Skip to main content

Aggresome Formation

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 301))

Summary

Bulk protein degradation in the cell is catalyzed by the ubiquitin-proteasome system (UPS). At the heart of the UPS is the proteasome, a large multisubunit tightly-regulated protease. The UPS performs key functions in protein quality control by monitoring and eliminating potentially toxic misfolded or damaged proteins. When the capacity of this protease system is exceeded, misfolded protein substrates aggregate and are assembled through an active and regulated process to form an aggresome. Aggresomes are dynamic structures, formed as a general response to an overload of improperly folded proteins. Assembly of aggresomes occurs at the centrosome, a perinuclear structure that also serves as a site for the recruitment and concentration of components of the UPS, including the proteasome, its regulators, and other proteins typically involved in protein quality control. Thus, in addition to other cellular activities, the centrosome may play a central role in protein quality control, sitting at the crossroads of protein folding, degradation, and aggregation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wójcik, C., Schroeter, D., Wilk, S., Lamprecht, J., and Paweleta, N. (1996) Ubiquitinmediated proteolysis centers in HeLa cells: indication from studies of an inhibitor of the chymotrypsin-like activity of the proteasome. Eur. J. Cell Biol. 71, 311–318.

    PubMed  Google Scholar 

  2. Wigley, W. C., Fabunmi, R. P., Lee, M. G., et al. (1999) Dynamic association of proteasomal machinery with the centrosome. J. Cell Biol. 145, 481–490.

    PubMed  CAS  Google Scholar 

  3. Johnston, J. A., Ward, C. L., and Kopito, R. R. (1998) Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143, 1883–1898.

    PubMed  CAS  Google Scholar 

  4. Rock, K. L. and Goldberg, A. L. (1999) Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu. Rev. Immunol. 17, 739–779.

    PubMed  CAS  Google Scholar 

  5. Voges, D., Zwickl, P., and Baumeister, W. (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68, 1015–1068.

    PubMed  CAS  Google Scholar 

  6. Hershko, A. and Ciechanover, A. (1998) The ubiquitin system. Annu. Rev. Biochem. 67, 425–479.

    PubMed  CAS  Google Scholar 

  7. Schwartz, A. L. and Ciechanover, A. (1999) The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annu. Rev. Med. 50, 57–74.

    PubMed  CAS  Google Scholar 

  8. Ma, C.-P., Vu, J. H., Proske, R. J., Slaughter, C. A., and DeMartino, G. N. (1994) Identification, purification, and characterization of a high molecular weight ATP-dependent activator (PA700) of the 20S proteasome. J. Biol. Chem. 269, 3539–3547.

    CAS  Google Scholar 

  9. Weissman, A. M. (2001) Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell Biol. 2, 169–178.

    PubMed  CAS  Google Scholar 

  10. Coux, O., Tanaka, K., and Goldberg, A. L. (1996) Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801–847.

    PubMed  CAS  Google Scholar 

  11. Baumeister, W., Walz, J., Zuhl, F., and Seemuller, E. (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380.

    PubMed  CAS  Google Scholar 

  12. Lowe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W., and Huber, R. (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution [see comments]. Science 268, 533–539.

    PubMed  CAS  Google Scholar 

  13. Groll, M., Ditzel, L., Lowe, J., et al. (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386, 463–471.

    PubMed  CAS  Google Scholar 

  14. Heinemeyer, W., Fischer, M., Krimmer, T., Stachon, U., and Wolf, D. H. (1997) The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J. Biol. Chem. 272, 25200–25209.

    PubMed  CAS  Google Scholar 

  15. Dick, T. P., Nussbaum, A. K., Deeg, M., et al. (1998) Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants. J. Biol. Chem. 273, 25637–25646.

    PubMed  CAS  Google Scholar 

  16. Wenzel, T. and Baumeister, W. (1995) Conformational constraints in protein degradation by the 20S proteasome. Nat. Struct. Biol. 2, 199–204.

