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Abstract

Mobile, vehicle-installed road weather sensors are becoming ubiquitous. While mobile sen-

sors are often capable of making observations on a high frequency, their reliability and accu-

racy may vary. Large-scale road weather observation and forecasting are still mostly based

on stationary road weather stations (RWS). Though expensive, sparsely located and mak-

ing observations on a relatively low frequency, RWS’ reliability and accuracy are well-known

and accommodated for in the road weather forecasting models. Statistical analysis revealed

that road weather conditions indeed have a great effect on how the observations of mobile

and stationary road weather temperature sensors differ from each other. Consequently, we

calibrated the observations of mobile sensors with a linear mixed model. The mixed model

was fitted fusing ca. 20 000 pairs of mobile and RWS observations of the same location at

the same time, following a rendezvous model of sensor calibration. The calibration nearly

halved the MSE between the observations of the mobile and the RWS sensor types. Com-

putationally very light, the calibration can be embedded directly in the sensors.

Introduction

Mobile, vehicle-installed sensors and road weather station (RWS) networks can together pro-

vide denser and higher quality information than either alone. They can support optimization

of maintenance operations, such as snow clearance and prevention of slipperiness, and genera-

tion of real-time warnings for road users. Accurate now-casting and forecasting are keys to

safe and economic operations, especially in the northern latitudes where driving conditions

can vary a lot in space and time, increasing risk for accidents.

Improved technologies and increased availability of mobile observations can drastically

improve the coverage and quality of observations on roads. The amount of available mobile

observations have recently considerably increased. During November 2016—March 2017, for

instance, vehicles fitted with Teconer Oy’s optical sensors (RCM411 and RTS411) covered

globally approximately 200 000 km of roads per month observing friction, surface water depos-

its, and road surface temperature [1].
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There have been several studies about the usability of mobile observations. For example,

mobile road condition monitoring was tested in Finland already in 1998—1999 [2]. Also Stern

et al. [3] studied the reliability of mobile observations, while Koller et al. [4] examined the qual-

ity of the observations with the native sensors of a vehicle. In 2013, Finnish transport agency

compared optical friction and temperature meters [5]. The study compared, among other

things, Teconer’s optical road surface temperature sensor RTS411 with RWS measurements.

RTS411 gave typically 1.2˚C warmer values than the RWS. Such a large difference between

observations calls for sensor calibration.

Sensor calibration unifies sensor data that one or multiple sensors collect for a particular

application. Drifting, zero offset errors, or variations in the manufacturing process can cause

even sensors by the same manufacturer to yield different readings in the same conditions, with

systematic or random errors. Measurement errors are aggravated when the sensors, during

operation or storage, are subjected to varying environmental conditions such as light, tempera-

ture, humidity, hysteresis or shock. In addition, the selected sensor technology may initially

provide low signal to noise-ratio, which makes repeatable measurements challenging. Thus,

re-calibration in the field may be needed after initial factory calibration. This problem is mag-

nified when different types of the same sensor modality are used to measure the same physical

phenomena. In such a case, multiple sensor readings may be based on measuring completely

different, but related, parameters of the monitored phenomena.

Typically, single sensors are calibrated with some physical reference, e.g. gravity, that pro-

vides a direct mapping of measured values to standardized units. For linear sensors, simple

calibration can be based on reference points. For non-linear sensors, calibration typically

requires multi-point curve fitting methods. For example, air quality sensor applications [6] use

highly accurate weather stations as reference points, providing the ground truth. However, the

sensing range and frequency provided by such stations is limited and the distances between

stations result in a low spatial resolution.

The coverage and resolution of sparse, stationary sensors can be improved with mobile

devices with integrated sensors, e.g. vehicle-installed smartphones [7]. However, smartphone

sensing devices suffer from noisy measurements due to low-cost sensor technology [6]. Fur-

ther, inexperienced users can cause errors in the data, for example by installing the sensors

incorrectly. Finally, manual calibration by users may introduce uncertainty. Automatic cali-

bration methods are thus used to eliminate the cumbersome and error-prone manual calibra-

tion [8]. One such automatic calibration method is the rendezvous model [9–12]. In the

rendezvous model, observations by two or more sensors, mobile or stationary, are collected

when the sensors are co-located, i.e. at the same time in the same place. The mobile sensors are

calibrated by comparing the rendezvous observations. In addition to ensuring the spatio-tem-

poral identity of the observations, the locations of the static reference points need to be care-

fully considered [8].

