Skip to main content
Log in

CD40: CD40L interactions in X-linked and non-X-linked hyper-IgM syndromes

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Hyper-IgM (HIM) syndrome is a rare immunodeficiency characterized by low or absent IgG, IgA, and IgE with normal or elevated levels of IgM. This disorder can be acquired or familial with either X-linked or autosomal patterns of inheritance. The X-linked form of the disease is a consequence of mutations in the CD40 ligand (CD40L) gene that encodes a protein expressed primarily on activated CD4+ T cells. The cognate interaction between CD40L on T cells and CD40 on antigen-stimulated B cells, macrophage, and dendritic cells is critical for the development of a comprehensive immune response. The non-X-linked form of HIM syndrome is heterogeneous and appears in some cases to be a consequence of mutations in the AID gene which encodes a B cells specific protein required for class switch recombination, somatic mutation, and germinal center formation. However, mutations in other unidentified genes are clearly the basis of the disease in a subset of patients. In this article, we review the essential features of the X-linked and non-X-linked forms of HIM syndrome and discuss the critical role the CD40∶CD40L receptor-ligand pair play in the pathogenesis of these immune deficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Notarangelo LD, Duse M, Ugazio AG: Immunodeficiency with hyper-IgM (HIM). Immunodef Rev 1992;3:101–22.

    PubMed  CAS  Google Scholar 

  2. Callard RE, Armitage RJ, Fanslow WC, Spriggs MK: CD40 ligand and its role in X-linked hyper-IgM syndrome. Immunology Today 1993;14:559–64.

    PubMed  CAS  Google Scholar 

  3. Levy J, Espanol-Boren T, Thomas C, et al.: Clinical spectrum of X-linked hyper-IgM syndrome (see comments). J Pediatr 1997; 131:47–54.

    PubMed  CAS  Google Scholar 

  4. Aruffo A, Farrington M, Hollenbaugh D, et al.: The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked immunodeficiency with hyper-IgM. Cell 1993;72:291–300.

    PubMed  CAS  Google Scholar 

  5. Korthauer U, Graf D, Mages HW, et al.: Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature 1993;361:539–541.

    PubMed  CAS  Google Scholar 

  6. DiSanto JP, Bonnefoy JY, Gauchat JF, Fischer A, de SaintBasile G: CD40 ligand mutations in X-linked immunodeficiency with hyper-IgM. Nature 1993;361:539–541.

    Google Scholar 

  7. Allen RC, Amitage RJ, Conley ME, et al.: CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 1993;259:990–993.

    PubMed  CAS  Google Scholar 

  8. Fuleihan R, Ramesh N, Loh R, et al.: Defective expression of the CD40 ligand in X-chromosome-linked immunoglobulin deficiency with normal or elevated IgM. Proc Natl Acad Sci USA 1993;90: 2170–2173.

    PubMed  CAS  Google Scholar 

  9. Durandy A, Schiff C, Bonnefoy JY, et al.: Induction by anti-CD40 antibody or soluble CD40 ligand and cytokines of IgG, IgA, and IgE production by B cells from patients with X-linked hyper IgM syndrome. Eur J Immunol 1993;23:2294–2299.

    PubMed  CAS  Google Scholar 

  10. Ameratunga R, Lederman HM, Sullivan KE, et al.: Defective antigen-induced lymphocyte proliferation in the X-linked hyper-IgM syndrome. J Pediatr 1997;131: 147–150.

    PubMed  CAS  Google Scholar 

  11. Armitage RJ, Fanslow WC, Strockbine L, et al.: Molecularand biological characterization of a murine ligand for CD40. Nature 1992;357:80–82.

    PubMed  CAS  Google Scholar 

  12. Hollenbaugh D, Grosmaire LS, Kullas CD, et al.: The human T cell antigen gp39, a member of the TNF gene family, is a ligand for the CD40 receptor: expression of a soluble form of gp39 with B cell co-stimulatory activity. EMBO J 1992;11:4313–4321.

