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Abstract

We evaluated the utility of leucocyte epigenomic-biomarkers for Alzheimer’s Disease (AD)

detection and elucidates its molecular pathogeneses. Genome-wide DNA methylation anal-

ysis was performed using the Infinium MethylationEPIC BeadChip array in 24 late-onset AD

(LOAD) and 24 cognitively healthy subjects. Data were analyzed using six Artificial Intelli-

gence (AI) methodologies including Deep Learning (DL) followed by Ingenuity Pathway

Analysis (IPA) was used for AD prediction. We identified 152 significantly (FDR p<0.05) dif-

ferentially methylated intragenic CpGs in 171 distinct genes in AD patients compared to con-

trols. All AI platforms accurately predicted AD with AUCs�0.93 using 283,143 intragenic

and 244,246 intergenic/extragenic CpGs. DL had an AUC = 0.99 using intragenic CpGs,

with both sensitivity and specificity being 97%. High AD prediction was also achieved using

intergenic/extragenic CpG sites (DL significance value being AUC = 0.99 with 97% sensitiv-

ity and specificity). Epigenetically altered genes included CR1L & CTSV (abnormal morphol-

ogy of cerebral cortex), S1PR1 (CNS inflammation), and LTB4R (inflammatory response).

These genes have been previously linked with AD and dementia. The differentially methyl-

ated genes CTSV & PRMT5 (ventricular hypertrophy and dilation) are linked to cardiovascu-

lar disease and of interest given the known association between impaired cerebral blood

flow, cardiovascular disease, and AD. We report a novel, minimally invasive approach using

peripheral blood leucocyte epigenomics, and AI analysis to detect AD and elucidate its

pathogenesis.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0248375 March 31, 2021 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bahado-Singh RO, Vishweswaraiah S,

Aydas B, Yilmaz A, Metpally RP, Carey DJ, et al.

(2021) Artificial intelligence and leukocyte

epigenomics: Evaluation and prediction of late-

onset Alzheimer’s disease. PLoS ONE 16(3):

e0248375. https://doi.org/10.1371/journal.

pone.0248375

Editor: Udai Pandey, Children’s Hospital of

Pittsburgh, University of Pittsburgh Medical Center,

UNITED STATES

Received: February 6, 2021

Accepted: February 24, 2021

Published: March 31, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0248375

Copyright: © 2021 Bahado-Singh et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

https://orcid.org/0000-0003-1001-0002
https://orcid.org/0000-0002-6617-5634
https://doi.org/10.1371/journal.pone.0248375
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248375&domain=pdf&date_stamp=2021-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248375&domain=pdf&date_stamp=2021-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248375&domain=pdf&date_stamp=2021-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248375&domain=pdf&date_stamp=2021-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248375&domain=pdf&date_stamp=2021-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248375&domain=pdf&date_stamp=2021-03-31
https://doi.org/10.1371/journal.pone.0248375
https://doi.org/10.1371/journal.pone.0248375
https://doi.org/10.1371/journal.pone.0248375
http://creativecommons.org/licenses/by/4.0/


Introduction

Alzheimer’s Disease (AD) is the most common form of age-related dementia, accounting for

60–80% of such cases [1]. The disorder causes a wide range of significant mental and physical

disabilities, with profound behavioral changes and progressive impairment of social skills.

Globally in 2015, nearly 47 million individuals suffered from AD and it is projected that 75

million will be affected by 2030, with a further rise to 131 million by 2050 [2]. The World

Health Organization has therefore declared AD a global health priority [3].

AD is a complex disorder influenced by environmental and genetic factors [4,5]. Many

studies have investigated the genetic basis for both early-onset AD (EOAD) and late-onset AD

(LOAD) [6,7]. Genome-wide association studies (GWAS) [8] have identified several LOAD-

associated risk loci [9] proliferation in peripheral blood leukocytes including in T-lymphocytes

[10], B-lymphocytes [11], polymorphonuclear leucocytes [12], monocytes, and macrophages

[13] have been reported. DNA methylation plays an important role in Alzheimer’s disease

[14–16]. Leukocyte DNA methylation from CpG-based biomarker analyses was used for early

detection of many diseases, including our recently published brain disorders cerebral palsy

[17], autism [18], and concussion [19]. However, the genome-wide blood DNA methylation-

based molecular mechanisms that contribute to the pathogenesis of AD remain still largely

unknown.

Artificial Intelligence (AI) is rapidly transforming modern life in areas as diverse as face rec-

ognition and robotics. Machine Learning (ML) is a branch of AI that focuses on computer

learning and adapting from a set of data with which it has been presented. ML involves learning

by computers that require no or only minimal explicit programming by humans. An area of

interest given the geometric expansion of medical data is the use of ML for the detection and

diagnosis of various diseases [20]. ML has been reported to be superior to conventional statisti-

cal approaches for prediction such as logistic regression and Cox proportional hazard model-

based analysis [21] when interrogating mega-data. Challenges with classical statistical tech-

niques include but are not limited by the requirement for an assumption of independence

between predictors and risk of overfitting and collinearity when a large number of variables are

analyzed. Deep Learning (DL) is the latest developing branch of ML. DL uses multi-layered

neural networks that are modeled after neural networks in the brain of animals, to learn essen-

tial tasks. Thus, with minimal or no explicit human programming (unsupervised), the com-

puter can learn intricate patterns from complex data matrices. When subsequently exposed to

a new data set, it can classify and make precise predictions based on past experiences. With DL,

between the input (raw data) and output (i.e. completed task e.g. group classification) layer of

