/GPU pattern matching algorithm for deep packet
inspection.” International Journal of Computer and Communication En-
gineering 5, no. 5 (2016): 321.

Diwate, Mr Rahul B., and Satish J. Alaspurkar. ”Study of Different
Algorithms for Pattern Matching.” International Journal 3, no. 3 (2013).
Lin, Cheng-Hung, Chen-Hsiung Liu, Lung-Sheng Chien, and Shih-Chieh
Chang. ”Accelerating pattern matching using a novel parallel algorithm
on GPUs.” IEEE Transactions on Computers 62, no. 10 (2013): 1906-
1916.

Bellekens, X., I. Andonovic, R. C. Atkinson, C. Renfrew, and T.
Kirkham. “Investigation of GPU-based pattern matching.” In The 14th
Annual Post Graduate Symposium on the Convergence of Telecommu-
nications, Networking and Broadcasting (PGNet2013). 2013.

Sharma, Jyotsna, and Maninder Singh. "CUDA based Rabin-Karp Pattern
Matching for Deep Packet Inspection on a Multicore GPU.” International
Journal of Computer Network and Information Security 7, no. 10 (2015):
70.

Lin, Kuan-Ju, Yi-Hsuan Huang, and Chun-Yuan Lin. "Efficient parallel
knuth-morris-pratt algorithm for multi-GPUs with CUDA.” In Advances
in Intelligent Systems and Applications-Volume 2, pp. 543-552. Springer
Berlin Heidelberg, 2013.

Rasool, Akhtar, and Nilay Khare. “Parallelization of KMP string
matching algorithm on different SIMD architectures: Multi-core and
GPGPU’s.” International Journal of Computer Applications 49, no.

Vasiliadis, Giorgos, Spiros Antonatos, Michalis Polychronakis, Evange-
los Markatos, and Sotiris Ioannidis. ”Gnort: High performance network
intrusion detection using graphics processors.” In Recent Advances in
Intrusion Detection, pp. 116-134. Springer Berlin/Heidelberg, 2008.

Lin, Yi-Shan, Chun-Liang Lee, and Yaw-Chung Chen. “Length-
bounded hybrid CPU/GPU pattern matching algorithm for deep packet
inspection.” Algorithms 10, no. 1 (2017): 16.

Cui, L., Yu, ER. and Yan, Q., 2016. When big data meets software-
defined networking: SDN for big data and big data for SDN. IEEE
Network, 30(1), pp.58-65.

Zhang, W., Wood, T., Ramakrishnan, K.K. and Hwang, J., 2014, June.
SmartSwitch: Blurring the Line Between Network Infrastructure & Cloud
Applications. In HotCloud.

Jiang, Haiyang, Guangxing Zhang, Gaogang Xie, Kav Salamatian, and
Laurent Mathy. ”Scalable high-performance parallel design for network
intrusion detection systems on many-core processors.” In Proceedings of
the ninth ACM/IEEE symposium on Architectures for networking and
communications systems, pp. 137-146. IEEE Press, 2013.

Roesch, Martin. ”Snort: Lightweight intrusion detection for networks.”
In Lisa, vol. 99, no. 1, pp. 229-238. 1999.

Bhosale, Dhanashri Ashok, and Vanita Manikrao Mane. "Comparative
study and analysis of network intrusion detection tools.” In Applied
and Theoretical Computing and Communication Technology (iCATccT),
2015 International Conference on, pp. 312-315. IEEE, 2015.

Choi, Byungkwon, Jongwook Chae, Muhammad Jamshed, Kyoungsoo
Park, and Dongsu Han. "DFC: Accelerating String Pattern Matching for
Network Applications.” In NSDI, pp. 551-565. 2016

Jamshed, Muhammad Asim, Jihyung Lee, Sangwoo Moon, Insu Yun,
Deokjin Kim, Sungryoul Lee, Yung Yi, and KyoungSoo Park. "Kargus: a
highly-scalable software-based intrusion detection system.” In Proceed-
ings of the 2012 ACM conference on Computer and communications
security, pp. 317-328. ACM, 2012.

Vol. 8, No. 11, 2017

[19] Liu, Tingwen, Alex X. Liu, Jingiao Shi, Yong Sun, and Li Guo.
”Towards fast and optimal grouping of regular expressions via DFA size
estimation.” IEEE Journal on Selected Areas in Communications 32, no.

10 (2014): 1797-1809.