Sensor fusion refers to merging information from two or more sensors, located spatially

close to each other. Sensor fusion helps with problems related to low spatial resolution and

unreliable users. It has previously been used for example for autonomous vehicle navigation,

improving lane [13] and road potholes [14] recognition. Rendezvous model uses sensor fusion

to unify data from different sensors.

This study proposes a sensor fusion based method to calibrate mobile road weather sensors.

Specifically, road surface temperature sensors are calibrated with the rendezvous model. The

model compares spatio-temporally co-located observations by sparse Vaisala RWS sensors

with the dense but possibly less reliable mobile observations provided by vehicle-installed

Teconer sensors RCM411 and RTS411. The aim is to first chart the statistical characteristics of
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the mobile observations when compared to the RWS observations, and then calibrate the

mobile sensors to agree with the RWSs.

The paper is organized as follows: SectionMethods and Data presents the methodology,

data, and statistical models used in the study, Section Results and discussion presents the results

and discusses the outcome, and finally Section Conclusion concludes the study.

Methods and data

Overview

This study presents a novel, sensor fusion based method to calibrate mobile surface tempera-

ture sensors to agree with RWSs. The methodology is summarized as follows:

1. This study uses RWS and mobile data, collected during winter seasons between 2014–2017.

2. Rendezvous, i.e. occasions where the mobile sensors have passed one of the RWSs, are iden-

tified. The data on these rendezvous comprises the full data set, while the remaining data is

discarded.

3. Relationships between the mobile observations and the RWS measurements are analysed

with statistical models. Two particular research questions are considered:

a. How are the mobile observations related to environmental conditions such as weather?

b. How can we calibrate the mobile sensors, i.e. improve the accuracy of the mobile obser-

vations when compared to the RWS observations?

Statistical inference models are built to answer the first question. Statistical prediction

models are built to answer the second question.

Data

This study used road weather data collected by 251 stationary Vaisala RWSs, and 27 vehicles

installed with Teconer RCM411/RTS411 sensors. Fig 1 shows the locations of the RWSs,

mostly deployed at the major roads around southern and central Finland. The full data set con-

tains 25944 observations. However, few RWSs were fitted with a full array of sensors, so in

most cases some of the observed variables are missing.

The RWSs measure multiple weather variables, such as temperature and wind conditions.

We used a representative subset of the available variables fitting to the road-condition analysis,

which are listed in Table 1. First, road surface temperature is measured at most of the stations

by an asphalt embedded DRS511 sensor [15]. Further, the DRS511 sensor also estimates over-

all road status. This can be, for example, “wet”, “icy”, or “snowy”. Observations whose road sta-

tus is “error” are discarded.

Some RWSs have optical Vaisala DST111 sensors [16], measuring road surface temperature

by the infrared radiation emitted by the road surface. DST111 measures also air temperature.

However, optical sensors at Finnish RWSs are more commonly Vaisala DSC111s [17], which

detect water, ice, and snow deposits on the road. The method is based on absorption wave-

lengths of water and ice. The device transmits infrared radiation with certain wavelengths, and

the deposits are determined from the radiation backscattered from the surface [18]. For Vai-

sala DSC111, the resolution for water, ice and snow is reported as 0.01 mm [17]. DSC111

determines also the road status (“wet”, “icy” etc). (Observations with road status “error” were

discarded.) DSC111 and DST111 sensors are typically installed on poles beside the road.

Some of the road weather stations contained multiple surface temperature sensors. These

sensors were either optical or installed in the asphalt. In this study, only one such sensor for a
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station was used at a time. Thus, the Vaisala sensor identification code, telling apart the indi-

vidual sensor devices, also differentiates between the RWSs.

The optical Teconer RCM411 road condition sensor, fitted on vehicles, has the same opera-

tional principle as the DSC111. It observes, among other things, overall road status (e.g. “wet”,

“icy” etc.) [1]. An add-on on the RCM411, a Teconer RTS411 sensor measures road surface

temperature based on infrared radiation similarly as Vaisala DST111.