‘neurons,’ there are multiple hidden layers that enhance the ability to handle tasks of increasing

complexity. DL more closely mimics the intellectual function of the cerebral cortex. There is an

increasing interest in using DL in the analysis of biologic big-data such as genomics [22,23] to

understand and accurately predict diseases. We have recently published using AI/ML-based

technologies of epigenomic [17] and metabolomics [24–26] data for accurate disease predic-

tion. In the present study, we used DL and other commonly used ML platforms combined with

genome-wide DNA methylation analysis of leucocytes DNA for AD detection/prediction. The

term ‘prediction’ is used here in a cross-sectional as opposed to a temporally longitudinal sense

since the samples were not obtained before the development of AD. To further explore the

molecular mechanisms of LOAD, we used the Ingenuity Pathway Analysis (IPA).

Materials and methods

Institutional Review Board (IRB) approval was provided by William Beaumont Hospital,

Royal Oak MI, USA (IRB#2014–038). Written consent was obtained from all participants and
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their legally authorized representatives when applicable. The diagnosis of AD in these live sub-

jects was made using the published criteria of NINCDS-ADRDAj [27]. Demographic and clin-

ical data were extracted from the medical records (S1 Table) and compared between AD and

control groups. Genomic DNA was extracted from whole blood samples using the Gentra

Puregene Blood Kit (Qiagen) according to the manufacturer’s protocol. Approximately 500 ng

of genomic DNA was extracted from each of the 48 samples, which subsequently were bisulfite

converted using the EZ DNA Methylation-Direct Kit (Zymo Research, Orange, CA) per the

manufacturer´s protocol and processed according to Illumina protocols. Bisulfite conversion

was performed in a PCR cycling protocol (16 x 95˚C for 30 sec, 50˚C for 60 min) and then

held at 4˚C.

Genome-wide methylation scan using the Infinium MethylationEPIC array

BeadChips

The Infinium MethylationEPIC array (Illumina, Inc., California, USA) contains probes for

>850,000 CpGs per sample. All 48 samples were processed together to minimize batch effects.

This is further elucidated in the Supplementary Methods. This section also includes validation

results using pyrosequencing along with primer sequences.

Statistical and bioinformatic analysis

Differential methylation was determined by comparing the ß-values per individual nucleotide

at each cytosine ‘CpG’ locus between AD subjects and controls. The p-value for the methyla-

tion difference between AD and control groups at each locus was calculated as previously

described [28]. Probes associated with X and Y chromosomes were removed to negate any bias

caused by gender differences. Further detailed statistical and bioinformatic analyses are

described in the Supplementary section.

Artificial Intelligence (AI) analysis

AI analysis was performed as previously described by our group [29], using a combination of

CpG sites from different genes. A total of six different AI platforms including Deep Learning

(DL) were evaluated. Each CpG locus used as a marker displayed significant differential meth-

ylation in AD defined as FDR p-value <0.05. The methylation β-values were logged and auto-

scaled using their standard deviation before quantile normalization to minimize sample to

sample difference. Standard techniques were used with DL including adjustments by the pro-

gram of weights (strength of the connection between ‘neurons’) and biases (an additional

parameter or constant) and backpropagation—all of which helps to optimize the accuracy of

the output or results. Softmax classifier was used to assign new labels to the samples. To tune

the parameters of the DL model, the h2o package in the R module was used [30,31]. For the

sake of comparison, standard logistic regression algorithms for AD prediction were also per-

formed and detailed later in the manuscript.

Other machine learning algorithms

We compared the performance of DL to five other commonly used machine learning algo-

rithms: Support Vector Machine (SVM), Generalized Linear Model (GLM), Prediction Analy-

sis for Microarrays (PAM), Random Forest (RF), and Linear Discriminant Analysis (LDA)

[30,32]. A comprehensive explanation of the AI methodology is provided in the Supplemen-

tary Section.
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Bootstrapping

We also performed bootstrapping as alternative 10-fold cross-validation and compared the

new results with that based on 10-fold CV. The bootstrap method involves iteratively resam-

pling a dataset with replacement. Instead of only estimating our statistic once on the complete

data, this can be performed many times on a re-sampling (with replacement) of the original

sample. We repeated this re-sampling 100 times and averaged the results.

Results

A total of 24 LOAD subjects and 24 cognitively healthy controls were used in this study.

Selected clinical and demographic characteristics were compared between AD and control

groups (S1 Table). There were no significant differences in age, gender, and common cardio-

vascular diseases between groups. There was a higher percentage of females in both the study

and control groups consistent with LOAD demographics; however, gender was not signifi-

cantly (p = 0.53) different between groups. The MMSE (mini-mental status exam) is a psycho-

logical test commonly administered to screen for AD. As expected, the MMSE test score was

significantly lower in the AD than in the control group (p-1.54x10-7). A comparison of the

methylation profiles between AD and control subjects revealed 152 differentially methylated

intragenic CpG sites (FDR p<0.05 and fold change�1.5) associated with 171 unique genes.