Xu, Yang, Junchen Jiang, Rihua Wei, Yang Song, and H. Jonathan
Chao. "TFA: A tunable finite automaton for pattern matching in net-
work intrusion detection systems.” IEEE Journal on Selected Areas in
Communications 32, no. 10 (2014): 1810-1821.

Xu, Chengcheng, Shuhui Chen, Jinshu Su, S. M. Yiu, and Lucas
CK Hui. ”A Survey on Regular Expression Matching for Deep Packet
Inspection: Applications, Algorithms, and Hardware Platforms.” IEEE
Communications Surveys & Tutorials 18, no. 4 (2016): 2991-3029.

Owens, John D., Mike Houston, David Luebke, Simon Green, John
E. Stone, and James C. Phillips. "GPU computing.” Proceedings of the
IEEE 96, no. 5 (2008): 879-899.

Renart, Eduard G., Eddy Z. Zhang, and Badri Nath. "Towards a GPU
SDN controller.” In Networked Systems (NetSys), 2015 International
Conference and Workshops on, pp. 1-5. IEEE, 2015.

Han, Sangjin, Keon Jang, KyoungSoo Park, and Sue Moon. “Pack-
etShader: a GPU-accelerated software router.” In ACM SIGCOMM
Computer Communication Review, vol. 40, no. 4, pp. 195-206. ACM,
2010.

Rogora, Daniele, Michele Papalini, Koorosh Khazaei, Alessandro Mar-
gara, Antonio Carzaniga, and Gianpaolo Cugola. “High-Throughput
Subset Matching on Commodity GPU-Based Systems.” system 20, no.
40M (2017): 212M.

Sun, Weibin, and Robert Ricci. “Fast and flexible: parallel packet
processing with GPUs and click.” In Proceedings of the ninth ACM/IEEE
symposium on Architectures for networking and communications sys-
tems, pp. 25-36. IEEE Press, 2013.

Varvello, Matteo, Rafael Laufer, Feixiong Zhang, and T. V. Laksh-
man. "Multilayer packet classification with graphics processing units.”
IEEE/ACM Transactions on Networking 24, no. 5 (2016): 2728-2741.

Vasiliadis, Giorgos, Lazaros Koromilas, Michalis Polychronakis, and
Sotiris Ioannidis. "Design and Implementation of a Stateful Network
Packet Processing Framework for GPUs.” IEEE/ACM Transactions on
Networking (TON) 25, no. 1 (2017): 610-623.

Vasiliadis, Giorgos, Lazaros Koromilas, Michalis Polychronakis, and
Sotiris Ioannidis. "GASPP: A GPU-Accelerated Stateful Packet Process-
ing Framework.” In USENIX Annual Technical Conference, pp. 321-332.
2014.

Faro, Simone, and Thierry Lecroq. "The exact online string matching
problem: A review of the most recent results.” ACM Computing Surveys
(CSUR) 45, no. 2 (2013): 13.

Aho, Alfred V., and Margaret J. Corasick. “Efficient string matching:
an aid to bibliographic search.” Communications of the ACM 18, no. 6
(1975): 333-340.

Boyer, Robert S., and J. Strother Moore. A fast string searching
algorithm.” Communications of the ACM 20, no. 10 (1977): 762-772.

Lee, Chun-Liang, Yi-Shan Lin, and Yaw-Chung Chen. "A hybrid
CPU/GPU pattern-matching algorithm for deep packet inspection.” PloS
one 10, no. 10 (2015): e0139301.

Shafiq, Muhammad, Xiangzhan Yu, Asif Ali Laghari, Lu Yao, Nabin
Kumar Karn, and Foudil Abdessamia. "Network Traffic Classification
techniques and comparative analysis using Machine Learning algo-
rithms.” In Computer and Communications (ICCC), 2016 2nd IEEE
International Conference on, pp. 2451-2455. IEEE, 2016.

Tang, Tuan A., Lotfi Mhamdi, Des McLernon, Syed Ali Raza Zaidi,
and Mounir Ghogho. “"Deep Learning Approach for Network Intrusion
Detection in Software Defined Networking.” In Wireless Networks and
Mobile Communications (WINCOM), 2016 International Conference on,
pp. 258-263. IEEE, 2016.

Lotfollahi, Mohammad, Ramin Shirali, Mahdi Jafari Siavoshani, and
Mohammdsadegh Saberian. "Deep Packet: A Novel Approach For En-

crypted Traffic Classification Using Deep Learning.” arXiv preprint
arXiv:1709.02656 (2017).

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

www.ijacsa.thesai.org

216 |Page

