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Abstract

In plant breeding, one of the main purpose of multi-environment trial (MET) is to assess the

intensity of genotype-by-environment (G×E) interactions in order to select high-performing

lines of each environment. Most models to analyze such MET data consider only the addi-

tive genetic effects and the part of the non-additive genetic effects are confounded with the

residual terms and this may lead to the non-negligible residual covariances between the

same trait measured at multiple environments. In breeding programs it is also common to

have the phenotype information from some environments available and values are missing

in some other environments. In this study we focused on two problems: (1) to study the

impact of different residual covariance structures on genomic prediction ability using differ-

ent models to analyze MET data; (2) to compare the ability of different MET analysis models

to predict the missing values in a single environment. Our results suggests that, it is impor-

tant to consider the heterogeneous residual covariance structure for the MET analysis and

multivariate mixed model seems to be especially suitable to predict the missing values in a

single environment. We also present the prediction abilities based on Bayesian and frequen-

tist approaches with different models using field data sets (maize and rice) having different

levels of G×E interactions.

Introduction

Genomic selection (GS) [1] has revolutionized both animal and plant breeding programs with

the advances in new genotyping technologies. In GS, the selection decisions are based on the

genomic estimated breeding values (GEBVs) which are calculated based on genome-wide

dense set of markers. In both animal and plant breeding, GS will accelerate genetic gain for

various complex traits. Increased genetic gains using GS have been already reported by many

studies in crops [2] as well in livestock [3] breeding programs.

In plant breeding, multi-environment trials (MET) are mainly used for two breeding pur-

poses: 1) to find the stable high-performing lines—main GEBVs—across environments, 2) to

find the most adapted superior genotype—specific GEBV—for a specific region. If genomic
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prediction is performed in the first scenario, different environments can be treated as a sample

from a Target Population of Environments (TEP) [4] and GEBVs can be estimated across envi-

ronments by considering the main effects across environments (for exception see [5]). How-

ever, in the second scenario, the aim is to find the locally adapted genotype and the prediction

models which consider only main effect may limit their predictive power/accuracy by ignoring

G×E interaction term in the model. Thus, if the breeding target of MET is to find the most

adapted genotypes of each environment, it is essential to consider G×E interactions while esti-

mating GEBVs. Additionally, the presence of the G×E interactions are expected to have nega-

tive impact on the accuracy of GP when the environments are significantly different for the

training and validation genotypes [6, 7].

When the aim of MET analysis is to find the best performing lines for a specific environ-

ment, different approaches have been proposed to tackle the G×E interactions. A common

approach is to consider a single phenotype measured at multiple environments as different

correlated traits and analyze them using a multivariate modeling framework. Genotype-by-

environment interactions can also be tackled with a two-way mixed model fitted with an own

random effect and covariance matrix for G×E effects. The Factor-analytic (FA) model is also

commonly used to analyze MET data and have been extensively studied (e.g., [8–11]).

Most of the current models for genomic prediction of MET data are based on frequentist

inference (e.g, [5, 7, 12–15]). Recently some studies applied Bayesian variable selection models

[16–18] and Bayesian Gaussian kernel model [19] for the genomic prediction in MET data.

However, the studies using Bayesian GBLUP for genomic prediction in MET data are limited.

Most of the univariate and multivariate genomic prediction models consider only the addi-

tive genetic effects and are thus based on the additive genomic relationship matrix (note that

there has been studies [19, 20] also to model non-additive genetic effects in genomic prediction

with MET data). In such models part of the non-additive genetic effects are confounded with

the residual terms and this may lead to the non-negligible residual covariances between the

same trait measured at multiple environments [21, 22]. Thus it is important to take into

account such residual covariances in the prediction models for MET data as emphasized in

[13]. The multivariate model allows more flexible handling of covariance structures for the

residuals. One of important characteristics of MET is that often the trait measurements from a

single environment may be missing.