We validated two randomly chosen CpGs by pyrosequencing and confirmed the top-ranking

hits in the whole blood DNA of our cohort samples. These analyses revealed similar methyla-

tion data like those from the Illumina Infinium MethylationEPIC arrays, indicating that the

initial methylation changes were not artifacts. 33 intragenic CpG sites met the GWAS stringent

p-value thresholds i.e. p<5X10-8 (Table 1). A total of 17 separate intragenic CpG sites had

moderate to good individual predictive accuracy (AUC� 0.75) for AD detection based on

methylation levels. An additional 119 CpG markers displaying significant methylation differ-

ences (FDR p-value<0.05) between AD and controls are presented in S2 Table. Both hyper-

(66.4%) and hypomethylation (33.6%) were observed among intragenic CpG sites in the AD

cases.

A prior report found significant differential methylation of intergenic/extragenic sites in

the leukocyte genome in AD [33] which correlated with the performance on the MMSE. Based

on this we also evaluated the methylation changes in intergenic/extragenic CpG sites for AD

prediction. Highly significant differences in CpG methylation were observed for multiple

intergenic/extragenic sites throughout the genome. This was observed when using different

thresholds to define statistical significance: A total of 1524 intergenic/extragenic CpGs

with FDR p-value <0.05 and 103 intergenic/extragenic CpGs using a stringent threshold

(p<5x10-8) were identified [34]. The top 25 intergenic/extragenic markers for AD prediction

using the different statistical thresholds mentioned above are listed in Tables 2 and 3.

Principal Component Analysis (PCA) and Partial Least Square Discriminant Analyses

(PLS-DA) confirmed significant segregation of AD cases from controls using intragenic CpG

methylation markers (Fig 1). Permutation testing indicated that the separation observed

between the AD and control groups was highly statistically significant (p<5x10-8) and not

likely due to chance.

For most of our analyses, conventional statistical tools were used to first identify high per-

forming individual markers as indicated by AUC or FDR p-value thresholds, and these subsets

of markers were then subjected to AI analyses. This approach has the advantage of reducing

AI computing time and therefore costs. Prior publications suggest however that ML

approaches might be superior to conventional statistical methods such as logistic regression
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analysis for group discrimination and risk prediction. [35]. Thus, direct AI analysis of the

entire CpG data-space may improve AD prediction.

Using the direct AI analysis approach improved the predictive accuracy. Direct analysis of

283,143 individual intragenic markers CpGs improved predictive accuracy (Table 4) as did a

direct analysis of 244,246 intergenic (extragenic) CpGs, (Table 5). Almost all ML platforms

yielded a high predictive accuracy with an AUC�0.93. In the case of Deep Learning, using

direct analysis of the intragenic markers, we observed AUC’s = 0.992 with both sensitivities

and specificities of ≧97% for AD prediction, respectively (Table 4). For the intergenic (extra-

genic) markers, direct AI analysis (Table 5) yielded an AUC = 0.999 for DL with both sensitivi-

ties and specificities of = 97.5% for AD prediction. Our findings suggest that direct AI analysis

of the raw methylation data could perform as well as or even further improve predictive

Table 1. Top 33 differentially methylated CpG markers—(Gene IDs, chromosome location, fold change, AUC, and percentage of methylation difference for each

CpG).

Target ID CHR Gene FDR p-Val Fold change AUC CI % Methylation % Methylation difference