RCM411+RTS411 device pairs can be connected to a nearby cell phone by a Bluetooth con-

nection. The cell phone is used to obtain the location, direction and speed of the vehicle. These

are also included in Table 1.

Fig 1. Spatial distribution of data. Coordinates are in latitude and longitude.

https://doi.org/10.1371/journal.pone.0211702.g001
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Teconer device identification codes differentiate between individual RCM411+RTS411

device pairs. However, as one device pair could have multiple vehicle installations over the

observation period, and each installation could have a different calibration level, we modified

the identification codes such that each installation had its own identification code.

The study data contains observations from three cold periods (September—April) between

years 2014 and 2017. Firstly, we compare the mobile observations to the RWS locations, and

then select those data points where a mobile sensor passed by an RWS within 50m or less.

Each such occasion constitutes a rendezvous. As the mobile sensor observation rate is once per

second, one rendezvous might comprise several observations. Thus, the numerical observa-

tions are averaged, and for the non-numerical observations (e.g. road status), we choose the

one with the smallest distance between the RWS and the mobile sensors. However, the non-

numerical observations stay constant during the vast majority of rendezvous’, indicating our

choice of 50m radius is well chosen.

Rendezvous time is considered to be the middle time point between the first and the last

observation within one pass. The RWS observation rate is once per 5-10 minutes, depending

on the station. Thus, there is often a time discrepancy between an RWS observation and the

mobile sensor pass time. The RWS observation with the smallest absolute time difference to

the pass time is used in this study.

Explorative analysis

Surface temperature densities for each RWS road status are depicted in Fig 2. They are

almost identical, which indicates that the mobile and the RWS observations largely agree.

However, the mobile observations appear slightly higher than the RWS observations. A scat-

terplot (see Fig 3) between the mobile and the RWS surface temperature observations fur-

ther reveals that while the observations largely agree, following a linear relationship,

between 0˚C and 10˚C the LOESS prediction line for the asphalt embedded sensor takes a

sudden downward turn.

Fig 4 shows that the correlation between RWS air and surface temperatures is strong.

Again, there is a change in slope between 0˚C and 10˚C for the asphalt embedded sensor.

Table 1. Data description.

Type Source Variable Notes

Mobile Teconer RTS411 Road surface temperature Continuous (˚C).

Teconer RCM411 Road state Categorical: Dry, Moist, Wet, Slush, Ice, or Snow/Frost.

Teconer RCM411+GPS Location Continuous (lat,lon).

Teconer RCM411 Sensor ID code Categorical.

RWS Vaisala DRS511/DST111 Road surface temperature Continuous (˚C).

Vaisala DST111 Air temperature Continuous (˚C).

Vaisala DRS511+DST111 Road state Categorical: Dry, Moist, Wet, Wet&Salty, Frost, Snow, Ice, Moist&Salty, Slushy

Vaisala DSC111 Road state (as above)

Vaisala DSC111 Water deposits Continuous (mm).

Vaisala DSC111 Ice deposits Continuous (mm).

Vaisala DSC111 Snow deposits Continuous (mm).

Vaisala DRS511/DST111 Sensor type Categorical: Optical, Asphalt, or Unknown.

Vaisala DRS511/DST111 Sensor ID code Categorical. Individual id code for each vehicle installation.

Circumstantial Year Continuous.

Season Categorical: Fall (Sep–Nov), Winter (Dec–Mar), Spring (Apr).

https://doi.org/10.1371/journal.pone.0211702.t001
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The number of observations on individual RWS and mobile sensors follow similar patterns

(Fig 5). There are few sensors with hundreds or even thousands of observations, and a long tail

with just a few.

Average differences between individual RWS and mobile sensors vary largely (Fig 6). The

differences seem to depend more on the mobile sensor device than the RWS. One mobile

device tends to diverge from the RWSs roughly the same amount, regardless of the RWS. This

suggests that the vehicle and the installation of the mobile sensor device affect the observations

significantly.

The number of distinct sensors per year is listed in Table 2. The number of mobile sensor

installations are steadily increasing, and their reach of RWSs consequently rising. (Note that

the last observation was taken at 2017-04-30).