    PubMed  CAS  Google Scholar 

  13. Ledeman S, Yellin MJ, Inghirami G, Lee JJ, Knowles DM, Chess L: Molecular interactions mediating T-B lymphocyte collaboration in human lymphoid follicles. J Immunol 1992;149:3817–3826.

    Google Scholar 

  14. Roy M, Waldschmidt T, Aruffo A, Ledbetter JA, Noelle RJ: The regulation of the expression of gp39, the CD40 ligand, on normal and cloned CD4+ T cells. J Immunol 1993;151:2497–2510.

    PubMed  CAS  Google Scholar 

  15. Lederman S, Yellin MJ, Krichevsky A, Belko J, Lee JJ, Chess L: Identification of a novel surface protein on activated CD4+ T cells that induces contact-dependent B cell differentiation (Help). J Exp Med 1992;175:1092–1101.

    Google Scholar 

  16. Lane P, Traunecker A, Inui S, Lanzavecchia A, Gray D: Activated human T cells express a ligand for the human B cell-associated antigen CD40 which participates in T cell-dependent activation of B lymphocytes. Eur J Immunol 1992;22:2573–2578.

    PubMed  CAS  Google Scholar 

  17. Lane P, Brocker T, Hubele S, Padovan E, Lanzavecchia A, McConnell F: Soluble CD40 ligand can replace the normal T cell-derived CD40 ligand signal to B cells in T cell-dependent activation. J Exp Med 1993;177: 1209–1213.

    PubMed  CAS  Google Scholar 

  18. Van den Eertwegh AJ, Noelle RJ, Roy M, et al.: In vivo CD40-gp39 interactions are essential for thymus-dependent humoral immunity. I. In vivo expression of CD40 ligand, cytokines, and antibody production delineates sites of cognate T-B cell interactions. J Exp Med 1993;178:1555–1565.

    PubMed  Google Scholar 

  19. Banchereau J, Bazan F, Blanchard D, et al.: The CD40 antigen and its ligand. Annu Rev Immunol 1994; 12:881–922.

    PubMed  CAS  Google Scholar 

  20. Clark LB, Foy TM, Noelle RJ: CD40 and its ligand. Adv Immunol 1996;63:43–78.

    PubMed  CAS  Google Scholar 

  21. Armitage RJ, Maliszewski CR, Alderson MR, Grabstein KH, Spriggs MK, Fanslow WC: CD40L: a multi-functional ligand. Sem Immunol 1993;5:401–412.

    CAS  Google Scholar 

  22. Alderson MR, Armitage RJ, Tough TW, Strockbine L, Fanslow WC, Spriggs MK: CD40 expression by human monocytes: regulation by cytokines and activation of monocytes by the ligand for CD40. J Exp Med 1993;180:669–674.

    Google Scholar 

  23. Kiener PA, Moran-Davis P, Rankin BM, Wahl AF, Aruffo A, Hollenbaugh D: Stimulation of CD40 with purified soluble gp39 induces proinflammatory responses in humanmonocytes. J Immunol 1995; 155:4917–4925.

    PubMed  CAS  Google Scholar 

  24. Shu U, Kiniwa M, Wu CY, et al.: Activated T cells induce interleukin-12 production by monocytes via CD40-CD40 ligand interaction. Eur J Immunol 1995; 25:1125–1128.

    PubMed  CAS  Google Scholar 

  25. Wiley JA, Harmsen AG: CD40 ligand is required for resolution of Pneumocystis carinii pneumonia in mice. J Immunol 1995;155: 3525–3529.

    PubMed  CAS  Google Scholar 

  26. Stout RD, Suttles J, Xu J, Grewal IS, Flavell RA: Impaired T cell-mediated macrophage activation in CD40 ligand-deficient mice. J Immunol 1996;156:8–11.

    PubMed  CAS  Google Scholar 

  27. Noelle RJ: CD40 and its ligand in host defense. Immunity 1996;4: 415–419.

    PubMed  CAS  Google Scholar 

  28. Foy TM, Laman JD, Ledbetter JA, Aruffo A, Claassen E, Noelle RJ: gp39-CD40 interactions are essential for Germinal center formation and the development of B cell memory. J Exp Med 1994;180: 157–163.