Lower Upper Cases Control

cg20008763 19 ZNF667 2.75071E-41 1.57 0.66 0.51 0.81 44.46 28.33 16.13

cg25755428 19 MRI1 4.25655E-41 1.57 0.65 0.50 0.81 43.40 27.67 15.73

cg21353034 12 VPS33A 1.11479E-38 1.93 0.65 0.50 0.81 21.49 11.13 10.36

cg05706624 17 WSCD1 3.0837E-38 1.81 0.68 0.53 0.83 20.84 11.53 9.31

cg12949483 15 TMEM85 4.00337E-38 1.66 0.68 0.53 0.83 22.62 13.58 9.03

cg26856451 2 THAP4 1.35084E-37 2.25 0.74 0.60 0.88 13.92 6.19 7.73

cg26340737 6 RNF5P1; RNF5; AGPAT1 1.52469E-37 2.84 0.60 0.44 0.76 11.73 4.13 7.60

cg04515524 19 PLVAP 1.15699E-30 0.39 0.75 0.61 0.89 8.28 21.08 -12.80

cg02356786 1 LOC731275 3.59905E-21 0.48 0.71 0.57 0.86 9.95 20.76 -10.81

cg05841700 1 PM20D1 4.61313E-19 0.65 0.62 0.46 0.78 26.67 40.75 -14.08

cg16259859 1 ZBTB8A 2.79863E-17 0.60 0.66 0.51 0.82 18.09 29.95 -11.86

cg08829299 11 ATHL1 2.25432E-16 0.62 0.67 0.52 0.83 18.59 30.21 -11.63

cg10326472 6 MYB 8.45895E-14 1.50 0.69 0.54 0.84 29.08 19.34 9.74

cg00613827 1 CR1L 2.86297E-12 0.52 0.61 0.45 0.77 7.96 15.32 -7.36

cg07509935 14 LTB4R; CIDEB 4.66298E-12 0.53 0.68 0.52 0.83 8.45 15.88 -7.43

cg08611411 1 LOR 2.87911E-11 1.97 0.55 0.38 0.71 12.41 6.30 6.12

cg18157505 1 PTPRC 5.51496E-11 1.71 0.63 0.47 0.78 16.62 9.73 6.89

cg27119318 21 WRB 1.0259E-10 0.61 0.69 0.54 0.84 12.64 20.66 -8.02

cg01819759 13 RNF219 1.02625E-10 1.54 0.61 0.45 0.77 22.24 14.45 7.80

cg01887804 15 IVD 1.62867E-10 1.70 0.65 0.50 0.81 16.24 9.54 6.70

cg23623880 1 MACF1 2.95897E-10 1.52 0.69 0.54 0.84 22.53 14.83 7.70

cg07469467 12 APAF1 4.81236E-10 0.58 0.63 0.47 0.78 9.82 16.88 -7.06

ch.15.658653F 15 TMOD2 7.3646E-10 0.55 0.64 0.48 0.80 7.81 14.28 -6.47

cg17160660 8 MYC 1.15589E-09 1.89 0.72 0.58 0.87 12.06 6.39 5.67

cg16251399 6 GUSBL2 1.28686E-09 0.47 0.65 0.50 0.81 5.02 10.62 -5.60

cg17578275 2 ADAM17 1.29935E-09 0.60 0.67 0.52 0.82 10.93 18.09 -7.16

cg05800065 4 NSG1 1.93339E-09 1.99 0.71 0.57 0.86 10.78 5.43 5.36

cg19819404 4 ZNF718 1.99376E-09 1.61 0.68 0.53 0.83 17.41 10.80 6.61

cg00106073 1 LMNA 7.50554E-09 1.93 0.69 0.53 0.84 10.85 5.62 5.23

cg24368383 1 MIB2 1.5593E-08 2.44 0.62 0.46 0.78 7.62 3.12 4.50

cg02722613 4 SEPSECS 1.69962E-08 0.63 0.60 0.43 0.76 11.38 18.19 -6.80

cg00853940 2 TRPM8 2.05842E-08 1.50 0.68 0.52 0.83 20.05 13.33 6.73

cg14304349 11 TRIM6 3.15543E-08 0.49 0.59 0.43 0.76 4.87 9.96 -5.10

https://doi.org/10.1371/journal.pone.0248375.t001
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performance compared to analysis based on high performing individual CpG loci determined

by conventional statistical approaches (see below).

As noted above we looked at the predictive performance of AI-based analysis of DNA

methylation levels in intragenic and intergenic/extragenic CpG sites using individual markers

that achieved different significance thresholds for AD prediction. High predictive accuracies

were also achieved with these CpG markers using significance threshold FDR p-value<0.05

(S3 and S4 Tables) followed by the stringent significance threshold p-value <5X10-8 (S5 and

S6 Tables). DL appears to perform slightly better than other ML platforms however much

larger case numbers would be required to assess this definitively. Increasing the number of

predictors to 10 or 20 CpG loci did not appear to meaningfully improve predictive perfor-

mance over the use of only 5 predictors. Similarly bootstrapping (1,000 samplings) yielded

essentially similar results.

Logistic regression analysis

We further investigated the performance of conventional logistic regression for comparison

purposes. The methylation status of a combination of CpG markers: cg04515524, cg00613827,

cg02356786, and cg07509935 was a good predictor of AD. The following performance was

Table 2. Top 25 intergenic/extragenic markers�.

