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Abstract

Lujo virus (LUJV), a new member of the family Arenaviridae and the first hemorrhagic fever–associated arenavirus from the
Old World discovered in three decades, was isolated in South Africa during an outbreak of human disease characterized by
nosocomial transmission and an unprecedented high case fatality rate of 80% (4/5 cases). Unbiased pyrosequencing of RNA
extracts from serum and tissues of outbreak victims enabled identification and detailed phylogenetic characterization
within 72 hours of sample receipt. Full genome analyses of LUJV showed it to be unique and branching off the ancestral
node of the Old World arenaviruses. The virus G1 glycoprotein sequence was highly diverse and almost equidistant from
that of other Old World and New World arenaviruses, consistent with a potential distinctive receptor tropism. LUJV is a
novel, genetically distinct, highly pathogenic arenavirus.
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Introduction

Members of the genus Arenavirus, comprising currently 22

recognized species (http://www.ictvonline.org/virusTaxonomy.

asp?version=2008), are divided into two complexes based on

serologic, genetic, and geographic relationships [1,2]: the New

World (NW) or Tacaribe complex, and the Old World (OW) or

Lassa-Lymphocytic choriomeningitis complex that includes the

ubiquitous arenavirus type-species Lymphocytic choriomeningitis virus

(LCMV; [3]). The RNA genome of arenaviruses is bi-segmented,

comprising a large (L) and a small (S) segment that each codes for

two proteins in ambisense coding strategy [4,5]. Despite this

coding strategy, the Arenaviridae are classified together with the

families Orthomyxoviridae and Bunyaviridae as segmented single-

strand, negative sense RNA viruses.

The South American hemorrhagic fever viruses Junin (JUNV;

[6,7]), Machupo (MACV; [8]), Guanarito (GTOV; [9]) and Sabia

virus (SABV, [10]), and the African Lassa virus (LASV [11]), are

restricted to biosafety level 4 (BSL-4) containment due to their

associated aerosol infectivity and rapid onset of severe disease.

With the possible exception of NW Tacaribe virus (TCRV; [12]),

which has been isolated from bats (Artibeus spp.), individual

arenavirus species are commonly transmitted by specific rodent

species wherein the capacity for persistent infection without overt

disease suggests long evolutionary adaptation between the agent

and its host [1,13–16]. Whereas NW arenaviruses are associated

with rodents in the Sigmodontinae subfamily of the family Cricetidae,

OW arenaviruses are associated with rodents in the Murinae

subfamily of the family Muridae.

Humans are most frequently infected through contact with

infected rodent excreta, commonly via inhalation of dust or

aerosolized virus-containing materials, or ingestion of contami-

nated foods [13]; however, transmission may also occur by

inoculation with infected body fluids and tissue transplantation

[17–19]. LCMV, which is spread by the ubiquitous Mus musculus as

host species and hence found world-wide, causes symptoms in

humans that range from asymptomatic infection or mild febrile

illness to meningitis and encephalitis [13]. LCMV infection is only

rarely fatal in immunocompetent adults; however, infection during

pregnancy bears serious risks for mother and child and frequently

results in congenital abnormalities. The African LASV, which has

its reservoir in rodent species of the Mastomys genus, causes an

estimated 100,000–500,000 human infections per year in West

African countries (Figure 1). Although Lassa fever is typically sub-

clinical or associated with mild febrile illness, up to 20% of cases

may have severe systemic disease culminating in fatal outcome

[20,21]. Three other African arenaviruses are not known to cause

human disease: Ippy virus (IPPYV; [22,23]), isolated from
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Arvicanthis spp. and Mobala virus (MOBV; [24]) isolated from

Praomys spp. in the Central African Republic (CAR); and Mopeia

virus (MOPV) that like LASV is associated with members of the

genus Mastomys, and was reported from Mozambique [25] and

Zimbabwe [26], although antibody studies suggest that MOPV

and LASV may also circulate in CAR [27] where the geographies

of these viruses appear to overlap (Figure 1). Up to present, there

have been no published reports of severe human disease associated

with arenaviruses isolated from southern Africa.