Motivated by this, we want to study the impact of different residual covariance structures as

well as missing data patterns on genomic prediction ability using a multivariate mixed model

especially in Bayesian GBLUP framework. For that we use two real MET data sets of rice and

maize having the phenotypic observations collected from three different environments and

showing different levels of G×E interactions. The main reason to select these datasets were that

the rice dataset showed strong genomic correlation between environments (less G×E interac-

tions), whereas the maize showed strong G×E interactions. Thus, we could also study the

impact of varying levels of G×E interactions on genomic prediction abilities with different

models to analyze MET data, to find the most adapted lines of each environment. We also

report the prediction abilities based on frequentist estimation methods along with the Bayesian

approach. Additionally as for comparison purposes we also present the results from the uni-

variate mixed model and G×E interaction mixed model.

Materials and methods

In order to study the impact of residual covariance structures on genomic prediction ability,

we considered three different models in mixed model framework. In the first model we

assumed the trait measured in different environments are correlated and analyzed them using
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a multivariate mixed model. In the second model we considered genotype by environment

interaction as a second random term in the model along with the additive genetic effect. This

model provide estimates of genetic effects along with the G×E interaction effects. In the third

model we considered the phenotypic information from each environment separately (no loca-

tion effect assumed in the model). The three models are explained in the following section.

Model 1: Multivariate mixed model

Let us consider a single trait measured from the same individual at multiple environments as

separate traits. We want to analyze such multi-environmental trial of a single trait using the

multivariate mixed model. Let us consider l different environments/locations so that the vector

y1 contain n observations from the first environment, y2 that of the second environment, and

yl the observations from the lt h environment. Then the multi-environmental mixed linear

model for l locations can be written as:

yi ¼ Xibi þ Ziui þ �i; i ¼ 1; 2::; l ð1Þ

Here βi is a vector of fixed effects associated with environment i, ui is a vector of random addi-

tive genetic effects associated with the environment i (note that the genotype by environment

interaction effects are confounded with the main genetic effect and may differ between loca-

tions), �i is a vector of error terms associated with the environment. Moreover, Xi and Zi are

known incidence matrices for the fixed effects and the random effects for the location i, respec-

tively. In our study we considered the phenotypic observations from three locations so i = 1, 2,

3. Thus b ¼ ½b
0

1
; b
0

2
; b
0

3
�
0

, u = [u
0

1, u
0

2, u
0

3]0, � = [�
0

1, �
0

2, �
0

3]0 and y contains the phenotypic

observation from the locations y1, y1, y3. Then mixed model equation (MME) for the

model (1) is:

X0R� 1X X0R� 1Z

Z0R� 1X Z0R� 1Zþ G� 1

" #
b

u

" #

¼
X0R� 1y

Z0R� 1y

" #

: ð2Þ

Here, R and G are covariance matrices associated with the vector � of errors and vector u of

random effects. If R0 (of order 3 × 3) is the residual covariance for the three locations then R

can be calculated as R = R0
 I ((here ‘
’ is the Kronecker product of two matrices and I is the

identity matrix). Similarly, the genetic covariance matrix G can be calculated as G = G0
 K.

Here K is the additive genomic relationship matrix which was calculated based on the available

marker information following the first approach of VanRaden method [23] and G0 is a 3 × 3

genomic covariance matrix.

For the Bayesian inference using model (1) one need to specify the conditional distribution

for the data (y) and prior distribution for the unknown parameters. So the conditional distri-

bution of data y, given the parameters assumed to follow a multivariate normal distribution:

yjb; u;R0 � N ðXbþ Zu;R0 
 IÞ: ð3Þ

The additive genetic effects (ui’s) were assigned multivariate normal distributions with a mean

vector of zeros, 0, as:

ujG0;K � N ð0;G0 
 KÞ; ð4Þ

and the errors (�i’s) were assumed to follow,

�jR0 � N ð0;R0 
 IÞ; ð5Þ
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where I is an identity matrix. In Bayesian analysis fixed effects also have a prior and here β was

assigned a vague, large-variance Gaussian prior distribution.

In order to study the effect of different homogeneous and heterogeneous residual covari-

ance structures to the GEBV estimation accuracy, we considered following structures for R0.

