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Abstract

In vivo physiological measurement is a major challenge in modern science and technology,

as is environment conservation at the global scale. Proper toxicological testing of widely pro-

duced mixtures of chemicals is a necessary step in the development of new products, allow-

ing us to minimize the human impact on aquatic ecosystems. However, currently available

bioassay-based techniques utilizing small aquatic organisms such as fish embryos for toxic-

ity testing do not allow assessing in time the changes in physiological parameters in the

same individual. In this study, we introduce microencapsulated fluorescent probes as a

promising tool for in vivo monitoring of internal pH variation in zebrafish embryos. The pH

alteration identified under stress conditions demonstrates the applicability of the microen-

capsulated fluorescent probes for the repeated analysis of the embryo’s physiological state.

The proposed approach has strong potential to simultaneously measure a range of physio-

logical characteristics using a set of specific fluorescent probes and to finally bring toxicolog-

ical bioassays and related research fields to a new level of effectiveness and sensitivity.

Introduction

Industrially produced chemicals have become widespread in the biosphere due to human

activity and can already be found even in deep-water animals [1–2], including invertebrates

from the deepest point on the planet—the Mariana Trench [3]. There are over 100 million sub-

stances registered in the Chemical Abstract Service, a significant portion of which are widely

used in agriculture, industry and by individuals [4], and these substances are further concen-

trated in rivers and lakes. Due to possible toxicity to different inhabitants of water reservoirs,

these chemicals should generally be tested for their biological effects at the cellular to ecosys-

tem levels [5] to prevent or minimize negative impacts on the environment [6]. A number of

environmental disasters, such as massive fish deaths in Louisiana in 1950s caused by uncon-

trolled use of the insecticide endrin in agriculture, exemplify the importance of preliminary
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ecotoxicological testing [7]. It is worth mentioning that in nature, aquatic organisms are

mostly affected by complex mixtures of chemicals, not individual agents [8], which makes the

required amount of experimental analyses for realistic toxicity testing enormous.

To accelerate these analyses, bioassays generally applied for environmental risk assessment

are mostly based on small organisms such as fish embryos, small crustaceans or algae [9–10]

due to their convenient laboratory handling and high reproduction rate. A widely used

method of assessing toxicity is to search for morphological abnormalities during embryonic

development [11], but this method does not provide the high sensitivity to pathological pro-

cesses exhibited by screening of internal physiological parameters [12]. However, in the identi-

fication of physiological markers, the small size of the used test objects has a significant

disadvantage: usually such organisms are equal or smaller than the tissue sample required by

the existing methods for measurement of the physiological parameters of interest [13–15]. The

situation can be roughly described by the formula “1 organism� 1 sample”. Due to this limita-

tion, researchers must use different individuals at each exposure point, which can increase

measurement inaccuracy because of interindividual variability (if 1 organism = 1 sample) or

can oversmooth individual-specific reactions (if 1 organism < 1 sample). Moreover, it also

increases the number of organisms used for the experimental procedure, which increases the

time and cost of the analysis. For these reasons, modern environmental toxicology demands

new techniques that can continuously monitor the physiological parameters of a single small

organism in vivo.

A promising way to overcome this limitation is to apply microencapsulated fluorescent

probes for repeated in vivo measurements. Encapsulation of fluorescent dyes for in vivo appli-

cations has two fundamental benefits: it enables ruling out any possible toxicity of the dye

itself, and concentration of the probe to a single point to give a strong and easily detectable

fluorescent signal. The microcapsules containing the fluorescent probe can be implanted into

the organism and serve as artificial biomarkers of physiological parameters; thus, we call them

microencapsulated biomarkers (MBMs).

