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Abstract

Urbanization can radically disrupt natural ecosystems through alteration of the sensory envi-
ronment. Habitat disturbances are predicted to favor behaviorally flexible species capable of
adapting to altered environments. When artificial light at night (ALAN) is introduced into
urban areas, it has the potential to impede reproduction of local firefly populations by obscur-
ing their bioluminescent courtship signals. Whether individual fireflies can brighten their sig-
nals to maintain visibility against an illuminated background remains unknown. In this study,
we exposed male Aquatica ficta fireflies to diffused light of varying wavelength and intensity,
and recorded their alarm flash signals. When exposed to wavelengths at or below 533 nm,
males emitted brighter signals with decreased frequency. This is the first evidence of individ-
ual-level light signal plasticity in fireflies. In contrast, long wavelength ambient light (> 597
nm) did not affect signal morphology, likely because A. ficta cannot perceive these wave-
lengths. These results suggest long wavelength lighting is less likely to impact firefly court-
ship, and its use in place of broad spectrum white lighting could augment firefly conservation
efforts. More generally, this study demonstrates benefits of bioluminescent signal plasticity
in a “noisy” signaling environment, and sheds light on an important yet understudied conse-
quence of urbanization.

Introduction

As human populations grow, cities and suburbs expand into formerly natural lands [1].
Urbanization is a severe form of ecosystem disturbance, and one of the leading causes of spe-
cies endangerment [2]. The impacts of deforestation, habitat fragmentation, and chemical pol-
lution on species endemic to affected habitats have been widely recorded [3-6]. However,
many species manage to survive and even thrive in urban centers, despite these myriad threats
[7-10]. Opportunistic generalists such as cockroaches, rats, bats, and pigeons are inherently
disposed to disturbed habitats [11], while other species persist through adaptation to their
altered surroundings [12]. Population-level phenotypic change may occur over relatively long
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time scales, as has been observed in the case of industrial melanism in the peppered moth Bis-
ton betularia [13]. Concurrently, individual-level behavioral change can produce immediate
fitness benefits. Urban populations of several bird species have been found to sing more loudly
and at higher frequencies to compensate for increased ambient noise [14,15]. In these and
other cases, signal plasticity promotes information transmission within noisy signaling envi-
ronments [16].

In addition to noise, heat, and chemical pollution, urbanization commonly results in the
introduction of artificial light at night (ALAN), the effects of which are infrequently studied
in isolation [17]. ALAN transforms the nocturnal landscape: upward-directed “astronomical
light pollution” obscures the night sky [18], while downward-directed “ecological light pol-
lution” can affect species on the ground [17,19]. Among invertebrates, the attraction of
moths and other flying insects to streetlamps is a particularly well studied phenomenon
[20,21]. In contrast, the potential vulnerability of species with light-based communication
systems to ALAN interference has only recently attracted the attention of researchers [22-
28].

Bioluminescence has evolved multiple times within a broad range of bacterial, protist, fun-
gal, and animal lineages, and is used in diverse contexts [29]. On land, bioluminescence is
most common among insects: “glowworm” larvae of some fungus gnats use bioluminescent
lures to attract prey [30], while four families of beetles, including the firefly family Lampyridae,
have separately evolved a diverse range of light signals and signaling behavior [31,32]. Many
adult fireflies use bioluminescent signals as part of courtship, with one or both sexes emitting
prolonged glows, discrete flashes, or timed flash patterns to attract conspecifics [33-35]. Dur-
ing the mating season, adults begin flashing late in the day, when ambient light levels have
declined to a species-specific threshold [36,37]. High levels of broad spectrum ALAN can
delay or inhibit male signaling activity, and negatively affect female receptivity to biolumines-
cent signals [27,28].