Categorizing the observations of the full data set by both the mobile and the RWS weather

status observations, the data are distributed as depicted in Table 3. While the diagonal of

Table 3 dominates, there are many observations where the mobile and the RWS weather states

differ on a fundamental level. In part, this is explained by the way our observations were col-

lected, as the driving conditions can be different within the at most 50m distance between the

Fig 2. Surface temperature observations for each RWS road status.

https://doi.org/10.1371/journal.pone.0211702.g002
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mobile and the RWS sensor. Still, it is clear that the devices interpret their surrounding envi-

ronments in different ways.

Statistical models

A linear regression model estimates a linear and additive relationship between independent

variables and a response. Such a model may contain a varying number of fixed effects, estimat-

ing the ceterus paribus relationship between individual independent variables and the

response. However, there may be only one random effect: the noise term.

In contrast, a linear mixed effects model [19, 20] may contain several random effects. If an

independent variable is related to a random effect instead of a fixed one, the model no longer

estimates a coefficient for inferring the relationship between the variable and the response.

Instead, the effect is assumed to follow a zero-mean Gaussian distribution.

Linear mixed models are computationally light and can be used for both statistical inference

and prediction. In this study, mixed models are first used inferentially, to find out how circum-

stantial variables as well as the weather conditions, as measured by both the mobile sensors

and the RWSs, affect the quality of the road surface measurements. Second, linear mixed

Fig 3. Scatterplot of RWS and mobile surface temperature observations. Nonparametric (LOESS) prediction line is shown in blue, the 0˚C

level in solid red, and 10˚C in dashed red.

https://doi.org/10.1371/journal.pone.0211702.g003
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models are used predictively to calibrate the mobile sensors to agree with the RWSs. A full list

of variables is shown in Table 1.

Simple linear regression models provide a baseline for comparison of the inferential and

the predictive cases. The baseline inference models A0 and A00 are defined as:

Ts;Mob ¼ XRWS; idbþ ε; ð1Þ

where Ts,Mob is mobile surface temperature, XRWS,id is a (n × p) design matrix consisting of the

intercept, the RWS surface temperature observations, and (for A00) dummy variables for the

sensor id codes, controlling for the individual sensor factory calibration levels. Factory calibra-

tion level here refers to a device’s reading when the surface temperature is actually 0˚C. This

could be affected by the internal settings of the device as well as the installation on the vehicle

(by way of e.g. proximity to exhaust fumes). ε is a vector of random noise with ε � N ð0; Is2
eÞ.

A0 and A00 are used to provide a reference point for assessing the quality of the mixed models

A1–A4 that were defined as

Ts;Mob ¼ XRWSbþ Zidbþ ε; ð2Þ

where XRWS is a (n × p) design matrix consisting of the intercept, the RWS weather

Fig 4. Scatterplot of RWS surface and air temperature observations. Nonparametric (LOESS) prediction line is shown in blue, the 0˚C level

in solid red, and 10˚C in dashed red.

https://doi.org/10.1371/journal.pone.0211702.g004

Mobile sensor calibration by sensor fusion and linear mixed models

PLOS ONE | https://doi.org/10.1371/journal.pone.0211702 February 7, 2019 8 / 17

https://doi.org/10.1371/journal.pone.0211702.g004
https://doi.org/10.1371/journal.pone.0211702


observations, and some circumstantial data, while Zid is a design matrix for the dummy vari-

ables of the mobile and RWS sensor identification codes. Finally, ε is a vector of random noise

with ε � N ð0; Is2
eÞ.

The β parameters are considered fixed effect coefficients. The parameters b = (b1, b2) are

considered random effect coefficients and correspond to the individual factory calibration lev-

els of the devices. b1 refers to mobile sensors and b2 to RWS sensors, with b1 � N ð0; Is2
1
Þ and

b2 � N ð0; Is2
2
Þ. Thus, the model assumes the individual factory calibration levels of the sensor

devices are normally distributed with zero means but separate variances for the two device

types.