In September 2008 an outbreak of unexplained hemorrhagic

fever was reported in South Africa [28]. The index patient was

airlifted in critical condition from Zambia on September 12 to a

clinic in Sandton, South Africa, after infection from an

unidentified source. Secondary infections were recognized in a

paramedic (case 2) who attended the index case during air transfer

from Zambia, in a nurse (case 3) who attended the index case in

the intensive care unit in South Africa, and in a member of the

hospital staff (case 4) who cleaned the room after the index case

died on September 14. One case of tertiary infection was recorded

in a nurse (case 5) who attended case 2 after his transfer from

Zambia to Sandton on September 26, one day before barrier

nursing was implemented. The course of disease in cases 1 through

4 was fatal; case 5 received ribavirin treatment and recovered. A

detailed description of clinical and epidemiologic data, as well as

immunohistological and PCR analyses that indicated the presence

of an arenavirus, are reported in a parallel communication

(Paweska et al., Emerg. Inf. Dis., submitted). Here we report

detailed genetic analysis of this novel arenavirus.

Results/Discussion

Rapid identification of a novel pathogen through
unbiased pyrosequencing

RNA extracts from two post-mortem liver biopsies (cases 2 and

3) and one serum sample (case 2) were independently submitted

for unbiased high-throughput pyrosequencing. The libraries

yielded between 87,500 and 106,500 sequence reads. Alignment

of unique singleton and assembled contiguous sequences to the

GenBank database (http://www.ncbi.nlm.nih.gov/Genbank) us-

ing the Basic Local Alignment Search Tool (blastn and blastx;

[29]) indicated coverage of approximately 5.6 kilobases (kb) of

sequence distributed along arenavirus genome scaffolds: 2 kb of S

segment sequence in two fragments, and 3.6 kb of L segment

sequence in 7 fragments (Figure 2). The majority of arenavirus

sequences were obtained from serum rather than tissue, potentially

reflecting lower levels of competing cellular RNA in random

amplification reactions.

Full genome characterization of a newly identified
arenavirus

Sequence gaps between the aligned fragments were rapidly

filled by specific PCR amplification with primers designed on the

pyrosequence data at both, CU and CDC. Terminal sequences

were added by PCR using a universal arenavirus primer, targeting

the conserved viral termini (59-CGC ACM GDG GAT CCT

AGG C, modified from [30]) combined with 4 specific primers

positioned near the ends of the 2 genome segments. Overlapping

primer sets based on the draft genome were synthesized to

facilitate sequence validation by conventional dideoxy sequencing.

The accumulated data revealed a classical arenavirus genome

structure with a bi-segmented genome encoding in an ambisense

strategy two open reading frames (ORF) separated by an

intergenic stem-loop region on each segment (Figure 2) (GenBank

Accession numbers FJ952384 and FJ952385).

Our data represent genome sequences directly obtained from

liver biopsy and serum (case 2), and from cell culture isolates

obtained from blood at CDC (case 1 and 2), and from liver

biopsies at NICD (case 2 and 3). No sequence differences were

uncovered between virus detected in primary clinical material and

virus isolated in cell culture at the two facilities. In addition, no

changes were detected between each of the viruses derived from

these first three cases. This lack of sequence variation is consistent

with the epidemiologic data, indicating an initial natural exposure

of the index case, followed by a chain of nosocomial transmission

among subsequent cases.

Lujo virus (LUJV) is a novel arenavirus
Phylogenetic trees constructed from full L or S segment

nucleotide sequence show LUJV branching off the root of the

OW arenaviruses, and suggest it represents a highly novel genetic

lineage, very distinct from previously characterized virus species

and clearly separate from the LCMV lineage (Figure 3A and 3B).

No evidence of genome segment reassortment is found, given the

identical placement of LUJV relative to the other OW

arenaviruses based on S and L segment nucleotide sequences. In

addition, phylogenetic analysis of each of the individual ORFs

reveals similar phylogenetic tree topologies. A phylogenetic tree

constructed from deduced L-polymerase amino acid (aa) sequence

also shows LUJV near the root of the OW arenaviruses, distinct

from characterized species, and separate from the LCMV branch

(Figure 3C). A distant relationship to OW arenaviruses may also

be inferred from the analysis of Z protein sequence (Figure S1).