Target ID FDR p-Val Fold change AUC CI % Methylation % Methylation difference

Lower Upper Cases Control

cg04299067 1.11E-14 1.31 0.79 0.66 0.92 49.58 37.83 11.76

cg02147364 1.94E-14 0.4 0.77 0.64 0.91 4.49 11.35 -6.87

cg15711973 3.93E-10 0.86 0.77 0.63 0.9 59.61 69.68 -10.07

cg23332294 4.00E-07 1.13 0.76 0.63 0.9 69.15 61.27 7.88

cg11166167 4.70E-06 0.91 0.78 0.65 0.91 68.17 75.27 -7.1

cg22680058 5.03E-05 1.61 0.77 0.64 0.91 10.9 6.77 4.14

cg05293897 7.50E-05 0.83 0.77 0.64 0.91 35.64 43.18 -7.54

cg00614617 0.000121 1.15 0.8 0.68 0.93 53.81 46.71 7.1

cg12269972 0.000145 0.81 0.76 0.62 0.9 30.32 37.36 -7.04

cg08343820 0.000357 0.92 0.78 0.65 0.91 69.33 75.21 -5.87

cg06336897 0.000397 0.9 0.79 0.66 0.92 60.13 66.73 -6.6

cg23980569 0.000405 0.89 0.81 0.68 0.93 56.04 62.86 -6.82

cg16219773 0.000518 0.93 0.76 0.63 0.9 71.94 77.43 -5.5

cg13699771 0.000844 1.12 0.76 0.62 0.9 59.28 52.91 6.37

cg24328568 0.001267 0.9 0.8 0.67 0.92 56.64 63.03 -6.39

cg11122899 0.003358 0.83 0.79 0.66 0.92 26.86 32.53 -5.67

cg22509132 0.019164 0.93 0.76 0.63 0.9 65.3 70.13 -4.83

cg00280895 0.023204 1.11 0.77 0.64 0.91 51.94 46.75 5.19

cg26041076 0.024238 0.73 0.81 0.69 0.94 8.46 11.53 -3.08

cg06858692 0.026431 0.92 0.76 0.63 0.9 57.32 62.41 -5.09

cg08895936 0.028385 1.03 0.77 0.63 0.9 87.82 84.95 2.87

cg12688483 0.031136 1.59 0.76 0.63 0.9 6.38 4.02 2.36

cg25906247 0.033333 1.43 0.77 0.63 0.9 8.68 6.06 2.61

cg00521380 0.036657 0.96 0.8 0.67 0.92 77.56 81.17 -3.61

cg23694799 0.043606 0.94 0.84 0.72 0.95 64.7 69.18 -4.49

�Methylation difference defined as FDR p-value <0.05�.

https://doi.org/10.1371/journal.pone.0248375.t002
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achieved: AUC = 0.856 (0.749~0.963), sensitivity = 0.917 (0.917~1.000) and specificity = 0.708

(0.526~0.890) after 10-fold cross-validation. The logistic regression model is represented

below:

logitðPÞ ¼ logðP=ð1 � PÞÞ ¼ � 0:072 � 1:5 cg04515524 � 1:901 cg00613827 � 0:992

cg02356786 � 1:358 cg07509935;

where P is Pr(y = 1|x).

AI-based analysis, and in particular DL, was superior to conventional regression analysis,

Tables 4 and 5, S3–S6 Tables. Overall, these results appear to support the robustness of blood-

based epigenomic markers for AD prediction.

Network and pathway analyses results

The network and pathway analysis based on intragenic epigenomic markers identified signifi-

cantly enriched canonical pathways. The molecular pathways that were found to be statistically

significantly overrepresented were Cardiac Hypertrophy Signaling, Sirtuin Signaling, FGF Sig-

naling, Wnt/β-catenin Signaling, and Neuregulin Signaling (S7 Table). The over-represented

Table 3. Top 25 intergenic/extragenic markers: Genome-wide significance threshold�.

Target ID p-Val Fold change AUC CI % Methylation % Methylation difference

Lower Upper Cases Control

rs4331560 3.39589E-45 1.84 0.68 0.53 0.83 51.47 27.97 23.50

rs5926356 2.7196E-42 1.53 0.60 0.44 0.76 52.13 33.98 18.15

rs10936224 1.42552E-40 1.35 0.59 0.43 0.76 56.30 41.68 14.62

rs1040870 1.82909E-40 1.50 0.58 0.42 0.74 43.36 28.96 14.39

cg11468315 4.90383E-40 1.67 0.66 0.50 0.81 33.67 20.22 13.46

cg27128435 8.16168E-40 1.32 0.74 0.60 0.88 53.64 40.67 12.97

rs348937 1.81674E-39 1.35 0.61 0.45 0.77 47.37 35.19 12.19

cg00727777 9.80978E-39 1.15 0.58 0.42 0.74 79.50 69.01 10.50

cg27055313 2.16905E-38 1.75 0.75 0.62 0.89 22.50 12.82 9.68

cg19775763 1.4397E-37 1.09 0.62 0.46 0.78 90.66 83.00 7.66

cg19432688 8.03822E-37 1.07 0.53 0.36 0.69 93.51 87.76 5.75

rs264581 1.75175E-28 0.52 0.63 0.47 0.79 16.87 32.17 -15.30

rs1495031 9.34546E-28 0.63 0.66 0.51 0.82 42.09 67.03 -24.93

rs2032088 1.11017E-26 0.60 0.60 0.44 0.76 24.32 40.75 -16.42

rs6982811 1.87656E-26 0.60 0.61 0.45 0.77 24.88 41.32 -16.44

rs6626309 4.51648E-26 0.72 0.60 0.44 0.76 44.25 61.55 -17.31

cg27438152 9.37531E-21 0.84 0.67 0.51 0.82 65.54 78.42 -12.88

cg23155965 7.14189E-19 0.91 0.68 0.53 0.83 81.52 90.01 -8.49

cg16097834 2.76613E-18 0.87 0.50 0.34 0.67 73.12 83.68 -10.56

rs2208123 8.75703E-17 0.80 0.64 0.49 0.80 52.83 66.31 -13.49

cg25556225 2.17724E-16 0.86 0.73 0.59 0.88 66.98 78.32 -11.33

cg00224807 3.28345E-16 0.90 0.62 0.46 0.78 77.81 86.73 -8.92

cg03192273 1.66265E-15 0.61 0.63 0.47 0.78 17.06 28.01 -10.95

rs7746156 4.86899E-15 1.29 0.57 0.41 0.73 53.95 41.92 12.03

rs5987737 4.89189E-15 1.28 0.60 0.44 0.76 54.30 42.28 12.02

� Stringent genome-wide significance threshold: p-value <5x10-8.

https://doi.org/10.1371/journal.pone.0248375.t003
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disease pathways were Abnormal morphology of the cerebral cortex, Gliosis, Hydrocephalus,

Morphology of nervous system, Ventricular hypertrophy, dilated cardiomyopathy, and

Inflammatory response (S8 Table). The related gene (Fig 2) and disease pathways (Fig 3) are

depicted. S9 Table provides a summary of genes that were significantly differentially methyl-

ated and plausibly linked to AD development.