    PubMed  CAS  Google Scholar 

  29. Gray D, Dullforce P, Jainandunsing S: Memory B cell development but not germinal center formation is impaired by in vivo blockade of CD40-CD40 ligand interaction. J Exp Med 1994;180:141–155.

    PubMed  CAS  Google Scholar 

  30. Xu J, Foy TM, Laman JD, et al.: Micedeficient for the CD40 Ligand. Immunity 1994;1:423–431.

    PubMed  CAS  Google Scholar 

  31. Renshaw BR, Fanslow WC 3rd, Armitage RJ, et al.: Humoral immune responses in CD40 ligand-deficient mice. J Exp Med 1994; 180:1889–1900.

    PubMed  CAS  Google Scholar 

  32. Kawabe T, Naka T, Yishida K, et al.: The immune response in CD40-deficient mice: impaired immuno-globulin class switching and germinal center formation. Immunity 1994;1:167–178.

    PubMed  CAS  Google Scholar 

  33. Castigli E, Alt FW, Davidson L, et al.: CD40-deficient mice generated by recombination-activating gene-2-deficient blastocyst complementation. Proc Natl Acad Sci USA 1994;91:12,135–12,139.

    CAS  Google Scholar 

  34. Uckun FM, Schieven GL, Dibirdik I, Chandan LM, Tuel AL, Ledbetter JA: Stimulation of protein tyrosine phosphorylation, phosphoinositide turnover, and multiple previously unidentified serine/threosine-specific protein kinases by the Pan-B cell receptor CD40/Bp50 at discrete developmental stages of human B-cell ontogeny. J Biol Chem 1991;266: 17,478–17,485.

    CAS  Google Scholar 

  35. Ren CL, Morio T, Fu SF, Geha RS: Signal transduction via CD40 involves activation of lynkinase and phosphatidy linositol-3-kinase, and phosphorylation of phospholipase Cγ 2. J Exp Med 1994;179: 673–680.

    PubMed  CAS  Google Scholar 

  36. Aagaard-Tillery KM, Jelinek DF: Phosphatidylinositol 3-kinase activation in normal human B lymphocytes. J Immunol 1996; 156:4543–4554.

    PubMed  CAS  Google Scholar 

  37. Padmore L, An S, Gunby RH, Kelly K, Radda GK, Knox KA: CD40-triggered protein tyrosine phosphorylation on Vav and on phosphatidy linositol 3-kinase correlates with survival of the Ramos-Burkitt lymphoma B cell line. Cell Immunol 1997;177:119–128.

    PubMed  CAS  Google Scholar 

  38. Hanissian SH, Geha RS: Jak3 is associated with CD40 and is critical with CD40 and iscritical for CD40 induction of gene expression in B cells. Immunity 1997;6:379–387.

    PubMed  CAS  Google Scholar 

  39. Inoue J, Ishida T, Tsukamoto N, et al.: Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. Exp Cell Res 2000;254:14–24.

    PubMed  CAS  Google Scholar 

  40. Rothe M, Wong SC, Henzel WJ, Goeddel DV: A novel family of putative signal transducters associated with the cytoplasmic domain of the 75kDa tumornecrosis factor receptor. Cell 1994;78: 681–692.

    PubMed  CAS  Google Scholar 

  41. Rothe M, Sarma V, Dixit VM, Goeddel DV: TRAF2-mediated activation of NF-κB by TNFreceptor 2 and CD40. Science 1995; 269:1424–1427.

    PubMed  CAS  Google Scholar 

  42. Ishida TK, Tojo T, Aoki T, et al.: TRAF5, a novel tumor necrosis factor receptor-associated factor family protein, mediatesCD40 signaling. Proc Natl Acad Sci USA 1996;93:9437–9442.

    PubMed  CAS  Google Scholar 

  43. Cheng G, Cleary AM, Ye Z, Hong DI, Lederman S, Baltimore D: Involvement of CRAFI, a relative of TRAF, in CD40 signaling. Science 1995;267:1494–1498.