There is a broad variety of commercial fluorescent molecular probes sensitive to various

ions and metabolites [16], and a pH-sensitive dye was chosen for this study as a “first pass” of

the proposed technique, due to the high importance of this parameter. As a factor that is espe-

cially valuable for toxicity assessment, the pH of internal fluids depends on proper functioning

of organs such as the liver and kidney—the main targets of the majority of toxicants [17–19];

changes in pH can be used as markers of malfunction in these and other internal organs under

intoxication [20–21]. In the current study, the embryo of Danio rerio, known as zebrafish, was

chosen due to its importance as a “gold-standard” laboratory animal not only for toxicology

and environmental sciences [22–23] but also for a broader range of research fields such as

developmental biology [24] and neurophysiology [25–26].

The proof-of-concept using encapsulated pH-sensitive fluorescent dyes as intracellular sen-

sors was demonstrated in mammalian cells ex vivo [27]. Low cytotoxicity of the microcapsules

also was shown [28], and polyethylene glycol-grafted poly-L-lysine (PLL-g-PEG) was sug-

gested as coverage to significantly reduce phagocytosis of the microcapsules by immune cells

[29]. Studies of MBM biocompatibility after injection into the pericardium were performed

utilizing zebrafish embryos and showed no effect of MBMs on embryo development [30].

More recently, it was shown that MBMs can be successfully used to identify physiological

changes in vivo in adult crustaceans and fishes under stress conditions [31–32]. However, simi-

lar measurements with smaller organisms such as fish embryos, require more advanced and

sophisticated procedures. Therefore, in the framework of further development of the MBM

approach, we report the application of microencapsulated fluorescent probes for measurement
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of pH variation in zebrafish embryos in vivo to monitor the physiological state of the embryo

under stressful conditions.

Materials and methods

Preparation of pH-sensitive MBMs

The developed MBMs consist of a semipermeable multilayer shell prepared by layer-by-layer

(LbL) assembly of oppositely charged polyelectrolytes (Fig 1A). SNARF-1 conjugated with

dextran of molecular weight 70,000 Da (SNARF-1-D; Invitrogen, D-3304) was chosen as the

fluorescent probe to measure pH due to its good sensitivity at pH 6–9. Conjugation of the

probe to dextran is required to trap the sensor inside the semipermeable shell.

SNARF-1-D was encapsulated according to previous recommendations [27, 29–30] with

modifications (Fig 1A). First, SNARF-1-D was co-precipitated into porous cores of CaCO3 by

mixing 2 ml of 0.25 mg/ml SNARF-1-D and a 4 mg/ml dextran sulfate solution with 0.615 ml

of a 1 M Na2CO3 solution and 0.615 ml of a 1 M CaCl2 solution under strong stirring (Fig 1B).

Dextran sulfate was added to give CaCO3 cores a more regular form. After agitating for 15 s at

room temperature, the mixture was quickly washed in deionized water three times to stop pre-

cipitation and treated with ultrasound to destroy aggregates. The CaCO3 cores were visualized

under a JSM 6360LA scanning electron microscope (JEOL, USA).

The CaCO3 cores were then covered with 10 layers of oppositely charged polymers: positive

poly(allylamine hydrochloride) (PAH; Aldrich, 2832315) and negative poly(sodium 4-styrene-

sulfonate) (PSS; Aldrich, 243051). After each layer, the cores were washed several times in

deionized water and treated with ultrasound every two layers. To enhance the biocompatibility

of the MBMs, they were covered with polyethylene glycol-grafted poly-L-lysine (PLL-g-PEG;

g = 3.5) as the outmost layer [30]. Finally, the CaCO3 templates were dissolved in EDTA solu-

tion (pH 7.0) to obtain a semipermeable polyelectrolyte shell with the structure (PSS/PAH)5-

PLL-g-PEG trapping SNARF-1-D inside (Fig 1C). The prepared MBMs had a median size of

approximately 1.3 μm.

Example spectra of the microencapsulated SNARF-1-D at different pHs (Fig 1D) were

obtained with an Eclipse Ti-U fluorescent microscope (Nikon, Japan) coupled with the Sher-

lock 300 spectrometer (Andor, USA). Fluorescence was excited by light of approximately

563 nm.