The NP gene sequence of LUJV differs from other arenaviruses

from 36% (IPPYV) to 43% (TAMV) at the nucleotide level, and

from 41% (MOBV/LASV) to 55% (TAMV) at the aa level (Table

S1). This degree of divergence is considerably higher than both,

proposed cut-off values within (,10–12%), or between (.21.5%)

OW arenavirus species [31,32], and indicates a unique phylo-

genitic position for LUJV (Figure 3D). Historically, phylogenetic

assignments of arenaviruses have been based on portions of the NP

gene [1,33], because this is the region for which most sequences

are known. However, as more genomic sequences have become

available, analyses of full-length GPC sequence have revealed

evidence of possible relationships between OW and NW

Author Summary

In September and October 2008, five cases of undiagnosed
hemorrhagic fever, four of them fatal, were recognized in
South Africa after air transfer of a critically ill index case
from Zambia. Serum and tissue samples from victims were
subjected to unbiased pyrosequencing, yielding within
72 hours of sample receipt, multiple discrete sequence
fragments that represented approximately 50% of a
prototypic arenavirus genome. Thereafter, full genome
sequence was generated by PCR amplification of inter-
vening fragments using specific primers complementary to
sequence obtained by pyrosequencing and a universal
primer targeting the conserved arenaviral termini. Phylo-
genetic analyses confirmed the presence of a new member
of the family Arenaviridae, provisionally named Lujo virus
(LUJV) in recognition of its geographic origin (Lusaka,
Zambia, and Johannesburg, South Africa). Our findings
enable the development of specific reagents to further
investigate the reservoir, geographic distribution, and
unusual pathogenicity of LUJV, and confirm the utility of
unbiased high throughput pyrosequencing for pathogen
discovery and public health.

A New Pathogenic Arenavirus from Southern Africa
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arenaviruses not revealed by NP sequence alone [34]. Because G1

sequences are difficult to align some have pursued phylogenetic

analyses by combining the GPC signal peptide and the G2

sequence for phylogenetic analysis [16]. We included in our

analysis the chimeric signal/G2 sequence (Figure 3E) as well as the

receptor binding G1 portion (Figure 3F); both analyses highlighted

the novelty of LUJV, showing an almost similar distance from OW

as from NW viruses.

Protein motifs potentially relevant to LUJV biology
Canonical polymerase domains pre-A, A, B, C, D, and E [35–

37] are well conserved in the L ORF of LUJV (256 kDa, pI = 6.4;

Figure 4). The Z ORF (10.5 kDa, pI = 9.3) contains two late

domain motifs like LASV; however, in place of the PTAP motif

found in LASV, that mediates recognition of the tumor

susceptibility gene 101, Tsg101 [38], involved in vacuolar protein

sorting [39,40], LUJV has a unique Y77REL motif that matches

the YXXL motif of the retrovirus equine infectious anemia virus

[41], which interacts with the clathrin adaptor protein 2 (AP2)

complex [42]. A Tsg101-interacting motif, P90SAP, is found in

LUJV in position of the second late domain of LASV, PPPY,

which acts as a Nedd4-like ubiquitin ligase recognition motif [43].

The RING motif, containing conserved residue W44 [44], and the

conserved myristoylation site G2 are present [45–47] (Figure 4).

The NP of LUJV (63.1 kDa, pI = 9.0) contains described aa motifs

that resemble mostly OW arenaviruses [48], including a cytotoxic

T-lymphocyte (CTL) epitope reported in LCMV (GVYMGNL;

[49]), corresponding to G122VYRGNL in LUJV, and a potential

antigenic site reported in the N-terminal portion of LASV NP

(RKSKRND; [50]), corresponding to R55KDKRND in LUJV

(Figure 4).

The GPC precursor (52.3 kDa, pI = 9.0) is cotranslationally

cleaved into the long, stable signal peptide and the mature

glycoproteins G1 and G2 [51–54]. Based on analogy to LASV

[55] and LCMV [56], signalase would be predicted to cleave

between D58 and S59 in LUJV. However, aspartate and arginine

Figure 1. Geographic distribution of African arenaviruses. MOBV, MOPV, and IPPYV (blue) have not been implicated in human disease; LASV
(red) can cause hemorrhagic fever. The origin of the LUJV index and secondary and tertiary cases linked in the 2008 outbreak are indicated in gold.
doi:10.1371/journal.ppat.1000455.g001

A New Pathogenic Arenavirus from Southern Africa
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residues in the 21 and 23 positions, respectively, violate the

(23,21)-rule [57]; thus, cleavage may occur between S59 and S60 as

predicted by the SignalP algorithm. The putative 59 aa signal

peptide of LUJV displays a conserved G2, implicated in myristoyla-

tion in JUNV [58], however, it is followed in LUJV by a non-

standard valine residue in position +4, resembling non-standard

glycine residues found in Oliveros virus (OLVV [59]) and Latino

virus (LATV; http://www2.ncid.cdc.gov/arbocat/catalog-listing.

asp?VirusID = 263&SI = 1). Conservation is also observed for aa

residues P12 (except Amapari virus; AMAV [60]), E17 [61](except

Pirital virus; PIRV [62]), and N20 in hydrophobic domain 1, as well

as I32KGVFNLYK40SG, identified as a CTL epitope in LCMV

WE (I32KAVYNFATCG; [63]) (Figure 4).

