Skip to main content
Log in

EDTA chelation effects on urinary losses of cadmium, calcium, chromium, cobalt, copper, lead, magnesium, and zinc

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The efficacy of a chelating agent in binding a given metal in a biological system depends on the binding constants of the chelator for the particular metals in the system, the concentration of the metals, and the presence and concentrations of other ligands competing for the metals in question. In this study, we make a comparison of the in vitro binding constants for the chelator, ethylenediaminetetraacetic acid, with the quantitative urinary excretion of the metals measured before and after EDTA infusion in 16 patients. There were significant increases in lead, zinc, cadmium, and calcium, and these increases roughly corresponded to the expected relative increases predicted by the EDTA-metal-binding constants as measured in vitro. There were no significant increases in urinary cobalt, chromium, or copper as a result of EDTA infusion. The actual increase in cobalt could be entirely attributed to the cobalt content of the cyanocobalamin that was added to the infusion. Although copper did increase in the post-EDTA specimens, the increase was not statistically significant. In the case of magnesium, there was a net retention of approximately 85% following chelation. These data demonstrate that EDTA chelation therapy results in significantly increased urinary losses of lead, zinc, cadmium, and calcium following EDTA chelation therapy. There were no significant changes in cobalt, chromium, or copper and a retention of magnesium. These effects are likely to have significant effects on nutrient concentrations and interactions and partially explain the clinical improvements seen in patients undergoing EDTA chelation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Cranton, X. L. Zheng, and I. M. Smith, Urinary trace and toxic elements and minerals in untimed urine specimens relative to urine creatinine, J. Adv. Med. 1, 331–397 (1989).

    Google Scholar 

  2. M. Hambidge, Human zinc deficiency, J. Nutr. 130(5S Suppl.), 1344S-1349S (2000).

    PubMed  CAS  Google Scholar 

  3. D. A. Skoog and D. M. West, Volumetric methods based on complex-formation reactions, in Fundamentals of Analytical Chemistry, Holt, Rhinehart and Winston, New York, pp. 338–360 (1969).

    Google Scholar 

  4. B. W. Halstead, The Scientific Basis of EDTA Chelation Therapy, TRC, Lanham, SC (1997).

    Google Scholar 

  5. T. C. Rorzema The protocol for the safe and effective administration of EDTA and other chelating agents for vascular disease, degenerative disease and metal toxicity, J. Adv. Med. 10, 11–17 (1997).

    Google Scholar 

  6. H. Foreman and T. Trujillo, Metabolism of carbon 14 labeled ethylenediaminetetraacetic acid in human beings, J. Lab. Clin. Med. 43, 566 (1954).

    PubMed  CAS  Google Scholar 

  7. R. A. Anderson, M. M. Polansky, N. A. Bryden, E. E. Roginski, K. Y. Patterson, and D. C. Reamer, Effect of exercise (running) on serum glucose, insulin, glucagon and chromium excretion, Diabetes 31, 212–216 (1982).

    Article  PubMed  CAS  Google Scholar 

  8. D. W. Cockcraft and M. H. Gault, Prediction of creatinine clearance from serum creatinine, Nephron 16, 31–41 (1976).

    Article  Google Scholar 

  9. J. P. Prackelton, Monitoring renal function during EDTA chelation therapy, J. Holistic Med. 2, 327–330 (1989).

    Google Scholar 

  10. L. M. Klevay, Ischemic heart disease: toward a unified theory, in Role of Copper in Lipid Metabolism, K. Y. Lei, ed., CRC, Boca Raton, FL, pp. 233–267 (1990).

    Google Scholar 

  11. H. D. Riordan, E. Cheraskin, and M. Dirks, Mineral excretion associated with EDTA chelation therapy, J. Adv. Med. 3, 111–123 (1990).

    Google Scholar 

  12. J. P. Frackelton, Monitoring renal function during EDTA Chelation therapy. J. Holistic Med. 8, 33–35 (1986).

    Google Scholar 

  13. C. A. Burtis and E. R. Ashwood, eds., Tietz Textbook of Clinical Chemistry. Trace Elements, W. B. Saunders, Philadelphia, p. 490 (1999).