    PubMed  CAS  Google Scholar 

  17. Ma, C.-P., Slaughter, C. A., and DeMartino, G. N. (1992) Identification, purification, and characterization of a protein activator (PA28) of the 20 S proteasome (macropain) J. Biol. Chem. 267, 10515–10523.

    PubMed  CAS  Google Scholar 

  18. Yoshimura, T., Kameyama, K., Takagi, T., et al. (1993) Molecular characterization of the “26S” proteasome complex from rat liver. J. Struct. Biol. 111, 200–211.

    PubMed  CAS  Google Scholar 

  19. Adams, G. M., Falke, S., Goldberg, A. L., Slaughter, C. A., DeMartino, G. N., and Gogol, E. P. (1997) Structural and functional effects of PA700 and modulator protein on proteasomes. J. Mol. Biol. 273, 646–657.

    PubMed  CAS  Google Scholar 

  20. Deveraux, Q., Ustrell, V., Pickart, C., and Rechsteiner, M. (1994) A 26 S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 269, 7059–7061.

    PubMed  CAS  Google Scholar 

  21. Lam, Y. A., Lawson, T. G., Velayutham, M., Zweier, J. L., and Pickart, C. M. (2002) A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416, 763–767.

    PubMed  CAS  Google Scholar 

  22. Yao, T. and Cohen, R. E. (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403–407.

    PubMed  CAS  Google Scholar 

  23. Verma, R., Aravind, L., Oania, R., et al. (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611–615.

    PubMed  CAS  Google Scholar 

  24. DeMartino, G. N., Moomaw, C. R., Zagnitko, O. P., et al. (1994) PA700, an ATP-dependent activator of the 20 S proteasome, is an ATPase containing multiple members of a nucleotide-binding protein family. J. Biol. Chem. 269, 20878–20884.

    PubMed  CAS  Google Scholar 

  25. Strickland, E., Hakala, K., Thomas, P. J., and DeMartino, G. N. (2000) Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26 S proteasome. J. Biol. Chem. 275, 5565–5572.

    PubMed  CAS  Google Scholar 

  26. Liu, C. W., Millen, L., Roman, T. B., et al. (2002) Conformational remodeling of proteasomal substrates by PA700, the 19 S regulatory complex of the 26 S proteasome. J. Biol. Chem. 277, 26815–26820.

    PubMed  CAS  Google Scholar 

  27. Strickland, E., Hakala, K., Thomas, P. J., and DeMartino, G. N. (2000) Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26 S proteasome. J. Biol. Chem. 275, 5565–5572.

    PubMed  CAS  Google Scholar 

  28. Braun, B. C., Glickman, M., Kraft, R., et al. (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat. Cell Biol. 1, 221–226.

    PubMed  CAS  Google Scholar 

  29. Unno, M., Mizushima, T., Morimoto, Y., et al. (2002) The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure (Camb.) 10, 609–618.

    PubMed  CAS  Google Scholar 

  30. Dubiel, W., Pratt, G., Ferrell, K., and Rechsteiner, M. (1992) Purification of an 11S regulator of the multicatalytic protease. J. Biol. Chem. 267, 22369–22377.

    PubMed  CAS  Google Scholar 

  31. Song, X., Mott, J. D., von Kampen, J., et al. (1996) A model for the quaternary structure of the proteasome activator PA28. J. Biol. Chem. 271, 26410–26417.

    PubMed  CAS  Google Scholar 

  32. Ahn, K., Erlander, M., Leturcq, D., Peterson, P. A., Früh, K., and Yang, Y. (1996) In vivo characterization of the proteasome regulator PA28. J. Biol. Chem. 271, 18237–18242.

    PubMed  CAS  Google Scholar 

  33. Whitby, F. G., Masters, E. I., Kramer, L., et al. (2000) Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408, 115–120.

    PubMed  CAS  Google Scholar 

  34. Rechsteiner, M., Realini, C., and Ustrell, V. (2000) The proteasome activator 11 S REG (PA28) and class I antigen presentation. Biochem. J. 345 Pt 1, 1–15.

