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Many previous reports on Natural Killer (NK) cells highlighted

their ability to form the proverbial first line of defense against a

variety of viral infections and malignancies. NK cells have been

considered a part of innate immunity, characterized by invariant,

germ-line encoded receptors for the recognition of pathogens and

infected cells. In contrast, somatic rearrangement of receptor

genes, the clonal expansion of antigen-specific cells, and the ability

to mount a more potent memory response upon secondary

challenge are traditionally considered hallmarks of T and B cells

belonging to the adaptive immune system.

More recently, exciting new data are challenging this conven-

tional view [1]. A growing body of evidence indicates that under

certain experimental conditions, NK cells share some of the

features of adaptive immune cells. For instance, in mice infected

with murine cytomegalovirus (MCMV), an NK cell subset

expands in an antigen-dependent manner reminiscent of the

clonal expansion of adaptive immune cells [2]. This NK cell

expansion is associated with long-lasting functional changes similar

to features of memory T cell populations. Resemblances between

NK and T cells are not only limited to their response kinetics and

certain functions, but also comprise characteristics of homeostatic

proliferation, development, and differentiation [3].

Currently, a clear consensus on how the term ‘‘memory’’ is

defined in NK cell biology is lacking. Throughout this article we

will refer to memory NK cells, if these NK cells respond more

potently to a second challenge with the same antigen they had

initially encountered (Figure 1). The term ‘‘memory-like’’ NK cells

will be used when long-lasting functional alterations are induced,

e.g. by cytokines without clear evidence of antigen involvement

(Figure 1).

Features of Memory NK Cells in Mice

The first evidence of NK cell-mediated recall responses was

obtained in a model of hapten-induced contact hypersensitivity in

Rag22/2 mice deficient in adaptive immune cells [4]. In these

mice different haptens—compounds that chemically modify

proteins—provoked a hypersensitivity reaction that was transfer-

rable to naive animals by adoptive NK cell transfer. The

transferred NK cells reacted only against the same hapten that

they had encountered during initial sensitization, and not against

structurally related haptens. Notably, the NK cells mediating this

response were confined to the liver and expressed the chemokine

receptor CXCR6. A follow-up report from the same group

extended this concept to NK cell responses against several viruses,

namely to influenza, vesicular stomatitis virus (VSV), and human

immunodeficiency virus (HIV) [5]. NK cells from animals

vaccinated with viral antigens protected naive mice against a

lethal challenge with the sensitizing virus. The ability to mount a

recall response persisted for several months. In both studies, the

required receptor-ligand interactions and signaling pathways

leading to the generation of antigen-specific memory NK cells

remained elusive.

In murine cytomegalovirus (MCMV) infection binding of the

activating NK cell receptor Ly49H to the viral protein m157 that

is expressed on the surface of infected cells is a prerequisite for the

proliferation of Ly49H+ NK cells. More recently, a study

demonstrated that, after clearance of the infection, these cells

decreased in number, but a persisting population was detectable

for several months [2]. These NK cells were functionally more

competent than naive NK cells and 10 times more efficient in

mediating protection against MCMV challenge in adoptive

transfer experiments.

NK Cell Subset Expansion in Response to
Infections in Humans

In humans, clear evidence for NK cell memory is lacking. In

analogy to results obtained in the MCMV mouse model,

expansion of certain human NK cell subsets was observed in

various viral infections, which might reflect a first step for the

subsequent generation of memory NK cells.

A first report suggested that infection with human cytomega-

lovirus (HCMV) skews the NK cell receptor repertoire toward the

activating CD94/NKG2C receptor that is usually expressed on

less than 10% of total NK cells in peripheral blood [6]. Later

studies corroborated this finding in vitro [7] and demonstrated a

similar expansion of NKG2C+ NK cells (to up to 70% of all NK

cells) in recipients of solid organ, allogeneic cell, or umbilical cord

blood transplantation during episodes of primary HCMV infection

or reactivation [8–10]. After expansion, the NKG2C+ NK cells were

more potent producers of IFN-c than their NKG2C-counterparts

and expressed CD57, a marker of terminal differentiation [9].

A follow-up study demonstrated that after hematopoietic cell

transplantation, NKG2C+ NK cells from CMV-positive donors

expanded in CMV+ recipients, whereas NKG2C+ NK cells from

CMV-negative donors did not, suggesting the existence of a

secondary response against CMV antigen [11].

Other viral infections were also reported to have an impact on the

NKG2C+ NK cell subset. During acute Hantavirus infection,
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NKG2C+ NK cells expanded three- to four-fold compared to

uninfected controls and declined only slowly over the course of

several months [12]. In Chikungunya virus infection, a similar

expansion was described and the percentage of NKG2C+ NK cells

inversely correlated with viral titers [13]. An increased frequency of

NKG2C+ cells was also linked to other infections such as HIV [14]

and Hepatitis B Virus (HBV) [15]. Of note, in both cases this increase

was only observed in patients who were HCMV-seropositive.