    PubMed  CAS  Google Scholar 

  44. Hu HM, O’Rourke, K, Boguski, MS, Dixit, VM: A novel RING finger proteininteracts with the cytoplasmic domain of CD40. J Biol Chem 1994;269:30,069–30,072.

    CAS  Google Scholar 

  45. Sato T, Irie S, Reed JC: A novel member of the TRAF family of putative signal transducting proteins binds to the cytosolic domain of CD40. FEBS Lett 1995;358: 113–118.

    PubMed  CAS  Google Scholar 

  46. Francis DA, Darras JG, Ke X, Sen R, Rothstein TL: Induction of the transcription factors NF-kappaB, AP-1 and NF-AT during B cell stimulation through the CD40 receptor. Int Immunol 1995;7:151–161.

    PubMed  CAS  Google Scholar 

  47. Snapper CM, Zelazowski P, Rosas FR, et al.: B cells from p50/NF-κB knockout mice have selective defects in proliferation, differentiation, germ-line CH transcription, and Ig class switching. J Immunol 1996;156:183–191.

    PubMed  CAS  Google Scholar 

  48. Seyama K, Nonoyama S, Gangsaas I, et al.: Mutations of the CD40 ligand gene and its effect on CD40 ligand expression in patients with X-linked hyper IgM syndrome. Blood 1998;92:2421–2434.

    PubMed  CAS  Google Scholar 

  49. Notarangelo LD, Peitsch MC: CD40L base: a database of CD40L gene mutations causing X-linked hyper-IgM syndrome. Immunol Today 1996;17:511–516.

    PubMed  CAS  Google Scholar 

  50. Zonana, J, Elder, ME, Schneider, LC, Orlow, SJ, Moss, C, Golabi, M, Shapira, SK, Farndon, PA, Wara, DW, Emmal, SA, Ferguson, BM: A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet 2000;67:1555–1562.

    PubMed  CAS  Google Scholar 

  51. Doffinger, R, Smahi, A, Bessia, C, Geissmann, F, Feinberg, J, Durandy, A, Bodemer, C, Kenwrick, S, Dupuis-Girod, S, Blanche, S, Wood, P, Rabia, SH, Headon, DJ, Overbeek, PA, LeDeist, F, Holland, SM, Belani, K, Kumararatne, DS, Fischer, A, Shapiro, R, et al.: X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by imaired NF-kappaB signaling. Nat Genet 2001;27: 277–285.

    PubMed  CAS  Google Scholar 

  52. Jain, A, Ma, CA, Kiu, S, Brown, M, Cohen, J, Strober W: Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodennal dysplasia. Nat Immunol 2001;2:223–228.

    PubMed  CAS  Google Scholar 

  53. Yamaoka, S, Courtois, G, Bessia, C, Whiteside, T, Weil, R, Agou, F, Kirk HE, Kay RJ, Israel A: Complementation cloning of NEMO, a component of the Ikap-paB kinase complex essential for NF-kappaB activiation. Cell 1998; 93:1231–1240.

    PubMed  CAS  Google Scholar 

  54. Baldwin, AS, Jr.: The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996;14:649–683.

    PubMed  CAS  Google Scholar 

  55. Facchetti F, Appiani C, Salvi L, Levy J, Noptarangelo LD: Immuno-histologic analysis of ineffective CD40-CD40 ligand interaction in lymphoid tissues from patients with hyper-IgM. Abortive germinal center cell reactionand severe depletion of follicular dendritic cells. J Immunol 1995;154:6624–6633.

    PubMed  CAS  Google Scholar 

  56. Soong L, Xu JC, Grewal IS, et al.: Disruption of CD40-CD40 ligand interactions results inanenhanced susceptibility to Leishmania amazonensis infection. Immunity 1996; 4:263–273.

    PubMed  CAS  Google Scholar 

  57. Campbell KA, Ovendale PJ, Kennedy MK, Fanslow WC, Reed SG, Maliszewski CR: CD40 ligand is required for protective cell-mediated immunity to Leishmania major. Immunity 1996;4:283–289.