The aim of the predictive modelling is to predict the RWS surface temperature using only

mobile observations. We have a baseline linear model P0:

Ts;RWS ¼ XMobbþ ε; ð3Þ

where Ts,RWS is RWS surface temperature, XMob is a (n × 2) design matrix consisting of the

intercept and the mobile surface temperature observations, and ε is a vector of random noise

with ε � N ð0; Is2
eÞ. P0 is used to provide a reference point for assessing the prediction quality

of the mixed models P1–P3, defined as:

Ts;RWS ¼ XMobbþ Zidbþ ε; ð4Þ

where XMob is a (n × p) design matrix consisting of the mobile road weather observations, Zid

is a design matrix for the two dummy id code variables, and ε is a vector of random noise with

ε � N ð0; Is2
eÞ. Again, the β parameters are considered fixed, while the b = (b2, b2) parameters

are normally distributed.

Model quality

This study uses the conditional Akaike Information Criterion (conditional AIC) [21] to com-

pare the quality between models. Further, mixed effect models have the following assumptions:

(1) the independent variables (i.e. the columns in the model matrices X and Z) should not be

correlated, (2) the residuals should have a constant variance, (3) the residuals should be

Fig 5. Histograms of observations on RWS (left) and mobile (right) sensors.

https://doi.org/10.1371/journal.pone.0211702.g005
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uncorrelated, and (4) normally distributed with (5) zero means, and finally, the random effects

should be (6) normally distributed. The inferential model was tested for each of these

assumptions.

The Variance Inflation Factors (VIFs) [22] for the inference model variables {RWS road
state,>4°C, RWS surface temp., RWS water deposits, RWS ice deposits, RWS Snow deposits,
Year, Season, Distance of sensors} are, respective, {4.4, 1.8, 2.2, 1.2, 2.0, 1.4, 1.3, 1.8, 1.0}. These

are well below 10, considered as severe multicollinearity [22], and thus in agreement of

Assumption 1.

Fig 6. Average difference between each mobile–RWS observation pair. Stations marked with “R” measure surface temperature with a Vaisala

DRS511, embedded in the asphalt, while stations marked with “Opt” have optical Vaisala DST111 instruments. When the RWS and/or the

mobile observation is above 8˚C, the pair is discarded. Further, each mobile–RWS pair have at least 40 measurements.

https://doi.org/10.1371/journal.pone.0211702.g006

Table 2. Number of distinct sensors per year.

2015 2016 2017

Mobile 14 17 22

RWS 199 324 295

https://doi.org/10.1371/journal.pone.0211702.t002
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Including the RWS air temperature variable in the model raises the RWS surface tempera-

ture VIF score above 10. This is in line with the observed high correlation in Fig 4. Conse-

quently, RWS air temperature is excluded from the models.

S1 Fig shows the residual vs. fitted plot of the associative model A4. The plot indicates the

residuals are with constant variance (Assumption 2) and with zero means (Assumption 5).

Further, no autocorrelation is visible in the plot, fulfilling Assumption 3.

The Quantile-Quantile plots in S2, S3 and S4 Figs indicate validity of assumption that the

residuals and random effects follow the normal distribution (assumptions 4, 6) moderately

well. While the plots indicate the residual and the RWS calibration level distributions have

somewhat heavier than Gaussian tails, and the mobile sensor calibration level distribution is

more mesocurtic, the bulk of the standardized quantiles fall on the diagonal. Further, all distri-

butions appear symmetrical, suggesting the divergence in the tails, while adding variance, does

not add bias in our estimates.

For the predictive models, the main point of interest is the prediction accuracy. Accord-

ingly, we measure the prediction accuracy of each model by the cross-validated mean squared

error (MSE). The cross-validated MSE is calculated as the average of the MSEs of 10 unstrati-

fied folds. Further, the coefficient estimates for the predictive models are the averages of those

of each fold.

Results and discussion

Inference models

Coefficient estimates and model quality indicators for the inference models are listed in

Table 4, with the inference model coefficients further detailed in Fig 7.

A0 is the baseline inference model, with just the intercept and the slope adjustment to the

RWS surface temperature value. A00 still has only fixed effects, but includes additionally the

individual sensor calibration levels as categorical variables. A1 assumes the underlying distri-

bution of the calibration levels is Gaussian and considers them as random effects. A2–A4

include various other variables into the model.