Accordingly, a cohort carrying a gene deletion in the KLRC2 gene,

encoding the NKG2C protein, had an increased risk of contracting

HIV, a more rapid disease progression, and higher viral titers prior to

initiation of treatment [16]. These data suggest that the NKG2C

receptor is actively participating in the immune response against the

virus, rather than representing a mere marker of a responding subset.

Of note, HLA-E, a non-classical MHC class I molecule presenting

peptides from MHC class I-derived leader sequences, serves as a

ligand for CD94/NKG2C and is known to be upregulated in

HCMV [17], Hantavirus [12], and HIV infection [18].

Four of the studies discussed above describe a predominance of

the inhibitory NK cell receptor KIR2DL2/3 receptor within the

NKG2C+ NK cells [8,12,13,15]. The complex interactions

between the highly polymorphic gene families of inhibitory NK

cell receptors of the Killer-cell Immunoglobulin-like Receptor

(KIR) family and their MHC class I ligands have been a topic of

intense research. Their stochastic expression gives rise to diverse

repertoires of NK cells. Thus, it is possible that subset expansion is

linked to the presence or absence of certain KIRs in a particular

MHC class I environment.

A Role for Soluble Factors in the Generation of
Memory and Memory-Like NK Cells

In addition to specific antigens that drive the expansion of NK

subsets and the formation of NK cell memory in mice, the

involvement of cytokines for the generation of long-lived NK cell

populations with superior effector function attracts increasing

attention. The proliferation of MCMV-specific Ly49H+ NK cells

was shown to be dependent on the IL-12R and the downstream

transcription factor STAT4 [19]. Recent studies with both mouse and

human NK cells indicate that a short in vitro exposure to a combination

of IL-12, IL-15, and IL-18 (IL-12/15/18) yields memory-like NK cells

that display superior effector function and longevity in vitro and in vivo,

and those properties were also inheritable to daughter cells [20–22].

Exposure of NK cells to IL-12/15/18 upregulated the IL-2Ra chain

(CD25) [22–23], making these cells more responsive to IL-2. Indeed,

IL-2-producing CD4+ T cells contributed to the maintenance of the

reactivated NK cell populations in vivo [22]. It remains to be tested

whether cytokines produced during different infectious diseases drive

the formation of memory-like NK cells that contribute to protection

against a re-challenge.

The Molecular Basis for NK Cell Memory: Open
Questions

A key task in this emerging field is the identification of receptors

and factors that initiate and shape the responses against haptens or

influenza, VSV, or HIV, ultimately leading to the generation and

Figure 1. Memory and memory-like NK cells in mice and humans. A variety of factors contribute to the generation of memory or memory-like
cells. In the mouse, CXCR6+ NK cells from the liver can mediate antigen-specific memory responses against haptens and viral antigens of VSV, HIV,
and influenza via a yet-unknown receptor(s). During MCMV infection, the viral m157 protein is recognized by a subset of NK cells carrying the
activating Ly49H receptor, resulting in the formation of m157-specific Ly49H+ memory NK cells. Memory-like NK cells in mice and humans can be
generated by short-term stimulation with IL-12/15/18. A subset of human NK cells expressing the activating CD94/NKG2C receptor expands in
response to the as-yet undefined antigens in HCMV, Hantavirus, Chikungunya Virus, HIV, and HBV infection.
doi:10.1371/journal.ppat.1003548.g001
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maintenance of memory NK cells. It will be crucial to extend this

work to model systems in which adaptive immunity is present to

assess the relative importance of NK cells in the protection against

re-challenge by infectious agents. The definition of markers of NK

cell memory or memory-like function would facilitate these studies

dramatically. The intriguing liver-restriction of NK cells mediating

memory responses against haptens and certain viruses will

certainly be another focus of future investigations.

In humans, most reports suggesting the existence of NK cell

memory highlight the increased proportion of NKG2C+ NK cells

in viral infections. The broad range of viruses that was reported to

trigger the expansion of this subset might indicate that this

phenomenon relies on an induced or altered self-ligand rather

than on a shared pathogen-derived structure. Provided that

NKG2C is functionally involved in the antiviral immune

responses, in some infections the upregulation of the ligand,

HLA-E, would provide a straightforward explanation for the

expansion of NK cells carrying its cognate receptor NKG2C.

Nonetheless, evidence for a causal role of HLA-E in NK cell subset

expansion during an ongoing infection is lacking. It awaits further

investigation as to whether NKG2C and/or other activating

receptors participate in processes leading to NK memory in a

diverse range of infections.

Progress in our understanding of how NK cells can exert

functions resembling adaptive immune responses might have

implications beyond conceptually questioning the classic division

of the immune system into an innate and an adaptive branch and

our general view of immunological memory. Novel insights on

memory NK cells could also have a strong impact on the design of

next generation vaccines against a variety of pathogens.
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