How a particular light source impacts firefly activity depends in part on the intersection of
its spectral emission with the spectral sensitivity of the species in question: if the firefly does
not detect most wavelengths emitted by the source, courtship activity will likely be unaffected.
Single copies of UV-sensitive (UVS) and long-wavelength-sensitive (LWS) opsin genes have
been identified in multiple firefly species [38,39]. Peak sensitivity of the LWS visual pigment,
after filtration by associated screening pigments, often corresponds to the peak wavelength of
conspecific bioluminescence [40-43]. Short-wavelength-sensitive (SWS) opsins have yet to be
found, although blue sensitivity has been described from electroretinograms (ERGs) and
behavioral studies of multiple species [44-47]. The discrepancy may be due to opsin sensitiza-
tion by as-yet-undescribed “antenna pigments” [48], or secondary interactions of screening
pigments [42,45].

Recent studies have shown that broad spectrum white lighting negatively impacts firefly
flash frequency (flashes/min) and/or the total number of flashing individuals present [27,28].
However, few studies have measured how specific wavelengths of ambient light interact with
the firefly visual system and overlying neurobehavioral architecture to influence courtship
behavior (but see [49,50] for studies of the spectral cues that initiate male flash activity). Differ-
ent wavelengths are likely to have different effects. For example, receptive Photinus pyralis
females emit response flashes exclusively to simulated male flashes of wavelengths longer than
480 nm, even though their eyes are sensitive to UV light [51]. To quantify the impact of differ-
ent artificial light sources on firefly courtship behavior, we must compare the ways in which
ambient light of different wavelengths affect firefly flash activity.

In this study we used monochromatic LEDs to test how specific wavelengths affect the sig-
naling activity (intensity and frequency of flashes) of Aquatica ficta males. The resulting plot of
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activity vs. wavelength quantifies the effects of ambient light on two dimensions of A. ficta sig-
nal morphology, and positively identifies a range of wavelengths to which this species is visu-
ally sensitive. It is also the first controlled study of firefly signal plasticity, investigating the
capacity for individual-level variation in flash intensity and frequency. Although likely too
costly and inefficient under daytime illumination [52], some degree of signal plasticity may be
used to promote signal visibility under twilight illumination, or in areas with low level ALAN.
Thus we predict that A. ficta will flash more brightly under dim ambient light, but only of
wavelengths to which they are visually responsive.

Materials and methods
Study organism

A. ficta is a common Taiwanese firefly notable both for its aquatic larvae and multivoltine life
history [53]: most adults eclose in late April to May, but a second generation ecloses in mid-
August [54]. A. ficta larvae require clean water and soft, mildly alkaline soil for development
[54]. Conversion of streams into cemented irrigation ditches prevents these fireflies from
using stream beds as oviposition or pupation sites, while water pollution and pesticide use
may affect larvae and adults alike. The impacts of light pollution on A. ficta are unknown.
Notably, small populations of A. ficta can still be found in a few areas within Taipei city center.
Additionally, in 2016 the Taipei City Government Department of Public Works in collabora-
tion with NGOs (re)introduced A. ficta to five prominent green spaces around Taipei: Da’an
Forest Park, Muzha Cui Lake, Fuyang Eco Park, Zhongqgiang Park, and Rongxing Garden
[55].

Three male A. ficta fireflies were collected three times from Yongjian Eco Park (24.990195,
121.555824; May 4, May 7, and May 11, 2016), where they could be found approximately 20
min after sundown flying over a shaded stream emitting courtship flashes: periodic single yel-
low-green flashes (peak wavelength: 565 nm; bandwidth: 60 nm; n = 6) approximately 1 sec in
duration. Specimens were transferred into transparent containers (250 ml volume) under nat-
ural conditions [54], and kept in an open-air courtyard by the National Taiwan University
Insectarium. After a one day adjustment period, a single specimen was tested each evening
over three consecutive evenings (no specimens were tested more than three days post-collec-
tion). Trials commenced 30 min after sunset and ran for 32 min, after which the specimen was
released to prevent accidental retesting. The final sample size was limited by small local popu-
lation numbers as well as the short adult lifespan and brief nightly activity period of this
species.