    PubMed  CAS  Google Scholar 

  35. Dick, T., Ruppert, T., Groettrup, M., et al. (1996) Coordinated dual cleavage induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell 86, 262.

    Google Scholar 

  36. Groettrup, M., Soza, A., Eggers, M., et al. (1996) A role for the proteasome regulator PA28a in antigen presentation. Nature 381, 166–168.

    PubMed  CAS  Google Scholar 

  37. Realini, C., Dubiel, W., Pratt, G., Ferrell, K., and Rechsteiner, M. (1994) Molecular cloning and expression of a g-interferon-inducible activator of the multicatalytic protease. J. Biol. Chem. 269, 20727–20732.

    PubMed  CAS  Google Scholar 

  38. Ahn, J. Y., Tanahashi, N., Akiyama, K., et al. (1995) Primary structures of two homologous subunits of PA28, a γ-interferon-inducible protein activator of the 20S proteasome. FEBS Lett. 366, 37–42.

    PubMed  CAS  Google Scholar 

  39. Johnson, D. G. and Walker, C. L. (1999) Cyclins and cell cycle checkpoints. Annu. Rev. Pharmacol. Toxicol. 39, 295–312.

    PubMed  CAS  Google Scholar 

  40. Baldwin, A. S., Jr. (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649–683.

    PubMed  CAS  Google Scholar 

  41. Palombella, V. J., Rando, O. J., Goldberg, A. L., and Maniatis, T. (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78, 773–785.

    PubMed  CAS  Google Scholar 

  42. Orian, A., Whiteside, S., Israel, A., Stancovski, I., Schwartz, A. L., and Ciechanover, A. (1995) Ubiquitin-mediated processing of NF-kappa B transcriptional activator precursor p105. Reconstitution of a cell-free system and identification of the ubiquitin-carrier protein, E2, and a novel ubiquitin-protein ligase, E3, involved in conjugation. J. Biol. Chem. 270, 21707–21714.

    PubMed  CAS  Google Scholar 

  43. Lin, L., DeMartino, G. N., and Greene, W. C. (1998) Cotranslational biogenesis of NF-kappaB p50 by the 26S proteasome. Cell 92, 819–828.

    PubMed  CAS  Google Scholar 

  44. Liu, C. W., Corboy, M. J., DeMartino, G. N., and Thomas, P. J. (2003) Endoproteolytic activity of the proteasome. Science 299, 408–411.

    PubMed  CAS  Google Scholar 

  45. Hoppe, T., Matuschewski, K., Rape, M., Schlenker, S., Ulrich, H. D., and Jentsch, S. (2000) Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102, 577–586.

    PubMed  CAS  Google Scholar 

  46. Rape, M., Hoppe, T., Gorr, I., Kalocay, M., Richly, H., and Jentsch, S. (2001) Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107, 667–677.

    PubMed  CAS  Google Scholar 

  47. Campanero, M. R. and Flemington, E. K. (1997) Regulation of E2F through ubiquitin-proteasome-dependent degradation: stabilization by the pRB tumor suppressor protein. Proc. Natl. Acad. Sci. USA 94, 2221–2226.

    PubMed  CAS  Google Scholar 

  48. Bonvini, P., Nguyen, P., Trepel, J., and Neckers, L. M. (1998) In vivo degradation of N-myc in neuroblastoma cells is mediated by the 26S proteasome. Oncogene 16, 1131–1139.

    PubMed  CAS  Google Scholar 

  49. Tsurumi, C., Ishida, N., Tamura, T., et al. (1995) Degradation of c-Fos by the 26S proteasome is accelerated by c-Jun and multiple protein kinases. Mol. Cell Biol. 15, 5682–5687.