Calibration of MBMs to various pHs

The prepared MBMs must be calibrated to pH before use. For this purpose MBMs were dis-

persed in a series of buffer solutions. Calibration is best performed using the same microscope

that will be later used for in vivo pH assessment; we used an inverted LSM 700 (Carl Zeiss, Ger-

many) confocal microscope (S1 Fig). Laser light at 555 nm was used to excite encapsulated

SNARF-1-D with sequential emission signal acquisition in the green channel (587 nm) and

the red channel (627 nm) for further ratiometric pH measurements. Images of MBMs in buff-

ers and inside animals consist of three channels: a 587-nm channel, a 627-nm channel and a

white light channel.

The obtained images were analyzed using the Fiji image processing software package

(www.fiji.sc). The brightest image (green or red channel) was chosen to make a mask by

thresholding the image. The mask was applied to the images in the green and red channels to

extract a fluorescent signal from the MBMs. Then, total pixel intensity was measured for every

MBM area in both the green and red channels, and the ratio I587/I627 between the channels was

calculated. The relationship between median I587/I627 and the pH of the buffered media was
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Fig 1. Description of pH-sensitive MBMs used. (a) General scheme of preparation of MBMs using the LbL method: co-precipitation of SNARF-

1-D (purple) into porous CaCO3 cores (yellow); LbL assembly of microcapsule shell around the cores (only three layers of negatively charged

polymer, three layers of positively charged polymer and final biocompatible layer are depicted); and dissolution of cores. (b) SEM image of porous

CaCO3 cores with incorporated SNARF-1-D. (c) Prepared MBMs under confocal laser scanning microscope LSM 700. (d) Examples of

fluorescence spectra of microencapsulated SNARF-1-D with varying pH. (e) Calibration curve of MBMs containing SNARF-1-D with varying pH

was built based on median values (emphasized by larger dark blue points); original values are also depicted (smaller light blue points).

https://doi.org/10.1371/journal.pone.0186548.g001
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well approximated using the following linear function: pH = –6.11 � I587/I627 + 10.07. The

obtained calibration curve is displayed in Fig 1E.

Injections of MBMs into zebrafish embryos

Wild-type zebrafish (strain AB) were used as the vertebrate model to assess physiological pH

in vivo. Zebrafish was maintained in the Zebrafish Facility at the Institute of Molecular and

Cell Biology, A�STAR, Singapore. Fish-based experiments were performed in accordance with

a protocol approved by the Institutional Animal Care and Use Committee (IACUC) in Biolog-

ical Resource Center in Biopolis, Singapore (IACUC #120787). All embryos were grown and

maintained in egg water (0.6 g/l of aquarium salt in water purified with a reverse osmosis sys-

tem) at 28.5˚C.

Delivery of the MBMs to the intestine of 72 hpf zebrafish embryos (10 animals) via micro-

gavage was performed as stated [33]. Injection of the MBMs to the brain ventricle was per-

formed in 24 hpf zebrafish embryos. To ensure the optical translucence of zebrafish embryos

for confocal imaging, egg water with 1-phenyl-2-thiourea was added to 22 hpf embryos. Zebra-

fish embryos were removed from their chorions before the microinjection experiments. The

positions of “to be” injected zebrafish embryos were adjusted in molten 1% low melting aga-

rose (at approximately 30˚C) with the brain ventricle facing upward. For the injection, we

used a glass pipet (tip diameter adjusted to 0.1 mm) pulled from a thin-walled glass microcapil-

lary tube (outer diameter of 1 mm and inner diameter of 0.75 mm; Sutter Instruments). Pres-

sured injection of approximately 5 nl of a suspension of MBMs in normal saline solution

(approximately 10 microcapsules per 1 nl) was achieved using a pico-injector (PLI-100, Har-

vard Apparatus). A previous study demonstrated no effect of microcapsules injected into the

circulatory system of zebrafish embryos on their survival or development and no blood flow

disruptions [30].

pH measurements in vivo with MBMs

Images of MBMs inside zebrafish embryos were acquired using an inverted LSM 700 confocal

microscope (S1 Fig). The pH measurements were performed in vivo with MBMs injected into

the forebrain ventricle of zebrafish embryos. Ratiometric analysis of the MBM fluorescence

intensity in the 587 nm and 627 nm channels was performed as described for the calibration of

MBMs to various pHs. The pH in the cerebrospinal fluid was derived after fitting the I587/I627

intensity ratio to the obtained linear calibration curve (Fig 1B).