Model quality considerations (see section Model quality) show a slight deviation from the

Gaussian assumption for the residuals, which potentially causes noise in the estimates. This is

possibly one cause of the relatively large standard error seen in the model intercepts (see

Table 4 and Fig 7). Apart from the underlying error term distribution, the large intercept stan-

dard error may be caused by the spatial and temporal difference between the mobile and the

stationary observations.

The estimates by the baseline A0 model are well in agreement with those of the mixed A1,

A3 and A4 models. On the other hand, model A00 intercept’s value is markedly higher, reach-

ing 1.2˚C. The difference between A00 and A1, a corresponding mixed model, is especially

Table 3. Number of observations by mobile and RWS road status.

Mobile RWS

Dry Moist Wet Wet&Salty Frost Snow Ice Moist&Salty Slushy

Dry 4097 497 63 45 0 16 205 565 2

Moist 927 841 187 224 2 21 123 1773 2

Wet 344 1401 1363 1381 1 26 34 3113 5

Slush 10 30 39 78 0 62 31 212 12

Ice 379 160 28 42 34 648 450 582 13

Snow/frost 14 3 0 0 1 133 47 11 0

https://doi.org/10.1371/journal.pone.0211702.t003
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striking, with A1 intercept at 0.54˚C. The reason behind the difference may be the uneven dis-

tributions of observations by the different sensors. As seen in Figs 5 and 6, the distribution of

observations on individual sensors is very uneven, and the factory calibration levels appear to

vary greatly. The simple linear model A00 is not robust enough to cope with sensors whose

Table 4. Estimates of fixed effect coefficients and quality metrics for the inference models.

Term A0

(linear)

A00

(linear)

A1

(mixed)

A2

(mixed)

A3

(mixed)

A4

(mixed)

Intercept 0.53 (0.01) 1.18 (0.13) 0.54 (0.18) 1.42 (0.40) 0.61 (0.20) 0.62 (0.20)

Sensor calibr. levels no fixed random random random random

RWS surface temp. 0.86 (0.00) 0.87 (0.00) 0.87 (0.00) 1.05 (0.01) 0.96 (0.00) 0.96 (0.00)

> 4˚C interact. -0.26 (0.04) -0.29 (0.01) -0.28 (0.01)

Moist 0.15 (0.11) 0.33 (0.03) 0.34 (0.03)

Wet 0.17 (0.14) 0.44 (0.03) 0.46 (0.03)

Wet & Salty 0.43 (0.03) 0.43 (0.03)

Snowy/frosty/slushy 0.10 (0.14) 0.19 (0.04) 0.21 (0.04)

Icy 0.13 (0.18) 0.32 (0.04) 0.33 (0.04)

Moisty & salty 0.34 (0.02) 0.34 (0.02)

Optical sensor 0.31 (0.10) 0.17 (0.10)

>4˚C interact. 1.15 (0.10)

Water deposits -0.64 (0.34)

Ice deposits 1.22 (0.53)

Snow deposits -0.26 (0.31)

Year 0.33 (0.09) -0.21 (0.02) -0.21 (0.02)

Fall -0.06 (0.16) -0.02 (0.02) -0.01 (0.02)

Spring 0.01 (0.12) 0.11 (0.03)§ 0.09 (0.03)

conditional AIC 73138 65210 65377 59134 59004

R2 0.927 0.951 0.953 0.954 0.965 0.966

N 20278 20278 20278 1283 20278 20278

For estimates, the standard error is provided in parentheses.

https://doi.org/10.1371/journal.pone.0211702.t004

Fig 7. Estimates and 95% confidence intervals of fixed coefficients for the inference models. Model A2 excluded due to term instability.

https://doi.org/10.1371/journal.pone.0211702.g007
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outlying factory calibration levels skew the intercept with even a small number of observations,

which is a further justification for the use of the linear mixed models.

Interestingly, the A00 intercept exactly agrees with the 1.2˚C reported by Malmivuo [5].

Malmivuo’s method investigated the medians of the mobile Teconer RTS411 and the RWS

observations. The model itself is comparable with our A0, albeit somewhat more robust to out-

liers. The difference between the results may be due to Malmivuo’s study only utilizing the

measurements of one mobile sensor, whose factory calibration level, as seen in Fig 6, can be off

the actual.