Artificial light

ALAN was simulated with eight LED pucks (Oznium.com, Pagosa Springs), circuit boards
(diameter: 5 cm) populated by 30 monochromatic LEDs of identical peak wavelength, placed
in plastic housing (diameter: 7 cm) and covered with 50% opaque frosted epoxy diffusers.
Puck wavelengths were semi-evenly distributed across a range from near-UV to red (444 nm
to 663 nm) in increments of 20-30 nm. Puck illumination was attenuated by a 72 mm H&Y
adjustable neutral density filter (diameter: 7.5 cm, range: ND 0.3 to ND 2.4) before penetrat-
ing an opaque light chamber (S1 Fig). Ambient illumination intensity could be adjusted and
observed in real time using a model 1935-C series power meter sensor (Newport) placed
inside the light chamber. Trials were conducted in near darkness to minimize interference
from outside light.
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Signal morphology

To obtain action spectra of firefly flash behavior, specimens were isolated within the light
chamber, and the intensity over time of their light signals recorded and analyzed. Fireflies
were secured to a piece of foam by a thin wire (22 ga) slid between their wings and dorsal
abdomen. The act of restraint induced a series of fast (approx. 200 ms duration, 200-300 ms
flash interval) alarm flashes in this species, which were produced with remarkable consistency
throughout the entire experimental period. The foam was mounted to a slide cover, which was
adjusted within a transparent acrylic slide cover box (2.5 cm”) to align the light organ of the
specimen to the sensor of a USB4000 FLAME-S-XR1-ES spectrometer (Ocean Optics, Dune-
din) connected to a Dell XPS 9343 laptop running SpectraSuite software (Windows Vista ver-
sion 6.2). The “color chart” function of SpectraSuite was used to record average relative
intensity (counts) of wavelengths from 565 nm to 569 nm over 32 min, capturing the peak
wavelength of A. ficta bioluminescence. Averages were calculated and saved every 100 ms.

Experimental protocol

After a 5 min adaptation period, each specimen underwent one 32 min trial without interrup-
tion, during which it was exposed to each of the eight pucks in a randomized order determined
by a random sequence generator (http://www.random.org, S1 Table). For each wavelength,
specimens were exposed to both dim (1x) and bright (10x) intensities; the order of exposure
(i.e. dim or bright first) was secondarily randomized within wavelengths. Here intensity refers
to quantum flux (photons per unit area per second), converted from power meter measure-
ments of uW/cm” and equalized across wavelengths: ranging from 0.107 + 0.02 umol m™s™
and from 1.075 + 0.212 umol m ™ s™* for dim and bright exposures, respectively. For both
intensities of all wavelengths, exposures lasted 1 min and were always preceded by 1 min dark
recordings, a total recording time of 4 min per wavelength.

Data analysis

Eight sets of data were collected from eight A. ficta males on the evenings of May 5-9 and May
12-14, 2016 (S2 Fig; one male died before it could be tested). Of these, two recordings (May 5
and May 13) were disregarded due to measurement inconsistencies maintained over > 10 min
of recording time. Flash intensity and frequency data from six individuals were separated into
1 min recordings (8x2x6 = 96 light recordings, and an equal number of dark recordings) and
analyzed in R (version 3.2.3 [56]). The first 15 s of each recording was defined as the “adapta-
tion period” (from light to dark or vice-versa) and omitted from subsequent analysis. Average
intensity over time of light signals was zeroed within each recording to account for spectrome-
ter noise, and average peak intensity calculated by isolating local maximums.

Measurements < 200 counts were excluded as noise, as peak intensity of A. ficta flashes consis-
tently exceeded several thousand counts. The total number of peaks thus isolated was summed
to obtain the average flash rate per individual for each exposure (peaks/min).