    PubMed  CAS  Google Scholar 

  50. Stancovski, I., Gonen, H., Orian, A., Schwartz, A. L., and Ciechanover, A. (1995) Degradation of the proto-oncogene product c-Fos by the ubiquitin proteolytic system in vivo and in vitro: identification and characterization of the conjugating enzymes. Mol. Cell Biol. 15, 7106–7116.

    PubMed  CAS  Google Scholar 

  51. Jariel-Encontre, I., Pariat, M., Martin, F., Carillo, S., Salvat, C., and Piechaczyk, M. (1995) Ubiquitinylation is not an absolute requirement for degradation of c-Jun protein by the 26 S proteasome. J. Biol. Chem. 270, 11623–11627.

    PubMed  CAS  Google Scholar 

  52. Maki, C. G., Huibregtse, J. M., and Howley, P. M. (1996) In vivo ubiquitination and proteasome-mediated degradation of p53(1) Cancer Res. 56, 2649–2654.

    PubMed  CAS  Google Scholar 

  53. Torres, J. and Pulido, R. (2001) The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteaseme-mediated degradation. J. Biol. Chem. 276, 993–998.

    PubMed  CAS  Google Scholar 

  54. Werner, E. D., Brodsky, J. L., and McCracken, A. A. (1996) Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc. Natl. Acad. Sci. USA 13797–137801.

    Google Scholar 

  55. Plemper, R. K. and Wolf, D. H. (1999) Endoplasmic reticulum degradation. Reverse protein transport and its end in the proteasome. Mol. Biol. Rep. 26, 125–130.

    PubMed  CAS  Google Scholar 

  56. Riordan, J. R., Rommens, J. M., Kerem, B.-S., et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.

    PubMed  CAS  Google Scholar 

  57. Anderson, M. P., Gregory, R. J., Thompson, S., et al. (1991) Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253, 202–205.

    PubMed  CAS  Google Scholar 

  58. Bear, C. E., Duguay, F., Naismith, A. L., Kartner, N., Hanrahan, J. W., and Riordan, J. R. (1991) Cl-channel activity in Xenopus oocytes expressing the cystic fibrosis gene. J. Biol. Chem. 266, 19142–19145.

    PubMed  CAS  Google Scholar 

  59. Sheppard, D. N. and Welsh, M. J. (1999) Structure and function of the CFTR chloride channel. Physiol. Rev. 79, S23–S45.

    PubMed  CAS  Google Scholar 

  60. Lee, M. G., Wigley, W. C., Zeng, W., et al. (1999) Regulation of Cl-/HCO3-exchange by cystic fibrosis transmembrane conductance regulator expressed in NIH 3T3 and HEK 293 cells. J. Biol. Chem. 274, 3414–3421.

    PubMed  CAS  Google Scholar 

  61. Schwiebert, E. M., Benos, D. J., Egan, M. E., Stutts, M. J., and Guggino, W. B. (1999) CFTR Is a Conductance Regulator as well as a Chloride Channel. Physiol. Rev. 79, S145–S166.

    PubMed  CAS  Google Scholar 

  62. Choi, J. Y., Muallem, D., Kiselyov, K., Lee, M. G., Thomas, P. J., and Muallem, S. (2001) Aberrant CFTR-dependent HCO3-transport in mutations associated with cystic fibrosis. Nature 410, 94–97.

    PubMed  CAS  Google Scholar 

  63. Ko, S. B., Shcheynikov, N., Choi, J. Y., et al. (2002) A molecular mechanism for aberrant CFTR-dependent HCO(3)(-) transport in cystic fibrosis. EMBO J. 21, 5662–5672.

    PubMed  CAS  Google Scholar 

  64. Thomas, P. J., Ko, Y. H., and Pedersen, P. L. (1992) Altered protein folding may be the molecular basis of most cases of cystic fibrosis. FEBS Lett. 312, 7–9.