Analogous to other arenaviruses, SKI-1/S1P cleavage C-

terminal of RKLM221 is predicted to separate mature G1 (162

aa, 18.9 kDa, pI = 6.4) from G2 (233 aa, 26.8 kDa, pI = 9.5)

[52,53,64]. G2 appears overall well conserved, including the

strictly conserved cysteine residues: 6 in the luminal domain, and 3

in the cytoplasmic tail that are included in a conserved zinc finger

motif reported in JUNV [65] (Figure 4). G2 contains 6 potential

glycosylation sites, including 2 strictly conserved sites, 2 semi-

conserved sites N335 (absent in LCMVs and Dandenong virus;

DANV [19]) and N352 (absent in LATV), and 2 unique sites in the

predicted cytoplasmic tail (Figure 4). G1 is poorly conserved

among arenaviruses [16], and G1 of LUJV is no exception, being

highly divergent from the G1 of the other arenaviruses, and

shorter than that of other arenaviruses. LUJV G1 contains 6

potential glycosylation sites in positions comparable to other

arenaviruses, including a conserved site N93HS (Figure 4), which is

shifted by one aa in a motif that otherwise aligns well with OW

arenaviruses and NW arenavirus clade A and C viruses. There is

no discernable homology to other arenavirus G1 sequences that

would point to usage of one of the two identified arenavirus

receptors; Alpha-dystroglycan (a-DG) [66] that binds OW

arenaviruses LASV and LCMV, and NW clade C viruses OLVV

and LATV [67], or transferrin receptor 1 (TfR1) that binds

pathogenic NW arenaviruses JUNV, MACV, GTOV, and SABV

[68] (Figure S2).

Figure 2. LUJV genome organization and potential secondary structure of intergenic regions. Open reading frames (ORF) for the
glycoprotein precursor GPC, the nucleoprotein NP, the matrix protein analog Z, and the polymerase L, and their orientation are indicated (A); blue
bars represent sequences obtained by pyrosequencing from clinical samples. Secondary structure predictions of intergenic regions (IR) for S (B, C) and
L segment sequence (D, E) in genomic (B, D) and antigenomic orientation (C, E) were analyzed by mfold; shading indicates the respective termination
codon (opal, position 1), and its reverse-complement, respectively.
doi:10.1371/journal.ppat.1000455.g002

A New Pathogenic Arenavirus from Southern Africa
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Figure 3. Phylogenetic analyses of LUJV. Phylogenetic relationships of LUJV were inferred based on full L (A) and S segment nucleotide
sequence (B), as well as on deduced amino acid sequences of L (C), NP (D), Signal/G2 (E) and G1 (F) ORF’s. Phylogenies were reconstructed by
neighbor-joining analysis applying a Jukes-Cantor model; the scale bar indicates substitutions per site; robust boostrap support for the positioning of
LUJV was obtained in all cases (.98% of 1000 pseudoreplicates). GenBank Accession numbers for reference sequences are: ALLV CLHP2472
(AY216502, AY012687); AMAV BeAn70563 (AF512834); BCNV AVA0070039 (AY924390, AY922491), A0060209 (AY216503); CATV AVA0400135
(DQ865244), AVA0400212 (DQ865245); CHPV 810419 (EU, 260464, EU260463); CPXV BeAn119303 (AY216519, AF512832); DANV 0710-2678
(EU136039, EU136038); FLEV BeAn293022 (EU627611, AF512831); GTOV INH-95551 (AY358024, AF485258), CVH-960101 (AY497548); IPPYV
DakAnB188d (DQ328878, DQ328877); JUNV MC2 (AY216507, D10072), XJ13 (AY358022, AY358023), CbalV4454 (DQ272266); LASV LP (AF181853),
803213 (AF181854), Weller (AY628206), AV (AY179171, AF246121), Z148 (AY628204, AY628205), Josiah (U73034, J043204), NL (AY179172, AY179173);
LATV MARU10924 (EU627612, AF485259); LCMV Armstrong (AY847351), ARM53b (M20869), WE (AF004519, M22138), Marseille12 (DQ286932,
DQ286931), M1 (AB261991); MACV Carvallo (AY619642, AY619643), Chicava (AY624354, AY624355), Mallele (AY619644, AY619645), MARU222688