1) The first-order ante dependence (ANT1) covariance structure, which allows unequal vari-

ances over different locations and unequal correlations and covariances among different loca-

tions, 2) The unstructured (US) covariance structure, which allows unequal variances over

different locations and unequal covariance between different locations, 3) The diagonal homo-

geneous covariance (IDV) structure, which allows a constant variance across all locations and

4) The diagonal heterogeneous covariance (IDH) structure, which allows different variances

across different locations. The ANT1 structure requires l + (l − 1) parameters (l is the number

of locations) to be estimated, whereas the US requires the estimation of l(l − 1)/2 parameters

(see [24] for more details). Additionally, the inverse of the ANT1 covariance structure is tri-

diagonal (only three diagonals are non zero) and has less parameters to be estimated than the

US covariance structure when l is greater than three. However, for the genomic covariance

matrix (G0), we assumed a priori the unstructured covariance structure in all the cases.

Model 2: G×E interaction mixed model

In order to model the genotype by environment interaction we considered the following

mixed model:

y ¼ Xbþ ZuþWv þ � ð6Þ

βi is a vector of fixed effects (in this case including grand mean and location effects), ui is a

vector of random additive genetic effects, v is the vector of random genotype by environment

interaction effects, � is a vector of error terms associated with the locations. Moreover, X and Z

are known incidence matrices for the fixed effects and the random additive genetic effects,

respectively. Here, the dimension of X is (l × n) × (1 + l) (1 for the grand mean, l is the number

of locations and n is the number of lines) and Z is (l × n) × (n). Finally, W is the incidence

matrix which relates the lines to different locations. In our study we considered three locations

(1, 2, 3) thus: � = [�
0

1, �
0

2, �
0

3]0, which are independently normally distributed with mean zero

and variance s2
e (�i � N ð0; s2

e IÞ), and y = [y
0

1, y
0

2, y
0

3]0. Moreover ujK � N ð0; s2
g KÞ,

vjK � N ð0; s2
vI
 KÞ. Here K is the additive genomic relationship matrix calculated using the

available marker information and I is a 3 × 3 identity matrix. With this model the GEBVs were

estimated as u + vl (here vl is location specific interaction effect). Model 2 can be seen as a spe-

cial case of model 1 with R0 being IDV structure and G0 having identical diagonals and identi-

cal off-diagonals (thus two parameters to be estimated). This model is commonly known as

the compound symmetry model [25]. Additionally, with model 2 it is also possible to model

the heterogeneous residual covariance structure (IDH).

Model 3: Univariate mixed model

We also performed univariate analysis using the phenotypic information from a single location

and for that we considered the following model:

y ¼ Xbþ Zuþ � ð7Þ

with ujK � N ð0; s2
g KÞ and � � N ð0; s2

e IÞ. Here y is the phenotypic information from a single

location and K is the additive genomic relationship matrix calculated using the available
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marker information. Moreover, with model 3 the dimension of the incidence matrix X is n × 1

(1 for the grand mean) and for Z is n × n (n is the number of lines).

Example datasets

In order to compare the different models we used two real dataset having the phenotypic infor-

mation from three different locations.

Rice dataset: This dataset is publicly available at http://www.ricediversity.org/data/ and

consists of 413 diverse accessions of O. sativa [26]) collected from 82 different countries. The

accessions were genotyped with single nucleotide polymorphism (SNP) markers and 36 901

SNPs were available for the analysis after excluding markers with minor allele frequency

(MAF)� 0.05 and missing values� 20%. [26] measured the trait flowering time in three dif-

ferent locations. The first location (ARK) was in Stuttgart, Arkansas, USA, the second one in

in Aberdeen (ABR) and the third location was Faridpur (FAD), Bangladesh (see [26] for more

details). Out of the 413 lines, phenotypic informations were missing for 42 lines in all three

environments and we did not consider those for the final analysis. So we analyzed a subset of

371 lines in this study.

Maize dataset: This data set consists a total of 504 double-haploid maize lines and the phe-

notype as well as the genotype information which are all made publicly available [15]. Three

traits, yield (Yield), anthesis-silking interval (ASI) and plant height (PH) were measured in

three rain fed environments called E1, E2 and E3 (see [15] for more details about the experi-

mental design). This dataset was genotyped using genotyping-by-sequencing (GBS) method

and after filtering for the minor allele frequency, around 158 281 SNPs were available for the

analysis. One of the main problem with GBS is the large proportion of missing genotypes and

in order to cope with that, while calculating the additive genomic relationship matrix, Crossa

et al [15] modified the method of VanRaden [23] to account for the missing genotypes (see

[15] for more details). In this study we analyzed the trait Yield (which was already standardized

to unit variance). This dataset consist of markers whose MAF was� 0.05 and the markers that

had maximum of� 20% missing values. For both data sets (Rice and Maize) pedigree informa-

tion was not available.