    PubMed  CAS  Google Scholar 

  58. Grewal IS, Xu J, Flavell RA: Impairment of antigen-specific T-cell priming in mice lacking CD40 ligand. Nature 1995;378: 617–620.

    PubMed  CAS  Google Scholar 

  59. Jamieson WM, Kerr MR: A family with several cases of hypogammaglobulinemia. Arch Dis Child 1962;37:330.

    PubMed  CAS  Google Scholar 

  60. Krantman HJK, Stiehm ER, Stevens RH, Saxon A, Seeger RC: Abnormal B cell differentiation and variable increased T cell suppression in immunodeficiency with hyper-IgM. Clin Exp Immunol 1980;40:147.

    PubMed  CAS  Google Scholar 

  61. Espanol T, Guarro A, Barquinero J, Gareia-Arumi RM: Familial incidence of hyper IgM syndrome. In: Griscelli C, Vosen J, eds. Progress in Immuno efficiency Research and Therapy 1. Amsterdam: Elsevier, 1984:211.

    Google Scholar 

  62. Beall GN, Ashman RF, Miller ME, et al.: Hypogammaglobulinemia in mother and son. J Allergy Clin Immunol 1980;65:471.

    PubMed  CAS  Google Scholar 

  63. Brahmi Z, Lazarus KH, Hodes ME, Baehner RL: Immunologic studies of three family members with the immunodeficiency with hyper-IgM syndrome. J Clin Immunol 1983;3:137.

    Google Scholar 

  64. Bhushan A, Barnhart B, Shone S, Song C, Covey LR: A transcriptional defect underlies B lymphocyte dysfunction in a patient diagnosed with non-X-linked hyper-IgM syndrome. J Immunol 2000;164:2871–2880.

    PubMed  CAS  Google Scholar 

  65. Kikutani H, Inui S, Sato R, et al.: Molecular structure of human lymphocyte receptor for immunoglobulin E. Cell 1986;47: 657–665.

    PubMed  CAS  Google Scholar 

  66. Defrance T, Aubry JP, Rousset F, et al.: Human recombinant interleukin 4 induces Fc epsilon receptors (CD23) on normal human B lymphocytes. J Exp Med 1987; 165:1459–1467.

    PubMed  CAS  Google Scholar 

  67. Ranheim EA, Kipps TJ: Activated T cells induce expression of B7/BB1 on normal or leukemic B cells througha CD40-dependent signal. J Exp Med 1993;177: 925–935.

    PubMed  CAS  Google Scholar 

  68. Choi T, Bigger WD, Good R: Biosynthesis and secretion of immunoglobulins by peripheral-blood lymphocytes inseverehypogammaglobulinemia. Lancet 1972; 1:1149.

    PubMed  CAS  Google Scholar 

  69. Wu LY, Lawton AR, Cooper MD: Differentiation capacity of cultures of B lymphocytes from immunod-eficient patients. J Clin Invest 1973;52:3180–3189.

    PubMed  CAS  Google Scholar 

  70. Cunningham-Rundles C: Clinical and immunological analyses of 103 patients with common variable immunodeficiency. J Clin Immunol 1989;9:22–33.

    PubMed  CAS  Google Scholar 

  71. Cunningham-Rundles C, Bodian C: Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol 1999;92:34–48.

    PubMed  CAS  Google Scholar 

  72. Mayer L, Fu SM, Cunningham-Rundles C, Kunkel HG: Polyclonal immunoglobulin secretion in patients with common variable immunodeficiency using monoclonal B cell differentiation factors. J Clin Invest 1984;74: 2115–2120.

    PubMed  CAS  Google Scholar 

  73. Nonoyama S, Farringon M, Ishida H, Howard M, Ochs HD: Activated B cells from patients with common variable immuno deficiency proliferate and synthesize immunoglobulin. J Clin Invest 1993;92: 1282–1287.