After removing the 15 s adaptation period, dark recordings still showed significant varia-
tion within and among individuals, suggesting high natural variation in A. ficta signal mor-
phology as well as potential lingering effects of previous exposures (Fig 2A). Each set of light
recordings was therefore compared to the initial set of dark recordings obtained previous to
any ambient light exposure. Average flash intensity and frequency under each wavelength of
exposure was compared using generalized linear mixed models (GLMM) from the R package
‘Ime4’ [57]. Exposure wavelength was set as a fixed effect, and both specimen and exposure
order (1 to 16; eight wavelengths x two intensities) initially included as random effects. Due to
rank deficiency, both exposure intensities were analyzed separately, as were the effects on flash
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Fig 1. Plastic effects of 533 nm ambient light exposure on firefly flash morphology. (A) Example of change in intensity of flashes emitted by A. ficta
male under different illumination conditions (indicated above each section), recorded in units of average counts per 100 ms over 4 min. (B) Changes in
signal intensity over 4 min of separate A. ficta male under the same illumination conditions (indicated above each section).

https://doi.org/10.1371/journal.pone.0191576.9001

intensity and flash frequency (S1 Table). Exposure order explained a large amount of observed
variation in flash frequency. However, it did not have an observable impact on flash intensity
and was subsequently dropped from that set of models.

Results

A. ficta bioluminescent signaling behavior changed in response to environmental light (Fig
1A, Table 1). In comparison to base level data taken in complete darkness, average peak inten-
sity of flash signals significantly increased, sometimes more than 100%, when individuals were
exposed to dim intensities of short- and mid-wavelength light (Fig 2A, Table 1; 444 nm:

p =0.0021; 463 nm: p = 0.01; 488 nm: p = 0.017; 515 nm: p = 0.021; 533 nm: p = 0.066).
Increases in flash intensity under dim short- and mid-wavelength illumination were accompa-
nied by significant reductions in flash frequency (Fig 2B, Table 1; 444 nm: p = 0.0042, 463 nm:
p =0.049, 488 nm: p = p < 0.0001, 515 nm: p = 0.0098; 533 nm: p = 0.046). The decline is due
to increases in interpulse interval [58] and, to a lesser extent, flash duration (S2 Table); in addi-
tion, sporadic periods without flashing were more common under illumination, sometimes
continuing for 10 or more seconds. More extreme reductions in flash frequency were seen
when males were exposed to bright intensities of the same wavelengths (Fig 2B, Table 1; 444
nm: p = 0.0019; 463 nm: p < 0.0001, 488 nm: p < 0.0001, 515 nm: p = 0.0018, 533 nm:
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Table 1. Average peak intensity and frequency of light signals produced by A. ficta under exposure to varying wavelengths and intensities of ambient light.

Dim (1x) Exposure

Y flash intensity degree of change relative to dark p-value flash frequency degree of change relative to dark p-value
(nm) X £ SD (counts) (bright/dark) X * SD (peaks/min) (bright/dark)
444 11420 + 4498 2.106 0.0021 22.67 £ 15.65 0.525 0.0042
463 11330 £ 4615 2.090 0.010 23.78 £15.02 0.551 0.0049
488 11380 + 4605 2.099 0.018 17.78 £10.91 0.412 0.000014
515 9879 + 3540 1.823 0.021 24.44 +12.81 0.566 0.0098
533 8584 + 3125 1.584 0.066 32.44+13.93 0.752 0.046
597 5639 + 4912 1.040 0.94 44.89 £ 6.504 1.040 0.30
628 6605 + 2848 1.219 0.91 42.67 £17.28 0.988 0.55
663 6881 + 3381 1.269 0.72 46.22 + 16.67 1.071 0.43