To evaluate the correlation between leukocyte methylation and gene expression in the

brain, we matched our result with the study of Miller et al., [36] They reported the genes that

Fig 1. Principal Component Analysis (PCA) and Partial Least Square Discriminant Analyses (PLS-DA) with intragenic markers.

https://doi.org/10.1371/journal.pone.0248375.g001

Table 4. Alzheimer’s disease prediction based on all intragenic� CpG markers only.

SVM GLM PAM RF LDA DL

AUC 95% CI 0.9898 (0.8000–1) 0.9880 (0.8000–1) 0.9877 (0.8000–1) 0.9620 (0.8000–1) 0.9325 (0.8000–1) 0.9920 (0.8000–1)

Sensitivity 0.9100 0.9500 0.9200 0.9100 0.9000 0.9750

Specificity 0.9700 0.9800 0.9400 0.9500 0.9000 0.9700

� based on analysis of 283,143 CpG loci.

Important predictors in order.

SVM: cg10304803, cg07589235, cg09991306, cg07773593, cg11035296.

GLM: cg02434121, cg27066201, cg14185918, cg07079724, cg04898026.

PAM: cg25179758, cg08086084, cg21027526, cg17840509, cg24644672.

RF: cg25179758, cg27066201, cg14185918, cg07773593, cg11035296.

LDA: cg09991306, cg07773593, cg27066201, cg14185918, cg24644672.

DL: cg10304803, cg07589235, cg09991306, cg07773593, cg11035296.

Support Vector Machine (SVM), Generalized Linear Model (GLM), Prediction Analysis for Microarrays (PAM), Random Forest (RF), Linear Discriminant Analysis

(LDA), and Deep Learning (DL).

https://doi.org/10.1371/journal.pone.0248375.t004
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were differentially expressed in the CA1 and CA3 regions of the brain from AD patients. We

found 13 genes differentially expressed in CA1 and CA3 regions of the brain from that study

[36] were significantly differentially methylated in circulating leukocytes. These were CCDC3,

CPS1, ERMAP, FAM84B, MIB2, PTPRC, SARM1, SEC11A, TRIM6, TXNIP found to be differ-

entially expressed in the CA1 region and ADM, ANKS1B, LANCL1 differentially expressed in

the CA3 region [36]. Among these, CPS1 is involved in ammoniac intake in the urea cycle

[37], PTPRC is one of the microglial expressed gene [38], SARM1 is involved in axon degenera-

tion, which a factor observed in AD [39], TXNIP is linked to neuroprotective function [40],

ANKS1B regulates hippocampal synaptic transmission [41] and LANCL1 is required for nor-

mal neuronal function [42]. We also compared our methylation results with a previous study

evaluating differentially methylated genes in leukocyte blood samples of mono and dizygotic

Table 5. Alzheimer’s disease prediction based on intergenic (extragenic) CpG markers� only.

SVM GLM PAM RF LDA DL

AUC 95% CI 0.9970 (0.8000–1) 0.9980 (0.8000–1) 0.9977 (0.8000–1) 0.9820 (0.8000–1) 0.9725 (0.8000–1) 0.9990 (0.8000–1)

Sensitivity 0.9200 0.9400 0.9300 0.9200 0.9200 0.9750

Specificity 0.9860 0.9810 0.9580 0.9550 0.9100 0.9750

�—analysis based on 244,246 markers.

Important predictors in order.

SVM: cg01941243, cg09301498, cg27128435, cg03043243, cg09050832.

GLM: rs4331560, cg15410835, cg05477405, cg16818568, cg01938825.

PAM: cg19008148, cg02875416, cg18232989, cg25761791, cg06842409.

RF: cg19008148, cg15410835, cg05477405, cg03043243, cg09050832.

LDA: cg15410835, cg27128435, cg03043243, cg25761791, cg06842409.

DL: cg01941243, cg09301498, cg27128435, cg03043243, cg09050832.

Support Vector Machine (SVM), Generalized Linear Model (GLM), Prediction Analysis for Microarrays (PAM), Random Forest (RF), Linear Discriminant Analysis

(LDA), and Deep Learning (DL).

https://doi.org/10.1371/journal.pone.0248375.t005

Fig 2. Epigenetically dysregulated molecular pathways in AD.

https://doi.org/10.1371/journal.pone.0248375.g002
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twins [43]. These twin pairs were discordant for methylation. Twenty-two of those differen-

tially methylated genes were also found to be significantly differentially methylated in our

study. The direction i.e. increased versus decreased, of methylation change was similar in that

and the current study for the following genes: C5orf38, CDK20, CREB5, CTSV, DISC1,

ELOVL4, FGF22, HOXC12, IGSF21, IGSF9B, IRX4, MAF, S1PR1, STX8, TBX2, and TSHZ3.

However, for genes ASCL2, FAM124B, FAM174B, KIF19, KIF26A, and WSCD1 both studies

found significant methylation changes in the leukocyte DNA of AD cases however the direc-

tion of the methylation change was discordant between the studies [43].