    PubMed  CAS  Google Scholar 

  74. Eisenstein EM, Chua K, Strober W: B cell differentiation defects in common variable immunodeficiency are ameliorated after stimulation with anti-CD40 antibody and IL-10. J Immunol 1994;152: 5957–5968.

    PubMed  CAS  Google Scholar 

  75. Life P, Gauchat JF, Schnuriger V, et al.: T cell clones from an X-linked hyper-immunoglobulin (IgM) patient induce IgE synthesis in vitro despite expression of nonfunctional CD40 ligand. J Exp Med 1994;180:1775–1784.

    PubMed  CAS  Google Scholar 

  76. Callard RE, Smith SH, Herbert J, et al.: CD40 ligand (CD40L) expression and B cell function in agammaglobulinemia with normal or elevated levels of IgM (HIM). J Immunol 1994;153:3295–3306.

    PubMed  CAS  Google Scholar 

  77. Conley ME, Larche M, Bonagura VR, et al.: Hyper IgM syndrome associated with defective CD40 mediated B cell activation. J Clin Invest 1994;94:1404–1409.

    PubMed  CAS  Google Scholar 

  78. Revy P, Geissmann F, Debre M, Fischer A, Durandy A: Normal CD40-mediated activation of monocytesand dendritic cells from patients with hyper-IgM syndrome due to a CD40 pathway defect in B cells. Eur J Immunol 1998;28: 3648–3654.

    PubMed  CAS  Google Scholar 

  79. Kamanaka M, Yu P, Yasui T, et al.: Protective role of CD40 in Leishmania major infection at two distinct phases of cell-mediated immunity. Immunity 1996;4: 275–281.

    PubMed  CAS  Google Scholar 

  80. Revy P, Muto T, Levy Y, et al.: Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 2000;102:565–575.

    PubMed  CAS  Google Scholar 

  81. Muramatsu M, Sankaranand VS, Anant S, et al.: Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 1999;274: 18,470–18,476.

    CAS  Google Scholar 

  82. Navaratnam N, Morrison JR, Bhattacharya S, et al.: The p27 catalytic subunit of the apolipoprotein B mRNA editing enzyme is a cytidine deaminase. J Biol Chem 1993;268:20,709–20,712.

    CAS  Google Scholar 

  83. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T: Class switch recombination and hypermutation requireactivation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000;102:553–563.

    PubMed  CAS  Google Scholar 

  84. Minegishi Y, Lavoie A, Cunningham-Rundles C, et al.: Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome. Clin Immunol 2000;97:203–210.

    PubMed  CAS  Google Scholar 

  85. Hennessy K, Fennsewald S, Hummel M, Cole T, Kieff E: A membrane protein encoded by Epstein-Barr virus in latent growth-transforming infection. Proc Natl Acad Sci USA 1984;81; 7207–7211.

    PubMed  CAS  Google Scholar 

  86. Fennewald S, van Santen V, Kieff E: Nucleotide sequence of an mRNA transcribed in latent growth-transfonning virus infection indicates that it may encode a membrane protein. J Virol 1984; 51:411–419.

    PubMed  CAS  Google Scholar 

  87. Mosialos G, Birkenbach M, Yalmanchili R, VanArsdale T, Ware C, Kieff E: The Epstein-Barr virus transforming protein LMPI engages signaling proteins for the tumor necrosis factor receptor family. Cell 1995;80:389–399.

    PubMed  CAS  Google Scholar 

  88. Cahir-McFarland ED, Izumi KM, Mosialos G: Epstein-Barr virus transfrormation: involvement of latent membrane protein 1-mediated activation of NF-κB. Oncogene 1999;18:6959–6964.

    PubMed  CAS  Google Scholar 

  89. Geha RS, Hyslop N, Alami S, Farah F, Schneeberger EE, Rosen FS: Hyper immunoglobulin M immunodeficiency. (Dysgammaglobulinemia). Presence of immunoglobulin M-secretingplas macytoid cells in peripheral blood and failure of immunoglobulin M-immunoglobulin G switch in B-cell differentiation. J Clin Invest 1979;64:385–391.