Models A1, A3 and A4 largely agree on their coefficient estimates, with the small confi-

dence intervals indicating high reliability in the estimates. Ultimately, the conditional AIC

model quality criteria chose model A4 as the one best describing the data.

Due to the relatively low number of observations, the mixed inference model A2 is some-

what unstable, with large confidence intervals for many coefficient estimates. However, the

model suggests that ice deposits on the road tend to cause the mobile sensor device to have

higher than average surface temperature readings or, conversely, the RWS observations to fall

under the average. This may be caused by the asphalt embedded RWS sensors (Vaisala

DRS511), whose temperature readings can vary a lot from an optical one measuring the sur-

face of the ice.

Relying on the A4 model, in dry conditions, at 0˚C surface temperature, the mobile obser-

vations are on average 0.62 degrees higher than those of the RWS. However, there is consider-

able variation in the estimate, with a 95% confidence interval spanning [0.23˚C, 1.0˚C].

Further, different driving conditions have quite a strong effect on the difference. For example

mobile observations are further 0.46 degrees higher in wet conditions, resulting over one

degree above RWS in total.

Surface temperature coefficient is very close to 1 as expected. This indicates that mobile and

RWS observations indeed almost agree when surface temperature is under 4˚C and after level

adjustments provided by the different driving conditions are taken into account. A marked

discrepancy appears between the observations above 4˚C, with the mobile sensor reporting

observations consistently and increasingly lower than the RWS. This observation is in line

with Fig 3 that shows a distinct turn in the prediction curve at around 4˚C for the asphalt

embedded sensors, comprising a large majority of observations.

RWS sensor type does not have an effect on the measurements under 4˚C. However, model

A4 indicates that the optical DST111 RWS sensor gives as much as 1.2˚C lower readings than

the asphalt embedded DRS511 above 4˚C. This can be caused by the asphalt embedded

DRS511 heating up too much in direct sunlight during sunny autumn and spring days. The

observation is again in line with Fig 3, where the optical sensor has a much straighter predic-

tion line compared to that of the one embedded in the asphalt.

The season of observation has little influence on the observations. However, there is a sig-

nificant yearly trend in the measurements. Teconer observations seem to drop by ca. 0.2˚C in

relation to RWS observations year-by-year. This may be caused by wear-and-tear in the mobile

sensors, e.g. by dirt or scratches accumulating on the optics. Another potential cause is adjust-

ments in the mobile sensor installations that were not included in the data available for this

study. Either way, a continuous degradation calls for recurrent sensor calibration.

Prediction models

Coefficient estimates and model quality indicators for the prediction models are listed in

Table 5. The mean squared error (MSE) of the predictive models P0–P3 indicate that the RWS

surface temperatures predicted by model P1 follow the observed ones most closely.
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Unmodified mobile observations had an MSE of 3.3. Adjusting the mobile observation with

the average difference between the observations (-0.62, taken from the intercept-only regres-

sion model P0) would slightly improve the result, reaching MSE 2.7. However, the use of linear

mixed models P1–P3 improve the result markedly. P1 MSE is 1.9, increasing the accuracy of

the unmodified mobile observation by more than 40%.

Model P1 includes interaction terms between each road status and the RWS surface tem-

perature, in addition to level adjustments. This changes the slope of the linear relationship

between RWS and mobile observations. The following linear formula can thus be applied to

calibrate the mobile Teconer RTS411 observations to better agree with the RWS:

Ts;Adj ¼ b0 þ b1 � Ts;Mob; ð5Þ

where Ts,Adj is the adjusted mobile surface temperature, β0 is the level coefficient and β1 is the

slope coefficient. Table 6 lists the level and slope coefficients for adjusting the mobile surface

temperature in the observed road status, extracted and rounded from model P1 in Table 5.

Table 5. Estimates of fixed effects coefficients and performance metrics for the prediction models.