Cross validation (CV)

We applied five fold cross validation [27] in order to estimate the prediction abilities of differ-

ent mixed models using the real datasets. Prediction abilities were calculated as the Pearson

correlations between the observed and predicted phenotypes (GEBV). We repeated the five

fold CV procedure 10 times and the prediction ability estimates were averaged over to produce

a single estimate. In five fold CV, we used 80% of the data as the training set and the remaining

20% as the validation set (due to computational challenges we only considered five fold cross

validation (80/20), however it might be interesting to estimate the prediction abilities using

other combination like 70/30, 60/40, and 50/50 by reducing the training population size). We

used the same training and validation sets in each analysis. For the cross validation using mod-

els to tackle G×E effects (model 1 & 2), following [13] we used two different approaches, with

the first approach, in the validation set we included the lines from all three environments and

obtained genomic prediction abilities. In the second approach we selected the lines from only

a single environment into the validation set (note that the phenotype information from the

other two environments were included in the training set) and calculated the prediction ability

for that single environment. The second approach was intended to mimic the situation where

the breeder has the phenotype from two environments available and a value missing in the

third environment. Hereafter we refer the first approach as multiple environment cross

Genomic prediction ability in MET
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validation (M_CV) procedure and the latter one as single environment cross validation

(S_CV) procedure. Finally, we also applied the CV to estimated the prediction abilities using

the univariate model (model 3) assuming normal distributed random residuals and refer as

RND.

Estimation

In order to compare the prediction abilities we estimated the Bayesian and traditional GBLUP

using all three models. For the Bayesian analysis we used the R package ’MCMCglmm’ [28],

which is based on Markov Chain Monte Carlo (MCMC) sampling methods. We considered a

total MCMC chain of length 10 000 iterations with a burning period of 3 000 iterations for the

Bayesian inference with the multivariate as well as the univariate model and calculated the pos-

terior mode of the distribution. In multivariate GBLUP estimation using MCMCglmm package

we assigned inverse-Wishart with a diagonal scaling matrix (the diagonal elements were the

univariate variance components estimate corresponding to each location) as the prior distribu-

tion for the random genetic (G0) and residual (R0) covariance matrices between the three loca-

tions. The traditional multivariate GBLUP estimation was performed using the recently

published R package ’sommer’ [29]. Using MCMCglmm we were able to estimate parameters

from model 1 using all the four residual covariance structures, but with sommer we were able

to consider only the IDH and US covariance structures.

Results

Rice data

Our univariate analysis showed strong genomic correlation between the environments and the

genomic correlation based on univariate and multivariate analysis are shown in Table 1 along

with the SNP heritability estimates. Here the narrow-sense SNP-heritabilities (h2) were esti-

mated as: h2 = s2
g=ðs

2
g þ s2

e ), here s2
g and s2

e are the genomic and residual variances, respec-

tively. It is not a common practice to estimate the genomic correlation between locations

based on univariate model by considering a single environment, but for the comparison point

we present the results here. The genomic correlation between the environments were higher

for the multivariate approach compared to the univariate model. Due to the strong genomic

correlation between the environments. For both M_CV and S_CV cross validation procedures

using model 1, the US, IDH and ANT1 residual covariance structures showed similar predic-

tion abilities, whereas the prediction ability of IDV covariance structure was lower than the

other residual structures. Overall, model 1 showed better prediction abilities than model 2,

Table 1. Genomic correlation between the locations on the off-diagonal and SNP-heritability for each location on the diagonal based on models 1 & 3 using the fre-

quentist approach.