The cerebrospinal fluid pH was measured under the control conditions and right after

acute heat shock at 50˚C for five minutes. The pH before and after the temperature treatment

was evaluated in the same clusters of MBMs in the forebrain ventricle to ensure the highest

accuracy measurements. The statistical significance of differences between the experimental

groups was tested with a two-sided Mann-Whitney U test in the statistical software R (www.r-

project.org) with the additional package coin [34].

Results and discussion

The applied MBMs (Fig 1A–1C) are based on the pH-sensitive fluorescent dye SNARF-1,

which was encapsulated in a semipermeable polyelectrolyte shell using the LbL technique [27,

30]. To keep SNARF-1 inside the shell, the dye was encapsulated in the form of a conjugate

with dextran (SNARF-1-D). The shell is only permeable to low-weight molecules, allowing the

fluorescent probe to remain sensitive to the environment; however, it traps the dye conjugated

with the polymer inside the microcapsule. MBMs were made biocompatible by covering them

with a polymer containing polyethylene glycol, which has high resistance to protein adsorption
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and significantly reduces friction [35–37]. Due to this coating, MBMs should not be recog-

nized by the immune system and should easily move in the internal media of an animal.

SNARF-1 was excited by approximately 560 nm light to yield a fluorescence spectrum with

two peaks at approximately 587 and 627 nm. The ratio between the peaks is sensitive to pH

(Fig 1D), and thus, the dye may serve as a self-sufficient selective sensor to pH with the best

sensitivity at pH 6–9 [16], which perfectly fits measurements in the physiological pH range.

The ratio between the spectral peaks I587/I627 of SNARF-1 inside MBMs has an apparent linear

response to the pH of the media and was calibrated in a series of buffers from pH 6.6–8.4 (Fig

1E) before further in vivo measurements under a confocal microscope (S1 Fig). The response

of microencapsulated SNARF-1 to pH is known to be highly reversible [38], which allow using

this probe for prolonged pH monitoring.

To test the possibility of acquiring the fluorescent signal from MBMs inside zebrafish

embryos, a series of embryos were microgavaged with many MBMs. The fluorescence of

MBMs was easily identifiable in the digestive system of all the microgavaged embryos (Fig 2A).

MBMs spread and moved freely along the intestine of the embryos over three hours of

observation.

In the next step, we tested the possibility of acquiring signal from a small amount of MBMs

injected into the internal fluids of the organism, particularly inside the brain ventricle of a zeb-

rafish embryo (Fig 2B). The brain ventricle of fish embryos is a unique site for simple introduc-

tion of optical sensors into an organism without any effects of the injection on survival,

development or behavior of the embryos [39]. The fluorescent signal was recognizable even

from clusters of just a few MBMs or individual MBMs inside the forebrain ventricle of the

embryos, and the intensity ratio I587/I627 corresponded to a pH range of 8.04–8.25, according

to the obtained calibration curve. The measured pH of the cerebrospinal fluid was in good

concordance with previous data. Generally, the pH of the cerebrospinal fluid should be similar

to blood pH [40], which lies in range of 7.7 to 8.0 for the adults of most fish species [41]. The

pH values measured by MBMs may be slightly more alkaline due to small inaccuracies in the

measurements. Additionally, in the case of zebrafish embryos during early stages of develop-

ment, interstitial pH is approximately 7.8–8.3 [42]. The embryos currently used for injections

are at the late stages of embryonic development, but may still have more alkaline blood and

cerebrospinal fluid than adults.