A New Pathogenic Arenavirus from Southern Africa
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In summary, our analysis of the LUJV genome shows a novel

virus that is only distantly related to known arenaviruses. Sequence

divergence is evident across the whole genome, but is most

pronounced in the G1 protein encoded by the S segment, a region

implicated in receptor interactions. Reassortment of S and L

segments leading to changes in pathogenicity has been described

in cultured cells infected with different LCMV strains [69], and

between pathogenic LASV and nonpathogenic MOPV [70]. We

find no evidence to support reassortment of the LUJV L or S

genome segment (Figure 3A and 3B). Recombination of

glycoprotein sequence has been recognized in NW arenaviruses

[14,16,33,34,71–73], resulting in the division of the complex into

four sublineages: lineages A, B, C, and an A/recombinant lineage

that forms a branch of lineage A when NP and L sequence is

considered (see Figure 3C and 3D), but forms an independent

branch in between lineages B and C when glycoprotein sequence

is considered (see Figure 3D). While recombination cannot be

excluded in case of LUJV, our review of existing databases reveals

no candidate donor for the divergent GPC sequence. To our

knowledge is LUJV the first hemorrhagic fever-associated

arenavirus from Africa identified in the past 3 decades. It is also

the first such virus originating south of the equator (Figure 1). The

International Committee on the Taxonomy of Viruses (ICTV)

defines species within the Arenavirus genus based on association

with a specific host, geographic distribution, potential to cause

human disease, antigenic cross reactivity, and protein sequence

similarity to other species. By these criteria, given the novelty of its

presence in southern Africa, capacity to cause hemorrhagic fever,

and its genetic distinction, LUJV appears to be a new species.

Materials and Methods

Sequencing
Clinical specimens were inactivated in TRIzol (liver tissue,

100 mg) or TRIzol LS (serum, 250 ml) reagent (Invitrogen,

Carlsbad, CA, USA) prior to removal from BSL-4 containment.

Total RNA extracts were treated with DNase I (DNA-free, Ambion,

Austin, TX, USA) and cDNA generated by using the Superscript II

system (Invitrogen) and 100–500 ng RNA for reverse transcription

primed with random octamers that were linked to an arbitrary,

defined 17-mer primer sequence [74]. The resulting cDNA was

treated with RNase H and then randomly amplified by the

polymerase chain reaction (PCR; [75]); applying a 9:1 mixture of a

primer corresponding to the defined 17-mer sequence, and the

random octamer-linked 17-mer primer, respectively [74]. Products

.70 base pairs (bp) were selected by column purification (MinElute,

Qiagen, Hilden, Germany) and ligated to specific linkers for

sequencing on the 454 Genome Sequencer FLX (454 Life Sciences,

Branford, CT, USA) without fragmentation of the cDNA

[19,76,77]). Removal of primer sequences, redundancy filtering,

Figure 4. Schematic of conserved protein motifs. Conservation of LUJV amino acid motifs with respect to all other (green highlight), to OW
(yellow highlight), or to NW (blue highlight) arenaviruses is indicated; grey highlight indicates features unique to LUJV. Polymerase motifs pre-A
(L1142), A (N1209), B (M1313), C (L1345), D (Q1386), and E (C1398) are indicated for the L ORF; potential myristoylation site G2, the RING motif H34/C76, and
potential late domains YXXL an PSAP are indicated for the Z ORF; and myristoylation site G2, posttranslational processing sites for signalase (S59/S60)
and S1P cleavage (RKLM221), CTL epitope (I32), zinc finger motif P415/G440, as well as conserved cysteine residues and glycosylations sites (Y) are
indicated for GPC. * late domain absent in NW viruses and DANV; { PSAP or PTAP in NW viruses, except in PIRV and TCRV (OW viruses: PPPY); # G in
all viruses except LCMV ( = A); { D in NW clade A only; 1 conserved with respect to OW, and NW clade A and C; HD, hydrophobic domain; TM,
transmembrane anchor.
doi:10.1371/journal.ppat.1000455.g004