    Google Scholar 

  14. R. A. Anderson, N. A. Bryden, and R. S. Waters, EDTA chelation therapy does not selectively increase chromium losses, Biol. Trace Element Res. 70, 265–272 (1999).

    CAS  Google Scholar 

  15. R. A. Anderson, N. Cheng, N. A. Bryden, M. M. Polansky, N. Cheng, J. Chi, et al., Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes, Diabetes 46, 1786–1791 (1997).

    Article  PubMed  CAS  Google Scholar 

  16. R. A. Anderson, Chromium, glucose intolerance and diabetes. J. Am. Coll. Nutr. 17, 548–555 (1998).

    PubMed  CAS  Google Scholar 

  17. A. Raviva, L. Stezak, N. Mirsky, N. A. Bryden, and R. A. Anderson, Reversal of corticosteroid-induced diabetes mellitus with supplemental chromium, Diabetic Med. 16, 164–167 (1999).

    Article  Google Scholar 

  18. R. A. Anderson, Chromium and diabetes, Nutrition 15, 720–721 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. R. A. Anderson, A. M. Roussel, and J. Neve, Essential trace elements, chromium, copper, iron, zinc and selenium, and cardiovascular diseases, Handbook of Hypertension, Vol. 20, C. J. Bulbitt, ed., Elsevier, New York, pp. 314–335 (2000).

    Google Scholar 

  20. M. Rubin, Enhancement of lead excretion in humans by disodium calcium ethylenedi-aminetetraacetic acid, Science 117, 659–660 (1953).

    Article  PubMed  CAS  Google Scholar 

  21. H. A. Schroeder and H. M. Perry, Antihypertensive effects of metal binding agents, J. Lab. Clin. Med. 46, 416–421 (1955).

    PubMed  CAS  Google Scholar 

  22. H. A. Schroeder and J. Buckman, Cadmium hypertension, its reversal by a zinc chelate, Arch. Environ. Health 14, 693–697 (1967).

    PubMed  CAS  Google Scholar 

  23. D. Krumhout, Blood lead and coronary heart disease among elderly men in Zutphen, the Netherlands, Environ. Health Perspect. 78, 43–46 (1988).

    Article  Google Scholar 

  24. E. W. McDonagh, C. J. Rudolph, and E. Cheraskin, The effects of intravenous disodium EDTA on blood cholesterol in a private practice environment, J. Int. Acad. Prev. Med. 7, 5–12 (1982).

    Google Scholar 

  25. K. W. Sehnert, A. F. Clague, and E. Cheraskin, The Improvement in renal function following EDTA chelation and multivitamin-trace mineral therapy: a study in creatinine clearance, Med. Hypothesis 15, 301–304 (1984).

    Article  CAS  Google Scholar 

  26. E. W. Olszewer and J. P. Canter, EDTA chelation therapy: a retrospective study of 2,870 patients, J. Adv. Med. 2, 197–233 (1989).

    Google Scholar 

  27. Food and Nutrition Board, National Research Council: Recommended Dietary Allowances, 10th ed., National Academy of Science, Washington, DC (1989).

    Google Scholar 

  28. C. A. Burtis and E. R. Ashwood, eds., Tietz Textbook of Clinical Chemistry. Trace Elements, W. B. Saunders, Philadelphia, p. 1038 (1999).

    Google Scholar 

  29. S. M. Pilch and F. R. Senti, Analysis of zinc data from the second National Health and Nutrition Examination Survey (NHANES II), J. Nutr. 115, 1393–1397 (1985).

    PubMed  CAS  Google Scholar 

  30. R. R. Briefel, K. Bialostosky, J. Kennedy-Stephenson, M. A. McDowell, R. B. Ervin, and J. D. Wright, Zinc intake of the U.S. population: findings from the third National Health and Nutrition Examination Survey, 1988–1994, J. Nutr. 130(5S Suppl.), 1367S-1373S (2000).

    PubMed  CAS  Google Scholar 

  31. R. A. Jacob, J. M. Munoz, H. H. Sandstead, et al., Whole body surface loss of trace metals in normal males, Am. J. Clin. Nutr. 34, 1379–1383 (1981).

    PubMed  CAS  Google Scholar 

  32. M. H. Stipanuk, Biochemical and Physiological Aspects of Human Nutrition, W.B. Saunders, Philadelphia, p. 750 (2000).