Model 1 (Multivariate) Model 3 (Univariate)

Rice ARK ABR FAD ARK ABR FAD

ARK 0.71 (h2) 0.69 (h2)

ABR 0.63 (r) 0.47 (h2) 0.57 (r) 0.50 (h2)

FAD 0.77 (r) 0.65 (r) 0.24 (h2) 0.66 (r) 0.45 (r) 0.26 (h2)

Maize E1 E2 E3 E1 E2 E3

E1 0.58 (h2) 0.59 (h2)

E2 0.54 (r) 0.73 (h2) 0.46 (r) 0.73 (h2)

E3 0.30 (r) 0.11 (r) 0.41 (h2) 0.20 (r) -0.05 (r) 0.40 (h2)

https://doi.org/10.1371/journal.pone.0201181.t001
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mainly due to the strong genomic correlation between the environments. Table 2 summarizes

the prediction abilities for the rice dataset using different CV procedures with different

models.

Maize data

The maize dataset showed strong G×E interactions (less genomic correlation between the envi-

ronments (Table 1)) as compared to the rice dataset. Similar to the rice dataset the US, IDH

and ANT1 residual covariance structures showed similar prediction abilities. Unlike the rice

dataset model 1 & 2 gave the same prediction abilities for both M_CV and S_CV procedures.

We believe that this is mainly due to the strong genotype by environment interaction (low

genomic correlation between the environments). Table 3 summarizes the results based on

Table 2. Prediction abilities (Pearson correlation coefficient between the GEBV and phenotypes) based on five fold cross-validation in the rice dataset.

MCMCglmm sommer
ARK ABR FAD ARK ABR FAD

M_CV (Model 1)

US 0.68 (0.02) 0.59 (0.02) 0.49 (0.02) 0.68 (0.02) 0.58 (0.02) 0.49 (0.02)

IDH 0.68 (0.01) 0.59 (0.03) 0.51 (0.02) 0.67 (0.01) 0.58 (0.02) 0.50 (0.02)

IDV 0.66 (0.02) 0.56 (0.02) 0.49 (0.01) –.– –.– –.–

ANT1 0.68 (0.02) 0.59 (0.02) 0.49 (0.02) –.– –.– –.–

S_CV (Model 1)

US 0.76 (0.02) 0.69 (0.01) 0.54 (0.01) 0.73 (0.02) 0.67 (0.01) 0.52 (0.01)

IDH 0.77 (0.01) 0.68 (0.01) 0.54 (0.01) 0.75 (0.02) 0.68 (0.01) 0.52 (0.02)

IDV 0.76 (0.01) 0.66 (0.01) 0.53 (0.01) –.– –.– –.–

ANT1 0.75 (0.02) 0.67 (0.02) 0.53 (0.0) –.– –.– –.–

M_CV (Model 2) 0.65 (0.03) 0.55 (0.03) 0.43 (0.03) 0.66 (0.03) 0.55 (0.03) 0.44 (0.03)

S_CV (Model 2) 0.68 (0.02) 0.61 (0.02) 0.48 (0.02) 0.75 (0.02) 0.60 (0.03) 0.44 (0.03)

RND (Model 3) 0.68 (0.01) 0.59 (0.02) 0.48 (0.01) 0.68 (0.01) 0.58 (0.02) 0.46 (0.01)

https://doi.org/10.1371/journal.pone.0201181.t002

Table 3. Prediction abilities (Pearson correlation coefficient between the GEBV and phenotypes) based on five fold cross-validation in the maize dataset.

MCMCglmm sommer
E1 E2 E3 E1 E2 E3

M_CV (Model 1)

US 0.62 (0.02) 0.60 (0.02) 0.47 (0.02) 0.59 (0.02) 0.59 (0.02) 0.47 (0.02)

IDH 0.62 (0.02) 0.60 (0.02) 0.47 (0.02) 0.59 (0.02) 0.59 (0.02) 0.48 (0.02)

IDV 0.62 (0.02) 0.58 (0.01) 0.45 (0.02) –.– –.– –.–

ANT1 0.61 (0.02) 0.60 (0.02) 0.48 (0.02) –.– –.– –.–

S_CV (Model 1)

US 0.65 (0.02) 0.64 (0.02) 0.48 (0.02) 0.61 (0.02) 0.60 (0.02) 0.49 (0.02)

IDH 0.65 (0.03) 0.64 (0.02) 0.48 (0.02) 0.61 (0.01) 0.62 (0.02) 0.49 (0.02)