    PubMed  CAS  Google Scholar 

  65. Cheng, S. H., Gregory, R. J., Marshall, J., et al. (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827–834.

    PubMed  CAS  Google Scholar 

  66. Lukacs, G. L., Mohamed, A., Kartner, N., Chang, X.-B., Riordan, J. R., and Grinstein, S. (1994) Conformational maturation of CFTR but not its mutant counterpart (ΔF508) occurs in the endoplasmic reticulum and requires ATP. EMBO J. 13, 6076–6086.

    PubMed  CAS  Google Scholar 

  67. Ward, C. L. and Kopito, R. R. (1994) Intracellular turnover of cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 269, 25710–25718.

    PubMed  CAS  Google Scholar 

  68. Ellgaard, L., Molinari, M., and Helenius, A. (1999) Setting the standards: quality control in the secretory pathway. Science 286, 1882–1888.

    PubMed  CAS  Google Scholar 

  69. Plemper, R. K. and Wolf, D. H. (1999) Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem. Sci. 24, 266–270.

    PubMed  CAS  Google Scholar 

  70. Sommer, T. and Wolf, D. H. (1997) Endoplasmic reticulum degradation: reverse protein flow of no return. FASEB J. 11, 1227–1233.

    PubMed  CAS  Google Scholar 

  71. Ward, C. L., Omura, S., and Kopito, R. R. (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83, 121–127.

    PubMed  CAS  Google Scholar 

  72. Jensen, T. J., Loo, M. A., Pind, S., Williams, D. B., Goldberg, A. L., and Riordan, J. R. (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83, 129–135.

    PubMed  CAS  Google Scholar 

  73. Bebok, Z., Mazzochi, C., King, S. A., Hong, J. S., and Sorscher, E. J. (1998) The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic deglycosylated intermediary. J. Biol. Chem. 273, 29873–29878.

    PubMed  CAS  Google Scholar 

  74. Xiong, X., Bragin, A., Widdicombe, J. H., Cohn, J., and Skach, W. R. (1997) Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator. J. Clin. Invest. 100, 1079–1088.

    PubMed  CAS  Google Scholar 

  75. Xiong, X., Chong, E., and Skach, W. R. (1999) Evidence that endoplasmic reticulum (ER)-associated degradation of cystic fibrosis transmembrane conductance regulator is linked to retrograde translocation from the ER membrane. J. Biol. Chem. 274, 2626–2624.

    Google Scholar 

  76. Plemper, R. K., Deak, P. M., Otto, R. T., and Wolf, D. H. (1999) Re-entering the translocon from the lumenal side of the endoplasmic reticulum. Studies on mutated carboxypeptidase yscY species. FEBS Lett. 443, 241–245.

    PubMed  CAS  Google Scholar 

  77. Plemper, R. K., Egner, R., Kuchler, K., and Wolf, D. H. (1998) Endoplasmic reticulum degradation of a mutated ATP-binding cassette transporter Pdr5 proceeds in a concerted action of Sec61 and the proteasome. J. Biol. Chem. 273, 32848–32856.

    PubMed  CAS  Google Scholar 

  78. Wickner, S., Maurizi, M. R., and Gottesman, S. (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888–1893.

    PubMed  CAS  Google Scholar 

  79. Agashe, V. R. and Hartl, F. U. (2000) Roles of molecular chaperones in cytoplasmic protein folding. Semin. Cell Dev. Biol. 11, 15–25.

    PubMed  CAS  Google Scholar 

  80. Thomas, P. J., Qu, B.-H., and Pedersen, P. L. (1995) Defective protein folding as a basis of human disease. TIBS 20, 456–459.

    PubMed  CAS  Google Scholar 

  81. Gottesman, S., Wickner, S., and Maurizi, M. R. (1997) Protein quality control: triage by chaperones and proteases. Genes Dev. 11, 815–823.

    PubMed  CAS  Google Scholar 

  82. Bercovich, B., Stancovski, I., Mayer, A., et al. (1997) Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J. Biol. Chem. 272, 9002–9010.