    PubMed  CAS  Google Scholar 

  90. Schwaber JF, Lazarus H, Rosen FS: IgM-restricted production of immunoglobulin by lymphoid cell lines from patients with immunodeficiency with hyper IgM (dysgammaglo-bulimemia). Clin Immunol Immunopathol 1981;19: 91–97.

    PubMed  CAS  Google Scholar 

  91. Levitt D, Haber P, Rich K, Cooper MD: Hyper IgM immunodeficiency. A primary dysfunction of B lymphocyte isotype switching. J Clin Invest 1983;72:1650–1657.

    PubMed  CAS  Google Scholar 

  92. Mayer L, Kwan SP, Thompson C, et al.: Evidence for a defect in “switch” T cells in patients with immunodeficiency and hyperim-munoglobulinemia M. N Engl J Med 1986;314:409–413.

    PubMed  CAS  Google Scholar 

  93. Mayer L, Posnett DN, Kunkel HG: Human malignant T cells capable of inducing an immunoglobulin class switch. J Exp Med 1985; 161:134–144.

    PubMed  CAS  Google Scholar 

  94. Hendriks RW, Kraakman ME, Craig IW, Espanol T, Schuurman RK: Evidence that in X-linked immunodeficiency with hyperimmunoglobulinemia M the intrinsic immunoglobul in heavy chain class switch mechanism is intact. Eur J Immunol 1990;20:2603–2608.

    PubMed  CAS  Google Scholar 

  95. Durandy A, Hivrox C, Mazerolles F, et al.: Abnormal CD40-mediated activation pathway in B lymphocytes from patients with hyper-IgM syndrome and normal CD40 ligand expression. J Immunol 1997;158:2576–2584.

    PubMed  CAS  Google Scholar 

  96. Stavnezer-Nordgren J, Sirlin S: Specificity of immunoglobulin heavy chainswitch correlates with activity of germline heavy chain genes prior to switching. EMBO J. 1986;5:95–102.

    PubMed  CAS  Google Scholar 

  97. Lutzker S, Rothman P, Pollock R, Coffman R, Alt FW: Mitogen and IL-4 regulated expression of germline Igγ2b transcripts: evidence for directed heavy chain class switching. Cell 1988;53:177–184.

    PubMed  CAS  Google Scholar 

  98. Gaff C, Gerondakis S: RNA splicing generates alternate forms of germline immunoglobulin alpha heavy chain transcripts. Int Immunol 1990;2:1143–1148.

    PubMed  CAS  Google Scholar 

  99. Gerondakis S: Structure and expression of murine germ-line immunoglobulin epsilon heavy chain transcripts induced by interleukin 4. Proc Natl Acad Sci USA 1990;87:1581–1585.

    PubMed  CAS  Google Scholar 

  100. Lebman DA, Nomura DY, Coffman RL, Lee FD: Molecular characterization of germ-line immunoglobulin A transcripts produced during transforming growth factor type beta-induced isotype switching. Proc Natl Acad Sci USA 1990;87:3962–2966.

    PubMed  CAS  Google Scholar 

  101. Radcliffe G, Lin YC, Julius M, Marcu KB, Stavnezer J: Structure of germ line immunoglobulin alpha heavy-chain RNA and its location on polysomes. Mol Cell Biol 1990; 10:382–386.

    PubMed  CAS  Google Scholar 

  102. Rothman P, Chen YY, Lutzker S, et al.: Structure and expression of germline immunoglobuin heavy-chain epsilon transcripts: interleukin-4 plus lipopolysaccharide-directed switching to C epsilon. Mol Cell Biol 1990; 10:1672–1679.

    PubMed  CAS  Google Scholar 

  103. Rothman P, Lutzker S, Gorham B, Stewart V, Coffman R, Alt FW: Structure and expression of germline immunoglobulin γ3 heavy chain gene transcipts: implications for mitogen and lymphokine directed class switching. Int Immunol 1990;2:621–627.