To test the sensitivity of the MBMs to physiological changes in pH, the embryos were sub-

jected to acute heat shock at 50˚C for five min (Fig 2C). Such exposure should lead to severe

damage or death of the animal, and it was applied to generate the highest possible change in

physiological pH. After the temperature treatment, the readout of the MBMs indicated a statis-

tically significant decrease (p-value = 0.049) in pH to approximately 6.7–7.3. This shift is likely

related to a switch to anaerobic metabolism under the strong heat shock and to accumulation

of lactic acid in tissues and blood of the organism. A variety of stressful conditions (and heat

shock) are known to cause a decline in oxygen-related energy production in mitochondria,

while anaerobic energy production (with lactate as the final metabolite) becomes intense to

compensate the energy demand [43–44]. Accumulation of lactate, indicated by the observed

acidification of the internal fluids of the embryos, reveals significant physiological disturbance

under the applied heat shock.

The obtained results demonstrate the possibility of monitoring physiological parameters of

the same fish embryo over time with a common confocal microscope (or even a simple fluores-

cent microscope), which could significantly improve the current bioassays used for toxicity

testing. Moreover, the technique suggested in the current work has methodological advantages

over the widely applied procedures for identification of physiological parameters. Methods

such as real-time PCR, gel electrophoresis of proteins, biochemical enzymatic techniques and
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others require long sample preparation procedures, while the injection of MBMs takes much

less time, after which in vivo pH monitoring is readily possible.

Importantly, the proposed technology of MBMs has a number of advantages for physiologi-

cal measurements over other existing techniques for immobilization of fluorescent probes into

polymeric nano- and microbeads (S1 Table) [45–62]. Unlike nanosensors, MBMs are large

enough to observe and obtain a signal from even a single microcapsule with an optical micro-

scope, and, unlike hydrogel microbeads, MBMs can roll up (similar to red blood cells) to move

along the smallest capillaries without disruption of the blood flow [30] when injected into the

circulatory system. Furthermore, MBMs are the only type of immobilized sensors that can be

Fig 2. Visualization of MBMs and pH measurements in zebrafish embryos. (a) Images of MBMs in the

intestine of a zebrafish embryo, combined green (587 nm) and red (627 nm) channels. (b) Images of MBMs in brain

ventricle of a zebrafish embryo, combined green (587 nm) and red (627 nm) channels. (c) pH in cerebrospinal fluid

monitored by MBMs under control and heat shock conditions with respective original images of MBMs in the brain

ventricle of the same individual. Blue indicates control conditions; orange indicates heat shock exposure. *
indicates a statistically significant difference from the control with p-value < 0.05.

https://doi.org/10.1371/journal.pone.0186548.g002
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biodegradable and can incorporate different enzymes into the sensor, which significantly

increases the range of measurable parameters.

Finally, MBMs allow the use of combinations of probes for different physiological parame-

ters. The microcapsules trapping different fluorescent dyes can “mask” their possible toxicity

to the analyzed organism, which removes concerns about the toxicity of many different dye

mixtures and may hasten the development of new bioassays.

Conclusions

In the current study, we introduced a microscopy-based approach that offers significant

advances for monitoring physiological characteristics in fish embryos in vivo. The brain ventri-

cle was proposed as a unique site for simple and harmless implantation of MBMs into fish

embryos, and the implanted MBMs showed sensitivity to pH variation in zebrafish embryo

under heat shock stress conditions. In contrast to currently available biochemical and molecu-

lar techniques, the use of MBMs allowed repeated measurements in the same individual and

monitoring of the physiological state of the organism. In the current study, we focused on pH-

sensitive MBMs, but with further development, we will increase the range of MBMs sensitive

to various physiological parameters. This feature allows more ambitious and comprehensive in
vivo monitoring of the states of fish embryos, with a final aim to bring toxicological bioassays,

and ecotoxicology- and ecophysiology-related research to a new level of effectiveness and

sensitivity.

Supporting information

S1 Fig. General scheme of optical system in confocal laser scanning microscope LSM 700

used for in vivo pH measurements with implanted MBMs.
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S1 Table. Comparison of different techniques for the immobilization of fluorescent probes

in polymeric nano/microcapsules and nano/microbeads/fibers for in vivo applications [45–

62].

(PDF)
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