Bright (10x) Exposure

A flash intensity degree of change relative to dark p-value flash frequency degree of change relative to dark p-value
(nm) X £ SD (counts) (bright/dark) X * SD (peaks/min) (bright/dark)
444 11719 + 5489 2.162 0.23 14.44 + 14.80 0.335 0.0019
463 9259 + 2854 1.708 0.19 12.67 £11.29 0.293 0.00042
488 10606 + 4595 1.957 0.13 8.222+7.78 0.190 0.000014
515 6594 + 3388 1.217 0.59 14.89 +12.29 0.345 0.0018
533 10462 + 4941 1.930 0.051 27.11 £15.70 0.628 0.032
597 4688 + 2615 0.865 0.48 56.44 +11.38 1.308 0.92
628 6381 + 3407 1.177 0.97 45.78 £ 15.61 1.060 0.56
663 4968 + 3351 0.917 0.98 54.00 + 22.45 1.251 0.87

1x dim exposures (top) and 10x bright exposures (bottom) differ by one order of magnitude. Change from dark for each exposure is calculated by dividing by base

values taken from 1 min dark recordings (average flash intensity: 5420 counts; frequency: 43.167 peaks/min).

https://doi.org/10.1371/journal.pone.0191576.t001

p = 0.032). In fact, under bright short- and mid-wavelength illumination, three of six males
ceased signaling entirely (Fig 1B). Due to the consequent lack of data, average peak intensity of
flash signals became erratic under bright short- and mid-wavelength illumination (444 nm:

p =0.23; 463 nm: p = 0.19; 488 nm: p = 0.13; 515 nm: p = 0.59; 533 nm: p = 0.051). Notably,
neither dim nor bright intensities of long wavelength (> 597 nm) illumination had a signifi-
cant effect on flash intensity or frequency (p > 0.3 in all instances; Fig 2).

Although some males underwent remarkably rapid changes in average flash intensity, indi-
viduals often appeared to remain at least partially affected by the previous series of exposures
(Fig 1A and 1B). When analysis of variance (ANOVA) was used to compare models, results
showed that number of previous exposures had a significant negative effect on flash frequency
(1x: p < 0.0001, * = 15.205; 10x: p = 0.0012, %> = 14.668), but not flash intensity (p = 1.0 and
x> = 0 in both 1x and 10x models). Thus, the brightness of male flashes was apparently only
influenced by the current level of ambient illumination, while the total number of flashes per
minute was determined by both current and previous light exposures.

Discussion

Our results suggest that A. ficta is not visually responsive to red wavelengths. However, short
wavelength ambient light (including blue) significantly affects their signaling behavior, induc-
ing increased flash intensity as well as decreased flash frequency. Erratic measurements
obtained during bright (10x) exposures across wavelengths may reflect the small sample size,
necessitated by the limited population numbers and highly seasonal life history of A. ficta, or
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Fig 2. Effects of exposure wavelength and intensity on firefly flash morphology. Change in average (+ 1 SE) flash intensity (A)
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(N = 6). Base values for average flash intensity (5420 counts) and flash frequency (43.167 peaks/min) obtained from 1 min dark
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conflict between two opposing behaviors: 1.) increasing light signal intensity in response to
low level environmental light and 2.) ending light signal production in response to high level
environmental light. The latter behavior likely relates to entrainment of diurnal and nocturnal
modes of activity: fireflies do not engage in courtship activity during their subjective daytime
[36,37]. The former may be an adjustment to the nocturnal mode of activity, a plastic response
to increases in environmental light levels within some “nighttime” range.

This is the first description of individual-level variation in the average peak intensity of fire-
fly flash signals. Previous studies on the characteristic flash patterns of North American Photi-
nus fireflies have described intraspecific variation in several other signal parameters. These
include flash rate, flash duration, and interpulse interval [59-62], in addition to flash frequency
(total flashes/min) [27,28,36,59] and flash wavelength [63]. Individual- and/or population-
level variation has been shown to be related to age [64], habitat type [63], temperature, humid-
ity, time of day, and ambient light [27,28,36]. Our results open up another dimension of signal
morphology for future behavioral studies. They also suggest that while fireflies can brighten
their flashes in response to ambient light, this potentially beneficial behavior may require some
decrease in average flash frequency [correlation coefficient: -0.9655009 (1x), -0.8027756
(10x)].