Term Obs. P0

(linear)

P1

(mixed)

P2

(mixed)

P3

(mixed)

Intercept -0.62

Teconer surface temp. 1.075 1.132 1.089 1.083

Moist interact. -0.112

Wet interact. -0.093

Snowy/frosty interact. -0.233

Icy interact. -0.159

Slushy interact. -0.174

Dry -0.027 0.004

Moist -0.793 -0.747

Wet -0.958 -1.047

Snowy/frosty -1.001 -0.601

Icy -0.996 -0.508

Slushy -1.014 -0.946

MSE 3.252 2.747 1.923 2.051 2.212

N 20305 20305 20305 20305 20305

folds 10 10 10 10

Estimates and metrics are both calculated by averaging the results of all folds in a 10-fold cross-validation set-up.

https://doi.org/10.1371/journal.pone.0211702.t005

Table 6. Linear coefficients for adjusting the mobile Teconer RTS411 road surface temperature observations.

Road status β0 β1

Dry -0.03 1.13

Moist -0.79 1.02

Wet -0.96 1.04

Snow/frost -1.00 0.91

Ice -0.97 0.97

Slush -1.01 0.96

Look up the Teconer RCM411 road status observation and select the coefficients accordingly.

https://doi.org/10.1371/journal.pone.0211702.t006
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To summarize, the inference models captured the effect of the environmental conditions

on the mobile sensor observations. Dry, moist, wet, snowy, icy and slushy driving conditions

all made subtle changes to the mobile observations, while a small but significant degradation

was evident from a yearly trend. Further, a linear calibration, whose coefficients were esti-

mated by fitting a linear mixed model, reduced the mobile sensor error by ca. 40%.

Conclusion

Mobile, vehicle-installed sensors and RWS networks can together provide denser and higher

quality information of challenging driving conditions than either alone. First, this study ana-

lyzed the observations of mobile (Teconer RCM411, RTS411) and RWS (Vaisala DRS511,

DST111, DSC111) road weather sensors and identified conditions and factors that affect how

their measurements differ from each other. Second, this study presented a novel calibration

method for the mobile sensors. A straightforward linear Eq (5) adjusted the mobile road sur-

face temperature observations to be consistent with the stationary ones, halving the MSE

between the mobile and the RWS observations.

The analysis and the calibration were based on rendezvous model sensor fusion, which con-

siders spatio-temporally co-located observations of mobile and RWS sensors. Further, both

analysis and calibration used linear mixed models to compare the mobile and RWS observa-

tions, taking into account the prevailing driving conditions as well as other environmental fac-

tors. The analysis revealed the following:

1. In dry conditions, at 0˚C surface temperature, with no water, ice, or snow deposits on the

road, the mobile observations are on average 0.62 degrees higher than those of the RWS.

2. Different driving conditions, indicated by the RWS road status variable, have a significant

effect on the difference. For example, mobile observations are a further 0.46˚C higher than

RWS observations in wet conditions, totalling over 1˚C above RWS observations.

3. Model A4 indicates that the optical Vaisala DST111 RWS sensor gives on average 1.2˚C

lower readings than the asphalt embedded Vaisala DRS511 in surface temperatures above

4˚C.

4. Mobile Teconer RTS411 sensor observations fall by ca. 0.2˚C year-by-year, justifying recur-

rent recalibrations.

Linear mixed models assume the general noise term is Gaussian. Model diagnostics

revealed that while moderately well adhering to this assumption, the residuals of the inference

models suggest the models could be further improved by replacing the Gaussian noise term

distribution with one thicker tailed. For future work, we suggest embracing the Bayesian infer-

ence framework, with the noise term following e.g. Student’s t distribution. Such an approach

may reduce the relatively large standard error of the reported intercept estimates of the infer-

ence models. Further, the MSE’s of the predictive models may be further lowered.

The sensor calibration method proposed in this study, based on sensor fusion and linear

mixed effect models, is computationally very light. The linear calibration function can be embed-

ded directly in the sensors. Further, the calibration method can be further utilized in other appli-

cation areas such as air quality, temperature, and usage monitoring in smart building scenarios.

Supporting information

S1 Fig. Residual plot of the inference model.

(TIF)
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S2 Fig. Q-Q plot of a sample of 100 residuals.

(TIF)

S3 Fig. Q-Q plot of the RWS sensor calibration level random effect.

(TIF)

S4 Fig. Q-Q plot of the mobile sensor calibration level random effect.

(TIF)
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