    Google Scholar 

  33. C. A. Burtis and E. R. Ashwood, eds., Tietz Textbook of Clinical Chemistry. Trace Elements, W. B. Saunders, Philadelphia, p. 1396 (1999).

    Google Scholar 

  34. A. G. Goodman and L. S. Gilman, The Pharmaceutical Basis of Therapeutics, 3rd ed., MacMillan, New York, p. 1620 (1985).

    Google Scholar 

  35. L. E. Meltzer, J. R. Kitchell, and F. Palmon, The long term use, side effects and toxicity of disodium EDTA, Am. J. Med. Sci., 242, 11–17 (1961).

    PubMed  CAS  Google Scholar 

  36. M. D. Reuber and J. E. Bradley, Acute versenate nephrosis, JAMA 174, 263–269 (1960).

    PubMed  CAS  Google Scholar 

  37. N. E. Clarke, N. C. Clarke, and R. E. Moshen, Treatment of angina pectoris with disodium EDTA, Am. J. Med. Sci. 232, 654–666 (1956).

    Article  PubMed  CAS  Google Scholar 

  38. C. P. Lamar, Chelation endarterectomy for occlusive atherosclerosis, J. Am. Geriatr. Soc. 14, 272–294 (1966).

    PubMed  CAS  Google Scholar 

  39. E. W. McDonagh, C. J. Ruddolph, and E. Chesarkin, The “clinical change” in patients treated with EDTA chelation plus multivitamin trace mineral supplementation, J. Orthomol. Psychiatry 14, 61–65 (1985).

    Google Scholar 

  40. H. R. Casdorph, EDTA chelation therapy: efficacy in heart disease, J. Adv. Med. 2, 121–129 (1989).

    Google Scholar 

  41. H. R. Casdorph and C. H. Farr, EDTA chelation therapy: treatment of peripheral arterial occlusion, an alternative to amputation, J. Adv. Med. 2, 167–182 (1989).

    Google Scholar 

  42. C. Hancke and K. Flytlie, Benefits of EDTA chelation therapy in atherosclerosis: a retrospective study of 470 patients. J. Adv. Med. 6, 161–171 (1993).

    Google Scholar 

  43. L. T. Chappell and J. P. Stahl, The correlation between EDTA chelation therapy and improvement in cardiovascular function: a meta-analysis. J. Adv. Med. 6, 139–160 (1993).

    Google Scholar 

  44. H. J. Holliday, Carotid restenosis: a case for EDTA chelation, J. Adv. Med. 9, 95–99 (1996).

    Google Scholar 

  45. C. J. Rudolph and E. W. McDonagh, Renal artery stenosis reversal in a hypertensive individual, using a combination of EDTA chelation and multiple vitamin and trace mineral therapy, J. Adv. Med. 12, 193–200 (1999).

    Google Scholar 

  46. N. E. Clarke, C. N. Clarke, and R. E. Mosher, The “in vivo” dissolution of metastatic calcium: an approach to atherosclerosis, Am. J. Med. Sci. 229, 142–146 (1955).

    Article  PubMed  CAS  Google Scholar 

  47. H. A. Schroeder, A practical method for the reduction of plasma cholesterol in man, J. Chronic Dis. 4, 461–465 (1956).

    Article  PubMed  CAS  Google Scholar 

  48. A. Suvorov and R. A. Markosyan, Some mechanisms of EDTA on platelet aggregation, All Union Cardiol. Res. Cend. Moscow, Russia. Byall Eks Biol. Med. 5, 587 (1981).

    Google Scholar 

  49. D. P. Deucher, EDTA chelation therapy: an antioxidant strategy, J. Adv. Med. 1, 182–186 (1988).

    Google Scholar 

  50. B. M. Altura and B. T. Altura, Interactions of Mg and K on blood vessels: aspects in view of hypertension, Magnesium 3, 175–194 (1984).

    PubMed  CAS  Google Scholar 

  51. L. M. Resnick, R. K. Gupta, and J. H. Laragh, Intracellular free magnesium in erythrocytes of essential hypertension: relation to blood pressure and serum divalent cations, Proc. Natl. Acad. Sci. USA 81, 6511–6515 (1984).