The plastic increases in alarm flash intensity we observed during dim (1x) exposures may
be a product of natural or sexual selection. Alarm flashes, which serve as aposematic signals
[65,66], will be more easily perceived by potential predators if they have greater contrast
against the background. When given a choice among simulated courtship flashes of varying
intensity, P. pyralis males and females [67,68] and L. noctiluca males [46] all prefer brighter sig-
nals, likely due to their greater visibility. Temporary increases in signal intensity could also
help to maintain a base level of visibility against artificially illuminated backgrounds. Resil-
ience of urban firefly populations to low level ALAN will depend on the success with which
these signal modifications maintain inter- and intraspecific lines of communication, and the
fitness costs of doing so. Flash signal production may have a relatively low metabolic cost [69].
If this is the case, increasing the average intensity of one’s light signals could help ensure con-
tinued predator deterrence and/or courtship success without any corresponding fitness cost,
offering a fascinating case study of the benefits of behavioral plasticity in urbanized environ-
ments. However, other evidence suggests that flash production does require high levels of lipid
metabolism [70], and therefore certain tradeoffs (such as decreased flash frequency) may be
involved.

Regardless of metabolic cost, even extremely bright flashes should be impossible to perceive
in sufficiently bright environments, which may be why half of the A. ficta specimens stopped
flashing under bright (10x) exposures (1x and 10x exposures roughly correspond to 20 and
200 lux, respectively, although photometric units are not suited to the analysis of monochro-
matic light; see S1 Text). Fireflies do not flash under daytime levels of artificial or natural illu-
mination [36,37]. Hagen et al. [27] observed significant decreases in the average number of
flashing Photinus sp1 individuals encountered in brightly lit conditions (1.5-4.45 lux). Fire-
baugh and Haynes [28] also found decreases in flash frequency (flashes/min, a proxy for
abundance) of Photuris versicolor in an experimental plot lit by LED floodlights to ~301 lux.
However, flash frequency of Photinus pyralis males was unaffected. P. pyralis is a common cre-
puscular species, while P. versicolor is nocturnal and may be less resilient to changes in the
light environment. Despite this, the receptivity of P. pyralis females to male signals decreased
in experimental plots. Females may have been unable to see these signals, or less receptive to
them due to their decreased contrast against the background; females are likely unable to dis-
tinguish decreases in contrast (perceived intensity) from decreases in emitted intensity. Plastic
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increases in male flash intensity are unlikely to greatly promote visibility in this context, due to
the extreme brightness of the artificial light source.

Selecting artificial light sources that have the least chance of interfering with firefly commu-
nication can help to reduce disturbance of urban firefly populations. Blue light is often
employed in firefly observations and experiments in the west, as it is thought to be minimally
disruptive to local species. Although thus far genetic analysis has failed to uncover blue opsin
genes in any firefly species [38,39], we found that blue wavelengths did significantly affect the
flash signaling behavior of A. ficta. Our results suggest artificial light sources emitting the
majority of their light in wavelengths > 597 nm, including a range of yellow to red wavelengths
visible to humans, would be most suitable for A. ficta habitats. These conclusions receive sup-
port from ERG spectral sensitivity studies of Luciola cruciata, a close relative of A. ficta, which
have described sensitivity peaks in the green-yellow range of 555-565 nm wavelengths [71,43].
Low-pressure sodium vapor lamps emit light concentrated at 590 nm, well beyond this range
[72]. However, in recent decades these lamps have been phased out in favor of brighter and
more energy efficient alternatives such as LEDs, which often emit a large portion of their light
in the blue region of the spectrum. We suggest spectral emission be given greater consideration
when installing artificial lights around firefly habitats. The directionality of light sources (stree-
tlamps vs. path lights) and distinction between point sources and larger sources of diffused
light are also relevant to these discussions. Free-roaming A. ficta in the lab continue to emit
courtship signals when exposed to small points of light, regardless of the intensity or distance
of the point source from their eyes, although they appear to exhibit some degree of negative
phototaxis (pers. obs.). However, A. ficta respond to high levels of short wavelength diffused
light by decreasing the frequency of their flash signals, and eventually ceasing them altogether.