(AY922407), 9530537 (AY571959); MOBV ACAR3080MRC5P2 (DQ328876, AY342390); MOPV AN20410 (AY772169, AY772170), Mozambique
(DQ328875, DQ328874); NAAV AVD1240007 (EU123329); OLVV 3229-1 (AY216514, U34248); PARV 12056 (EU627613, AF485261); PICV (K02734),
MunchiqueCoAn4763 (EF529745, EF529744), AN3739 (AF427517); PIRV VAV-488 (AY216505, AF277659); SABV SPH114202 (AY358026, U41071); SKTV
AVD1000090 (EU123328); TAMV W10777 (EU627614, AF512828); TCRV (J04340, M20304); WWAV AV9310135 (AY924395, AF228063).
doi:10.1371/journal.ppat.1000455.g003

A New Pathogenic Arenavirus from Southern Africa
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and sequence assembly were performed with software programs

accessible through the analysis applications at the GreenePortal

website (http://156.145.84.111/Tools).

Conventional PCRs at CU were performed with HotStar

polymerase (Qiagen) according to manufacturer’s protocols on

PTC-200 thermocyclers (Bio-Rad, Hercules, CA, USA): an

enzyme activation step of 5 min at 95uC was followed by 45

cycles of denaturation at 95uC for 1 min, annealing at 55uC for

1 min, and extension at 72uC for 1 to 3 min depending on the

expected amplicon size. A two-step RT-PCR protocol was also

followed at CDC using Invitrogen’s Thermoscript RT at 60

degrees for 30 min followed by RNase H treatment for 20 min.

cDNA was amplified using Phusion enzyme with GC Buffer

(Finnzymes, Espoo, Finland) and 3% DMSO with an activation

step at 98uC for 30 sec, followed by the cycling conditions of 98uC
for 10 sec, 58uC for 20 sec, and 72uC for 1 min for 35 cycles and a

5 min extension at 72uC. Specific primer sequences are available

upon request. Amplification products were run on 1% agarose

gels, purified (MinElute, Qiagen), and directly sequenced in both

directions with ABI PRISM Big Dye Terminator 1.1 Cycle

Sequencing kits on ABI PRISM 3700 DNA Analyzers (Perkin-

Elmer Applied Biosystems, Foster City, CA).

Sequence analyses
Programs of the Wisconsin GCG Package (Accelrys, San Diego,

CA, USA) were used for sequence assembly and analysis; percent

sequence difference was calculated based on Needleman-Wunsch

alignments (gap open/extension penalties 15/6.6 for nucleotide and

10/0.1 for aa alignments; EMBOSS [78]), using a Perl script to

iterate the process for all versus all comparison. Secondary RNA

structure predictions were performed with the web-based version of

mfold (http://mfold.bioinfo.rpi.edu); data were exported as .ct files

and layout and annotation was done with CLC RNA Workbench

(CLC bio, Århus, Denmark). Protein topology and targeting

predictions were generated by employing SignalP, and NetNGlyc,

TMHMM (http://www.cbs.dtu.dk/services), the web-based ver-

sion of TopPred (http://mobyle.pasteur.fr/cgi-bin/portal.py?form

=toppred), and Phobius (http://phobius.sbc.su.se/). Phylogenetic

analyses were performed using MEGA software [79].

Supporting Information

Figure S1 Phylogenetic tree based on deduced Z amino acid

sequence. In contrast to phylogenetic trees obtained with the other

ORFs (Figure 2), poor bootstrap support (43% of 1,000

pseudoreplicates) for the branching of LUJV off the LCMV clade

was obtained with Z ORF sequence. For GenBank accession

numbers see Figure 2.

Found at: doi:10.1371/journal.ppat.1000455.s001 (0.44 MB TIF)

Figure S2 Pairwise sliding-window distance analysis of GPC

sequence. LUJV and members of the OW (LASV, MOPV,

IPPYV, LCMV, DANV) and NW (GTOV, CPXV, BNCV,

PIRV, OLVV, SABV, MACV) arenavirus complex were

compared using LASV NL (A) or GTOV CVH (B) as query (10

aa step; 80 aa window).

Found at: doi:10.1371/journal.ppat.1000455.s002 (4.21 MB TIF)

Table S1 Pairwise nucleotide and amino acid differences

between LUJV and other OW and NW arenaviruses. * NAAV,

North American arenavirus. { Values ,30% (amino acid) or

,33% (nucleotide) are highlighted in green.

Found at: doi:10.1371/journal.ppat.1000455.s003 (0.20 MB

DOC)
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