Discussion

Dementia represents a looming global health crisis. The problem is expected to worsen with

an anticipated explosion in the aged population in the future [44]. The direct health care costs,

along with intangible costs, are burdensome at an estimated $550 billion annually [45]. The

inpatient hospital cost for individuals 65 years and over with Alzheimer’s and other dementias

is greater than 3 times that of similarly aged individuals without dementia, with the nursing

home facility costs greater than 20 times that of the latter group [46]. Despite the current

absence of curative therapy, the justification for biomarker development remains compelling.

Early detection of AD is needed to ensure early interventions that could potentially mitigate

disease severity and also give families time to better prepare for the care of such individuals.

With a very active drug pipeline, early detection will be needed to identify appropriate candi-

dates for these trials. Finally, early detection and resulting intervention to slow disease progres-

sion could minimize time spent with severe dementia and promote the preservation of

cognitive function for as long as possible. This would be beneficial for quality of life [47] and

health care costs considerations. AD is a slowly developing disorder enhancing the feasibility

of achieving these objectives.

Fig 3. Epigenetically dysregulated disease pathways in AD.

https://doi.org/10.1371/journal.pone.0248375.g003
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Consistent with the call for the integration of breakthrough technologies (systems biology,

genomics, big data science, and blood-based markers) to advance precision medicine objec-

tives in AD [48], we combined AI analysis with leukocyte epigenomic data for AD prediction.

Using raw intragenic CpG markers alone, we achieved a highly accurate prediction of AD

using ML-based techniques. All the AI platforms achieved an AUC�0.93 using leukocyte epi-

genomic data. In the case of Deep Learning, we obtained an AUC = 0.99 with 97% sensitivity

and specificity values. Additionally, we achieved high predictive accuracy using intergenic/

extragenic CpG sites alone for AD detection. The use of conventional clinical predictors and

MMSE did not improve performance further.

AI is superior to conventional statistical tools for the analysis of big data generated by

omics analysis [17,49]. It is a powerful tool for discriminating and classifying groups. It can

identify multiple markers each with limited individual predictive capabilities which when

combined achieve excellent discriminating performance. To minimize the chances of overfit-

ting strategies such as RF were used (see Supplementary Methods). For the sake of compari-

son, we also investigated the predictive performance of conventional logistic regression.

Employing cross-validation techniques, regression analysis yielded good predictive accuracy

for AD based on methylation markers: AUC (95%CI) = 0.85 (0.74–0.96) but less than that of

AI. This, however, further supports the robustness of the leukocyte epigenomic markers for

AD detection.

Currently, a range of imaging markers continues to be deployed in clinical and research

diagnosis and evaluation of AD. These include CT, MRI, and PET imaging of the brain and

CSF amyloid and tau levels. A systematic review of imaging biomarkers revealed that cur-

rently, the most commonly utilized antemortem diagnostic tests have achieved moderate to

good diagnostic accuracy [50]. The expense, and in some cases the invasive nature of these

tests, precludes use in the general aged population. Psychological testing including the MMSE,

the most widely used cognitive test, might not be readily available in many primary care set-

tings where the majority of elderly patients receive clinical care. Further, the MMSE was found

on meta-analysis to have only modest accuracy for ruling out dementia when deployed in a

community or primary care settings [51]. Based on all these considerations, there remains a

need for accurate biological screening tests in a low to moderate risk setting.

While not a requirement, an important collateral benefit of an ideal biomarker, beyond pre-

dictive accuracy, is the ability to help elucidate disease pathogenesis. We identified altered

CpG methylation in several individual genes (CR1L, MYC, NRG1, LMNA, ELOVL4, MYB,

AGPAT1, and NSG1) previously reported playing a role in AD. Single nucleotide polymor-

phisms in these genes increase AD risk by affecting the formation of neurofibrillary tangles,

neuronal apoptosis, and neuronal vesicle trafficking in AD (S7 Table). [52–60] Further, IPA

found enrichment of several pathways involved in brain and neuronal development and brain

and cardiovascular function such as abnormal morphology of cerebral cortex, gliosis, the mor-

phology of the nervous system, Inflammatory response and cardiac ventricular hypertrophy,

and dilated cardiomyopathy (Figs 2 and 3 and S5–S7 Tables).

AD appears to primarily affect the medial temporal cortex of the brain and both AD and

aging affect the inferior parietal lobe and dorsolateral prefrontal cortex regions of the brain

[61]. The accumulation of a significant volume of neurofibrillary tangles in the neocortical

region is a hallmark of AD development [62]. We found significant epigenetic changes in

genes (CR1L, CTSV, APAF1, and SS18L1) responsible for cerebral cortical morphology.

Microglia are immune cells residing in the brain. Proliferation and hypertrophy of these

cells (gliosis) occur in response to CNS damage. Gliosis can lead to neuroinflammation and

induce tau pathology thus accelerating neurodegeneration. In the case of AD, amyloid-β pla-

que deposition aggravates gliosis [63]. Our pathway analysis suggested a relationship between
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abnormal methylation and increased gliosis in AD. S1PR1 and MYC genes were hypermethy-

lated in our study. The S1PR1 gene is involved in CNS inflammation [64] and the MYC gene

in astrogliosis and inflammatory response [65].