A. ficta do not exchange precisely timed flash patterns during courtship, so decreases in
flash frequency like those we observed in dim light conditions may not cause a significant loss
of signal information, and the commensurate increase in intensity may suffice to maintain
signal visibility in natural settings. It remains to be seen how ambient light affects the courtship
of Photinus fireflies, which use flash patterns to communicate information about species
identity and individual fitness. Changes to flash rate, flash duration, or interpulse interval are
highly likely to impact the reproductive success of these species; even slight differences in flash
rate have been shown to affect male reproductive success [60,73].

Much remains to be done to quantify the total fitness impact of ALAN of varying spectral
composition on firefly species of varying spectral sensitivity and courtship behavior. Observed
decreases in A. ficta populations over the past few decades indicates that they have been nega-
tively affected by habitat alterations occuring within this time (Wu Chiahsiung, personal com-
munication). The impacts of habitat destruction, climate change, pesticides, and ALAN on
fireflies are all relevant, and likely mutually reinforcing, but those of ALAN deserve equal
consideration. This is especially the case because fireflies can serve as “flagship species”, charis-
matic mascots of public outreach efforts to reduce or eliminate ALAN in urban areas. Improv-
ing our understanding of the degree to which fireflies everywhere are able to respond and
adapt to ALAN is crucial should we hope to protect these species going forward, both for the
robustness of the ecosystem and the enjoyment of many generations to come.

Supporting information

S1 Fig. Simplified schematic of experimental setup. LED pucks fitted into upper box (base:
14x8.5 cm; height: 3 cm) shine through a neutral density filter, the transparency of which is
adjusted via rotation of this box. Walls of the light chamber (base: 9x6.5 cm; height: 5.5 cm)
are covered in opaque dark room fabric. The USB4000 spectrometer is connected to a Dell

PLOS ONE | https://doi.org/10.1371/journal.pone.0191576  February 7, 2018 9/14


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0191576.s001
https://doi.org/10.1371/journal.pone.0191576

@° PLOS | ONE

Fireflies flash more brightly in illuminated environs

laptop running SpectraSuite software. Walls of the light chamber (base: 9x6.5 cm; height: 5.5
cm) are covered in opaque dark room fabric.
(TIF)

$2 Fig. Signal morphology of eight A. ficta males over eight separate 32 min trials. During
each trial, one unique individual was exposed to two intensities of eight wavelengths of LED
for 1 min each. Trial date is given to the left of each recording. All light exposures were pre-
ceded by a 1 min dark exposure, summing to 32 exposures total (16 light and 16 dark). Expo-
sure order (intensity and wavelength) was randomized; semi-transparent colored overlays
indicate the series of exposure intensities and wavelengths for each recording, corresponding
to the colors used in Fig 2 and S1 Table. Bioluminescence was recorded in units of average
intensity (counts) per 100 ms.

(TIF)

S1 Table. Sample experimental procedure, taken from trial on May 5, 2016. Trial began 30
min post-sunset at 18:56. The order of LED wavelengths has been randomized, as has the
order of exposure intensity (dim or bright first) within wavelengths. Relative quantum flux
density (umol m™ s™') is approximately equal across wavelengths; variation in energy measure-
ments (WW/cm?) reflects inherent differences in the energy of photons of different wavelength.
(DOCX)

S2 Table. Change in A. ficta flash duration and interpulse interval under short- and mid-
wavelength illumination. Data from four of eight experimental trials, organized by trial date,
are given above. The first column contains average values of flash duration and interpulse
interval (duration between flashes) from the initial 1 min dark recording of each insect. The
following columns contain average values for all five short- to mid-wavelength exposures
(444-533 nm), at 1x and 10x intensity, respectively.

(DOCX)

S1 Text. Relevance of experimental design to urban and suburban light environments.
(DOCX)
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