IDV 0.65 (0.02) 0.61 (0.02) 0.46 (0.02) –.– –.– –.–

ANT1 0.65 (0.02) 0.64 (0.02) 0.48 (0.02) –.– –.– –.–

M_CV (Model 2) 0.60 (0.01) 0.59 (0.02) 0.47 (0.01) 0.59 (0.02) 0.59 (0.02) 0.48 (0.01)

S_CV (Model 2) 0.64 (0.02) 0.62 (0.02) 0.46 (0.02) 0.60 (0.02) 0.62 (0.02) 0.49 (0.02)

RND (Model 3) 0.60 (0.01) 0.59 (0.02) 0.48 (0.01) 0.59 (0.02) 0.52 (0.02) 0.48 (0.02)

https://doi.org/10.1371/journal.pone.0201181.t003
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different models and CV procedures. The prediction ability based on Bayesian approach was

better for the single environment cross validation (S_CV) procedure than the frequentist

method. Unlike the rice dataset here we did not find any improvement in prediction ability

with S_CV (model 1 & 2) procedure, mainly due to the moderate genomic correlation between

the environments.

Discussion

In plant breeding, new cultivars are evaluated at several environments and occurrence of geno-

type by environment interactions (G×E) are common phenomenon in multi-environment tri-

als. One of the main approach to analyze MET data is multivariate mixed model analysis by

considering a single trait measured at multiple environments as correlated traits (e.g, [12, 13]).

In this study, we investigated the impact of four different residual covariance structures on

genomic prediction abilities with MET data using multivariate mixed model. Among those

four different residual covariance structures, US is the most complex structure with l(l − 1)/2

parameters (l is the number of locations) required to be estimated. But, IDV is the simplest

and commonly used covariance structure with a single parameter to be estimated. However,

recent studies [18, 30] showed that US covariance structure improve prediction ability com-

pared to the models with IDV or IDH structures. Also our results suggest that the prediction

abilities obtained by US, ANT1 or IDH were higher than that of IDV residual covariance struc-

ture. Even though, in model 1 the G×E interaction is considered with the genomic covariance

matrix (G0), our results suggest that it is still important to consider the heterogeneous residual

covariance structure (US, ANT1, IDH) in genomic prediction of MET data to improve geno-

mic prediction ability.

The univariate model (model 3) performed similarly in most cases to the multivariate

model as shown earlier by [8]. However, in presence of a strong genomic correlation between

the environments (the rice dataset), the multivariate mixed model (model 1) showed better

prediction abilities than the G×E interaction model (model 2). However, when the between

environment genomic correlation was low (the maize dataset), both models performed equally

well. Thus, our results suggests that multivariate mixed model with heterogeneous residual

covariance structure is a preferred choice to account for G×E in genomic prediction of MET

data.

The cross-validation scheme of S_CV might correspond to a realistic scenario for breeders

where the line is tested in two environments but missing in the third environment. In S_CV

procedure the multivariate mixed model (model 1) showed a clear improvement in prediction

ability over model 2 for the rice data set. Here the multivariate mixed model, which uses the

information from the other tested environments, enhance the prediction ability. Similar find-

ings has been made by [13]. However, with the maize dataset, the S_CV procedure showed rel-

atively low improvement in prediction ability as compared to the rice dataset. This is mainly

due to the low genomic correlation between the environments in the maize dataset and the

multivariate mixed model cannot borrow information from the other environments in such

case.

The Bayesian methods are known to be computationally intensive. However, in this study,

our Bayesian approach provided better prediction abilities especially in S_CV procedure,

where the observation from a single environment was missing. The slight advantage of Bayes-

ian approach over GBLUP have been already reported by many studies [31, 32]. In GBLUP,

the variance components are estimated using REML which is followed by GEBVs. In contrast

to that, all parameters are estimated jointly in Bayesian approach and the joint estimation

could be one of the factors for the improved prediction ability.

Genomic prediction ability in MET

PLOS ONE | https://doi.org/10.1371/journal.pone.0201181 July 20, 2018 8 / 11

https://doi.org/10.1371/journal.pone.0201181


Finally, in this study we only considered the additive genomic relationship matrix (K) for

the estimation of the GBLUP values. However, consideration of alternative genomic relation-

ship matrices to better account for different genetic architectures of MET data (e.g, [33–36]) in

Eq (2) may improve the prediction ability even further. Thus, this is an important topic to be

studied in the future.
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