    Article  PubMed  CAS  Google Scholar 

  52. K. Kisters, M. Tepel, C. Spieker, K. H. Dietl, M. Barenbrock, K. H. Rahn, et al., Decreased cellular Mg2+ concentrations in a subgroup of hypertensives—cell models for the pathogenesis of primary hypertension, J. Hum. Hypertens. 11, 367–372 (1997).

    Article  PubMed  CAS  Google Scholar 

  53. I. DeLeeuw, W. Engelen, J. Vertommen, and L. Nonneman, Effect of intensive i.v. and oral magnesium supplementation on circulating ion levels, lipid parameters and metabolic control in Mg-depleted insulin-dependent diabetic patients (IDDM), Magnesium Res. 10, 135–141 (1997).

    CAS  Google Scholar 

  54. L. Hansson, A. Zanchetti, S. G. Carruthers, B. Dahlof, D. Elmfeldt, S. Julius, et al., Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group, Lancet 351, 1755–1762 (1998).

    Article  PubMed  CAS  Google Scholar 

  55. J. R. Sowers and B. Draznin, Insulin, cation metabolism and insulin resistance, J. Basic Clin. Physiol. Pharmacol. 9, 223–233 (1998).

    PubMed  CAS  Google Scholar 

  56. H. W. DeValk, Magnesium in diabetes mellitus, Netherland J. Med. 57, 139–146 (1999).

    Article  Google Scholar 

  57. M. Worwag, H. G. Classen, and E. Schumacher, Prevalence of magnesium and zinc deficiencies in nursing home residents in Germany, Magnesium Res. 12, 181–189 (1999).

    CAS  Google Scholar 

  58. K. Kisters, Magnesium deficiency and increased fractional magnesium excretion in insulin-dependent diabetes mellitus-magnesium loading fraction and blood pressure, Trace Element Electrolytes 17, 67–70 (2000).

    CAS  Google Scholar 

  59. K. L. Woods, S. Fletcher, C. Roffe, et al., Intravenous magnesium sulphate in suspected acute myocardial infarction of the second Leicester Intravenous Magnesium Intervention Trial. (LIMIT-2), Lancet 339, 1553–1558 (1992).

    Article  PubMed  CAS  Google Scholar 

  60. S. M. Horner, Efficacy of intravenous magnesium in acute myocardial infarction in reducing arrhythmias and mortality. Meta-analysis of magnesium in acute myocardial infarction, Circulation 86, 774–779 (1992).

    PubMed  CAS  Google Scholar 

  61. M. A. Brodsky, M. V. Orlov, E. V. Capparelli, B. J. Allen, L. T. Iseri, M. Ginkel, et al., Magnesium therapy in new-onset atrial fibrillation, Am. J. Cardiol. 15, 1227–1229 (1994).

    Article  Google Scholar 

  62. M. Shechter, H. Hod, E. Kaplinsky, and B. Rabinowitz, The rationale of magnesium as alternative therapy for patients with acute myocardial infarction without thrombolytic therapy, Am. Heart J. 132, 483–486 (1996).

    Article  PubMed  CAS  Google Scholar 

  63. G. M. Reaven, Role of insulin resistance in human disease, Diabetes 37, 1595–1607 (1988).

    Article  PubMed  CAS  Google Scholar 

  64. M. Chevion, The use of both “push and pull” mechanisms against free radical induced biological damage, Plzen. Lek. Shorn. 68(Suppl.), 77–81 (1993).

    Google Scholar 

  65. T. M. Bray and W. J. Bettger, The physiological role of zinc an antioxidant, Free Radical Biol. Med. 8, 281–291 (1990).

    Article  CAS  Google Scholar 

  66. C. F. Peng, J. J. Kane, M. L. Murphy, and K. D. Straub, Abnormal mitochondrial oxidative phosphorylation of ischemic myocardium reversed by Ca2+-chelating agents. J. Mol. Cell Cardiol. 9, 897–908 (1977).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waters, R.S., Bryden, N.A., Patterson, K.Y. et al. EDTA chelation effects on urinary losses of cadmium, calcium, chromium, cobalt, copper, lead, magnesium, and zinc. Biol Trace Elem Res 83, 207–221 (2001). https://doi.org/10.1385/BTER:83:3:207

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:83:3:207

Index Entries

Navigation