    PubMed  CAS  Google Scholar 

  104. Zhang J, Bottaro A, Li S, Stewart V, Alt FW: A selective defect in IEgG2b switching as a result of targeted mutation of the Iγ 2b promoter and exon. EMBO J 1993;12:3529–3537.

    PubMed  CAS  Google Scholar 

  105. Bottaro A, Lansford R, Xu I, Zhang J, Rothman P, Alt FW: S region transcription per sepromotes basal IgEclass switch recombination but additional factors regulate thee fficiency of the process. EMBO J 1994;13:665.

    PubMed  CAS  Google Scholar 

  106. Lorenz M, Jung S, Radbruch A: Switch transcriptsin immunoglobulin class switching. Science 1995; 267:1825–1828.

    PubMed  CAS  Google Scholar 

  107. Hein K, Lorenz MG, Siebenkotten G, Petry K, Christine R, Radbruch A: Processing of switch transcripts is required for targeting of antibody class switch recombination. J Exp Med 1998;188:2369–2374.

    PubMed  CAS  Google Scholar 

  108. Coffman RL, Savelkoul HFJ, Lebman DA: Cytokine regulation of immunoglobulin isotypes witching and expression. Sem Immunol 1989;1:55–63.

    CAS  Google Scholar 

  109. Foy TM, Aruffo A, Bajorath J, Buhlmann JE, Noelle RJ: Immune regulation by CD40 and its ligand GP39. Annu Rev Immunol 1996; 14:591–617.

    PubMed  CAS  Google Scholar 

  110. Stavnezer J: Immunoglobulin class switching. Curr Opin Immunol 1996;8:199–205.

    PubMed  CAS  Google Scholar 

  111. Snapper CM, Marcu KB, Zelazowdski P: The immunoglobulin class switch: Beyond “accessibility”. Immunity 1997;6:217–223.

    PubMed  CAS  Google Scholar 

  112. Jumper MD, Splawski JB, Lipsky PE, Meek K: Ligation of CD40 induces sterile transcripts of multiple IgH chain isotypes in human B cells. J Immunol 1994;152: 438–445.

    PubMed  CAS  Google Scholar 

  113. Fujeda S, Zhang K, Saxon A: IL-4 plus CD40 monoclonal antibody induces human B cells γ subclass-specific isotype switch: Switching to γ1-γ3, and γ4, but not γ2. J Immunol 1995;155 2318–2328.

    Google Scholar 

  114. Cerutti A, Trentin L, Zambello R, et al.: The CD4/CD72 receptor system is coexpressed with several functionally relevant counterstructures on human B cells and delivers a critical signaling activity. J Immunol 1996;157:1854–1862.

    PubMed  CAS  Google Scholar 

  115. Cerutti A, Zan H, Schaffer A, et al.: CD40 ligand and appropriate cytokinesinduce switching to IgG, IgA, and IgE and coordinated germinal center and plasmacytoid phenotypic differentiation in a human monoclonal IgM+IgD+B cell line. J Immunol 1998;160: 2145–2157.

    PubMed  CAS  Google Scholar 

  116. Padavachee M, Feighery C, Finn A, t al.: Mapping of the X-linked from of hyper IgM syndrome (HIGMI) to Xq26 by close linkage to HPRT. Genomics 1992;14:551.

    Google Scholar 

  117. Muto T, Muramatsu M, Taniwaki M, Kinoshita K, Honjo T: Isolation, tissue distribution, and chromosomallocalization of the human activation-induced cytidine deaminase (AID) gene. Genomics 2000; 68:85–88.

    PubMed  CAS  Google Scholar 

  118. Jin, DY, Jeang, KT: Isolation of full-length cDNA and chromosomal localization of human NF-kappaB modulator NEMO to Xq28. J Biomed Sci 1999;6: 115–120.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori R. Covey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhushan, A., Covey, L.R. CD40: CD40L interactions in X-linked and non-X-linked hyper-IgM syndromes. Immunol Res 24, 311–324 (2001). https://doi.org/10.1385/IR:24:3:311

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:24:3:311

Key Words

Navigation