    PubMed  CAS  Google Scholar 

  83. Vidair, C. A., Huang, R. N., and Doxsey, S. J. (1996) Heat shock causes protein aggregation and reduced protein solubility at the centrosome and other cytoplasmic locations. Int. J. Hyperther. 12, 681–695.

    CAS  Google Scholar 

  84. Wojcik, C. (1997) On the spatial organization of ubiquitin-dependent proteolysis in HeLa cells. Folia Histochem. Cytobiol. 35, 117–118.

    PubMed  CAS  Google Scholar 

  85. Wojcik, C. (1997) An inhibitor of the chymotrypsin-like activity of the proteasome (PSI) induces similar morphological changes in various cell lines. Folia Histochem. Cytobiol. 35, 211–214.

    PubMed  CAS  Google Scholar 

  86. Garcia-Mata, R., Bebök, Z., Sorcher, E. J., and Sztul, E. S. (1999) Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J. Cell Biol. 146, 1239–1254.

    PubMed  CAS  Google Scholar 

  87. Rajan, R. S., Illing, M. E., Bence, N. F., and Kopito, R. R. (2001) Specificity in intracellular protein aggregation and inclusion body formation. Proc. Natl. Acad. Sci. USA 98, 13060–13065.

    PubMed  CAS  Google Scholar 

  88. Illing, M. E., Rajan, R. S., Bence, N. F., and Kopito, R. R. (2002) A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. J. Biol. Chem. 277, 34150–34160.

    PubMed  CAS  Google Scholar 

  89. Notterpek, L., Ryan, M. C., Tobler, A. R., and Shooter, E. M. (1999) PMP22 accumulation in aggresomes: implications for CMT1A pathology. Neurobiol. Dis. 6, 450–460.

    PubMed  CAS  Google Scholar 

  90. Taylor, J. P., Tanaka, F., Robitschek, J., et al. (2003) Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum. Mol. Genet. 12, 749–757.

    PubMed  CAS  Google Scholar 

  91. Kabore, A. F., Wang, W. J., Russo, S. J., and Beers, M. F. (2001) Biosynthesis of surfactant protein C: characterization of aggresome formation by EGFP chimeras containing propeptide mutants lacking conserved cysteine residues. J. Cell Sci. 114, 293–302.

    PubMed  CAS  Google Scholar 

  92. Waelter, S., Boeddrich, A., Lurz, R., et al. (2001) Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol. Biol. Cell 12, 1393–1407.

    PubMed  CAS  Google Scholar 

  93. Johnston, J. A., Dalton, M. J., Gurney, M. E., and Kopito, R. R. (2000) Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 97, 12571–12576.

    PubMed  CAS  Google Scholar 

  94. Fabunmi, R. P., Wigley, W. C., Thomas, P. J., and DeMartino, G. N. (2000) Activity and regulation of the centrosome-associated proteasome. J. Biol. Chem. 275, 409–413.

    PubMed  CAS  Google Scholar 

  95. Brown, C. R., Doxsey, S. J., Hong-Brown, L. Q., Martin, R. L., and Welch, W. J. (1996) Molecular chaperones and the centrosome. A role for TCP-1 in microtubule nucleation. J. Biol. Chem. 271, 824–832.

    PubMed  CAS  Google Scholar 

  96. Brown, C. R., Hong-Brown, L. Q., Doxsey, S. J., and Welch, W. J. (1996) Molecular chaperones and the centrosome. A role for HSP 73 in centrosomal repair following heat shock treatment. J. Biol. Chem. 271, 833–840.

    PubMed  CAS  Google Scholar 

  97. Lange, B. M., Bachi, A., Wilm, M., and Gonzalez, C. (2000) Hsp90 is a core centrosomal component and is required at different stages of the centrosome cycle in Drosophila and vertebrates. EMBO J. 19, 1252–1262.

    PubMed  CAS  Google Scholar 

  98. Anton, L. C., Schubert, U., Bacik, I., et al. (1999) Intracellular localization of proteasomal degradation of a viral antigen. J. Cell. Biol. 146, 113–124.