We also found an over-representation of molecular pathways, including cardiac hypertro-

phy signaling and Wnt signaling, in AD. Vascular disease is strongly associated with negative

effects on cognition [66]. Left ventricular hypertrophy is reported to be an independent risk

factor for dementia [67]. We identified genes involved in cardiac hypertrophy signaling that

displayed altered methylation in the AD group. Polymorphisms of the ADRA2B gene have

been linked to cerebrovascular disorders [68]. The FGF18 and FGF22 genes are known to play

a role in heart development and physiological processes [69] while the MYC gene is implicated

in angiogenesis, cardiomyogenesis, apoptosis, oxidative stress response and plays a major role

in initiating and maintaining cardiac hypertrophy and contractility [70]. In our study, these

genes were found to be significantly differentially methylated and further support an impor-

tant link between cardiovascular function and AD.

The Wnt/β-catenin signaling pathway is one possible link between cardiovascular disease

and dementia. Wnt signaling is critical for the developmental processes in multiple organs

including that of the heart. The pathway is reactivated in many post-natal cardiac disorders

[71]. The activation of Wnt signaling has a neuroprotective effect while inhibition promotes

neurodegeneration [72]. Downregulated Wnt/β-catenin signaling is associated with AD [73].

Wnt/β-catenin signaling genes such as MYC, SOX14, and WNT9B were found to be hyper-

methylated in the study.

A limitation of our study was the relatively small sample size. We also performed bootstrap-

ping to confirm the stability of our estimates (see Supplemental Methods section). This slightly

increased the performance estimates for 4 platforms including DL while slightly decreased the

performance in 2 AI platforms. We intend to perform follow-up validation studies in a larger

cohort of patients. Despite the study size, we demonstrated highly significant methylation

changes in circulating leukocytes in AD. Highly accurate AD prediction was observed using

an AI platform and different marker combinations. Also, while expression studies were not

performed in this particular analysis, several CpG site methylation differences in AD cases ver-

sus controls were greater than 5–10%. This level of methylation difference has been noted to

correlate with changes in corresponding gene expression [74]. While we did not perform

expression analysis in the current study, we did find evidence of significant methylation

changes in some leukocyte genes that have been previously reported to be differentially

expressed in AD brains [36]. These findings also help to validate our data.

While significant epigenetic changes were also identified in the intergenic/ extragenic sites,

we are currently unable to report the specific mechanisms of their contribution to AD patho-

genesis as these sites have not been linked to particular genes. It is known however that inter-

genic/extragenic sites can exert long-range influence and control gene function.

Overfitting can be a challenge with AI analysis. To avoid overfitting in the DL model strate-

gies including the use of regularization parameters, dropout, and controlling the input- drop-

out ratio were used and are detailed in the Supplemental Methods section. For the other AI

platforms, several parameters were used to tune the models and to overcome the overfitting

problem: number of trees for RF, classification cost for SVM, and threshold amount for

shrinking toward the centroid for PAM.

Another limitation of the study is that we were not able to eliminate the possibility that

some of the observed epigenetic changes were not due to co-morbidities such as schizophrenia,

bipolar disorder, or epilepsy. Given the age of the study subjects, co-morbidities are the norm

rather than the exceptions in AD. We did not however identify significant differences in the

frequency of these disorders in our AD versus control groups. We did not have access to the
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medications of our study group. The study included a higher percentage of females in both the

case and control groups. This however is consistent with the distinct gender-based demo-

graphics of the disorder. There was however no significant difference in the gender ratios of

the case and control groups. Further, we removed all probes associated with X and Y chromo-

somes to minimize gender bias. We have excluded any CpGs having close association (0 to 10

bp distance) with single nucleotide polymorphisms to avoid genetic mutational association

with the methylation changes. Finally, no information on the APOE gene mutation status was

available for this particular cohort. These are not routinely obtained in the assessment of our

clinical patients.

A significant strength of our study is the novelty, i.e. the use of blood leukocytes to accu-

rately detect AD and also for interrogating the pathogenesis of AD. Leukocyte samples are eas-

ily obtained, raising the prospect of a minimally invasive and potentially affordable technique

for investigation of the mechanisms, detection, as well as longitudinal monitoring of AD. The

potential value of methylation changes in blood leukocytes for the detection of brain disorders

including schizophrenia has been previously reported [75,76]. Of interest, we did find overlap

in some of the genes that were significantly differentially methylated in AD in our study and a

prior report of leukocyte DNA methylation variation in twins discordant for AD [43]. This

provides further validation to the use of leukocyte methylation for the investigation of AD.

In summary, we have performed genome-wide methylation analysis in blood leucocytes

and identified significant methylation changes in genes, gene networks, and disease pathways

that were previously known or suspected to play an important role in AD. Significant methyla-

tion changes were also found in intergenic i.e. extragenic sites. Using AI techniques, highly

accurate leukocyte epigenomic prediction of AD was reported for the first time to the authors’

knowledge. The results could potentially advance the precision medicine objectives that have

been outlined for AD [48]. Our work provides evidence in support of the view that epigenetic

factors may play a pivotal role in AD development. Further validation studies using a larger

number of subjects are necessary to confirm and expand on our findings.
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