    PubMed  CAS  Google Scholar 

  99. Lacaille, V. G. and Androlewicz, M. J. (2000) Targeting of HIV-1 Nef to the centrosome: implications for antigen processing. Traffic 1, 884–891.

    PubMed  CAS  Google Scholar 

  100. Lelouard, H., Gatti, E., Cappello, F., Gresser, O., Camosseto, V., and Pierre, P. (2002) Transient aggregation of ubiquitinated proteins during dendritic cell maturation. Nature 417, 177–182.

    PubMed  CAS  Google Scholar 

  101. Fabunmi, R. P., Wigley, W. C., Thomas, P. J., and DeMartino, G. N. (2001) Interferon gamma regulates accumulation of the proteasome activator PA28 and immunoproteasomes at nuclear PML bodies. J. Cell Sci. 114, 29–36.

    PubMed  CAS  Google Scholar 

  102. Hung, C. F., Cheng, W. F., He, L., et al. (2003) Enhancing major histocompatibility complex class I antigen presentation by targeting antigen to centrosomes. Cancer Res. 63, 2393–2398.

    PubMed  CAS  Google Scholar 

  103. Sanchez, V., Greis, K. D., Sztul, E., and Britt, W. J. (2000) Accumulation of virion tegument and envelope proteins in a stable cytoplasmic compartment during human cytomegalovirus replication: characterization of a potential site of virus assembly. J. Virol. 74, 975–986.

    PubMed  CAS  Google Scholar 

  104. Sanchez, V., Sztul, E., and Britt, W. J. (2000) Human cytomegalovirus pp28 (UL99) localizes to a cytoplasmic compartment which overlaps the endoplasmic reticulum-golgiintermediate compartment. J. Virol. 74, 3842–3851.

    PubMed  CAS  Google Scholar 

  105. Heath, C. M., Windsor, M., and Wileman, T. (2001) Aggresomes resemble sites specialized for virus assembly. J. Cell Biol. 153, 449–455.

    PubMed  CAS  Google Scholar 

  106. Skipper, L. and Farrer, M. (2002) Parkinson’s genetics: molecular insights for the new millennium. Neurotoxicology 23, 503–514.

    PubMed  CAS  Google Scholar 

  107. Valentine, J. S. and Hart, P. J. (2003) Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 100, 3617–3622.

    PubMed  CAS  Google Scholar 

  108. Bates, G. (2003) Huntingtin aggregation and toxicity in Huntington’s disease. Lancet 361, 1642–1644.

    PubMed  CAS  Google Scholar 

  109. Bence, N. F., Sampat, R. M., and Kopito, R. R. (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555.

    PubMed  CAS  Google Scholar 

  110. Zeng, W., Lee, M. G., Yan, M., et al. (1997) Immuno and functional characterization of CFTR in submandibular and pancreatic acinar and duct cells. Am. J. Physiol. 273, C442–C455.

    PubMed  CAS  Google Scholar 

  111. Ma, C.-P., Willy, P. J., Slaughter, C. A., and DeMartino, G. N. (1993) PA28, an activator of the 20S proteasome, is inactivated by proteolytic modification of its carboxyl terminus. J. Biol. Chem. 268, 22514–22519.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank George DeMartino for helpful comments. This work was supported by research grants from the American Heart Association and the NIHNIDDK to P. J. T., the Cystic Fibrosis Foundation to M. J. C. and P. J. T., and the Haberecht Foundation to W. C. W.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Corboy, M.J., Thomas, P.J., Wigley, W.C. (2005). Aggresome Formation. In: Patterson, C., Cyr, D.M. (eds) Ubiquitin-Proteasome Protocols. Methods in Molecular Biology™, vol 301. Humana Press. https://doi.org/10.1385/1-59259-895-1:305

Download citation

  • DOI: https://doi.org/10.1385/1-59259-895-1:305

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-252-0

  • Online ISBN: 978-1-59259-895-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics