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Abstract

Tuberculosis (TB) remains a major global health challenge and the development of a better

vaccine takes center stage in fighting the disease. For this purpose, animal models that are

capable of replicating the course of the disease and are suitable for the early-stage screening

of vaccine candidates are needed. A Mycobacterium marinum infection in adult zebrafish

resembles human TB. Here, we present a pre-clinical screen for a DNA-based tuberculosis

vaccine in the adult zebrafish using an M. marinum infection model. We tested 15 antigens

representing different types of mycobacterial proteins, including the Resuscitation Promoting

factors (Rpf), PE/PPE protein family members, other membrane proteins and metabolic

enzymes. The antigens were expressed as GFP fusion proteins, facilitating the validation of

their expression in vivo. The efficiency of the antigens was tested against a low-dose intraper-

itoneal M. marinum infection (� 40 colony forming units), which mimics a primary M. tubercu-

losis infection. While none of the antigens was able to completely prevent a mycobacterial

infection, four of them, namely RpfE, PE5_1, PE31 and cdh, led to significantly reduced bac-

terial burdens at four weeks post infection. Immunization with RpfE also improved the survival

of the fish against a high-dose intraperitoneal injection with M. marinum (� 10.000 colony

forming units), resembling the disseminated form of the disease. This study shows that the

M. marinum infection model in adult zebrafish is suitable for the pre-clinical screening of

tuberculosis vaccines and presents RpfE as a potential antigen candidate for further studies.

Introduction

Tuberculosis (TB) remains a major health problem that has been extensively studied in recent

years. Mycobacterium tuberculosis, the causative agent of TB, caused 1.4 million deaths and

10.4 million new infections in 2015 [1]. The prevalence of TB is highest in Africa and Asia,
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where 75% of all new cases are diagnosed [1]. The World Health Organization (WHO) esti-

mates that one third of the human population have a latent TB infection and carry up to a 10%

lifetime risk of reactivation into an active disease [1]. In addition, the multi-drug resistant M.

tuberculosis strains and HIV co-infections hamper the treatment of TB [1,2].The WHO has set

an ambitious goal to eliminate TB as a global health problem by the year 2050 [1]. To reach the

goal, new innovative approaches are needed.

Interest in developing novel tuberculosis vaccines has grown over the years. The only avail-

able TB vaccine, Bacillus Calmette Guérin (BCG), protects young children, but its ability to

induce long-term cell mediated immune responses varies and the protection it provides

against pulmonary TB or against the reactivation of latent TB is limited [3–5]. Therefore, new

vaccines that protect from the primary infection, boost BCG induced immunity or prevent the

reactivation of a latent infection, are needed to overcome TB.

A central issue in TB research has been the paucity of good animal models [6]. M. tuberculo-
sis is not a natural pathogen of traditional animal models such as mice, rabbits and guinea

pigs, and natural hosts, non-human primates, can be used only very selectively for experiments

[6]. In the past ten years, the zebrafish (Danio rerio) has emerged as an advantageous animal to

model a TB infection. An infection with Mycobacterium marinum—a close relative to M.

tuberculosis—in zebrafish leads to a disease that resembles human TB in many aspects [7]. M.

marinum is a natural pathogen of fish and an infection can lead to either an active or a natu-

rally latent form of the disease [8–10]; reviewed in [11]. As a vertebrate, the zebrafish has both

an innate and an adaptive immunity with essentially the same immune cell populations as are

present in humans, including neutrophils, macrophages and both T and B cells. Also, zebrafish

CD4+ and CD8+ lymphocytes perform similar functions as in humans [12–17]. Although

there are physiological differences between humans and zebrafish, most importantly fish lack

lungs and are smaller than humans, there is accumulating evidence for the similarities in

immune responses involved in mycobacterial infections in zebrafish and humans, and factors

increasing susceptibility to infections [17–26]. In addition, similar virulence factors and

immune evasion strategies are used by both M. marinum and M. tuberculosis [19,27–31]. The

data obtained from the zebrafish studies has already proven useful in the design of novel drugs

and therapies against TB [21,25,30,32].

Despite the increasing knowledge on mycobacterial pathogenesis, the development of new

TB vaccines has turned out to be challenging. Currently there are 14 vaccine candidates in the

clinical trial pipeline, including inactivated or attenuated whole-cell vaccines, and subunit vac-

cines containing mycobacterial antigens. [4,33]. Expression of a bacterial antigen leads to the

production of cytokines, including Interferon gamma (IFN-γ), and antigen presentation via

the major histocompatibility complex of dendritic cells and the development of antigen spe-

cific memory cells [34]. An important advantage of DNA vaccines over BCG and other live

attenuated vaccines is that they can be safely administered to immunocompromised people.

[1,4,35].

A key step in the design of DNA vaccines is the choice of the antigen(s), especially since

DNA vaccines tend to have a relatively weak immunogenicity in humans [34]. Even though

there are methods for predicting the immunogenicity of selected antigens, in vivo infection

models are required to assess the efficacy of the novel vaccine candidates as there are currently

no reliable biomarkers for predicting the efficacy of protection against TB [4,36,37]. We have

previously shown that adult zebrafish can be partially protected against mycobacteriosis with

the BCG vaccine or with a DNA vaccine expressing a combination of antigens [38,39]. The

current study was designed to test the applicability of the adult zebrafish-M. marinum infec-

tion model in the pre-clinical screening of DNA-based tuberculosis vaccines. Based on litera-

ture and online databases, MarinoList and TubercuList [40,41], we selected 15 M. marinum
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antigens that have a homologue in M. tuberculosis and predicted or experimentally shown

immunogenicity. We selected molecules that belong to different functional categories and are

expressed during different stages of mycobacterial growth, including four Resuscitation pro-

moting factors [42], three PE/PPE family members [43] and five other membrane associated

proteins together with three proteins involved in metabolism. The selected antigens were

tested as prophylactic DNA vaccines using two variations of the zebrafish mycobacterium

infection model: a low-dose infection that mimics a primary TB infection leading to latency;

and a high-dose infection that replicates miliary tuberculosis.

Materials and methods

Fish

Adult (5–7 month-old) wild type AB zebrafish were used for all experiments and maintained

as in (Parikka et al, 2012). Animal studies were approved by the National Animal Experiment

Board in Finland (Approval number ESAVI/8125/04.10.07/2013) and conducted in accor-

dance with the EU-directive 2010/63/EU on the protection of animals used for scientific

purposes.

Culture of M. marinum and qRT-PCR

The Mycobacterium marinum strain ATCC 927 was cultured on 7H10 Middlebrook OACD

plates (BD Biosciences, Franklin Lakes, NJ) at +29˚C, inoculated to a fresh plate every 7 days,

and a fresh stock was thawed after every two passages. Liquid cultures for RNA isolation and

infections were grown in 7H9 Middlebrook medium (BD Biosciences, Franklin Lakes, NJ), see

below for details.

Expression of the M. marinum genes corresponding to the selected antigens was confirmed

by qRT-PCR from M. marinum RNA. The M. marinum ATCC 927 strain was cultured in 7H9

(BD Biosciences) medium to the log phase (OD600 of 0.6). Bacteria from six separate liquid

cultures were collected by centrifuging for 5 minutes at 800 x g. The pellets were used for RNA

extractions with the RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions.

Before qRT-PCR, the RNA samples were treated with DNase (RapidOut DNase Removal kit,

Thermo Fischer Scientific, Waltham, MA USA). The expression of mycobacterial genes was

verified with the iScript™ One-Step RT-PCR Kit with SYBR1 Green (Bio-Rad, California,

USA) according to the manufacturer’s instructions. The M. marinum internal transcribed
spacer (MMITS) [8] was used as a reference gene, and the qRT-PCR results were analyzed by

the ΔCt-method [44]. The primers used for qRT-PCR were designed using the Primer3Plus

software [45] and are listed in S1 Table.

Construction of DNA vaccines and immunizations

Homology between the M. tuberculosis and M. marinum genes was analyzed with the Clustal

Omega sequence alignment tool [46]. The cellular location of the chosen M. marinum proteins

was determined based on experimental evidence available in the literature or by prediction of

transmembrane protein topology with a hidden Markov model [47]. Antigen sequences of dif-

ferent lengths were selected for expression in the candidate vaccine, however, when possible,

all or part of the extracellular region of the M. marinum protein was included in the vaccine

antigen. The Expasy Compute pI/Mw tool [48] was used to calculate the expected molecular

weight of the antigen-GFP fusion proteins. The primers used for cloning the antigens are listed

in S2 Table.
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DNA vaccine constructs were prepared and the DNA vaccinations performed as described

in [38]. In brief, the chosen antigen regions were amplified from Mycobacterium marinum
ATCC grown on 7H10 Middlebrook OACD plates (BD Biosciences, Franklin Lakes, NJ) by

colony PCR. Purified PCR products were restriction cloned into the pCMV-eGFP expression

vector to be expressed with a C-terminal GFP tag (Addgene plasmid 11153), transformed into

E. coli One Shot TOP10 cells (Invitrogen) and confirmed by sequencing. For DNA immuniza-

tions, plasmid DNA was purified using the QIAGEN Plasmid Plus Maxi Kit (Qiagen, Venlo,

The Netherlands). The pCMV-EGFP plasmid without mycobacterial inserts was used for con-

trol vaccinations.

For vaccine immunizations, the fish were briefly anaesthetized in 0.02% 3-aminobenzoic

acid ethyl ester (pH 7.0) (Sigma–Aldrich) and injected in the dorsal muscle with 12 μg of the

vaccine or the pCMV-eGFP plasmid using aluminosilicate capillary needles and a PV830

Pneumatic PicoPump microinjector (World Precision Instruments, Sarasota, FL). The injec-

tion was followed by electroporation (6 pulses, 40 V, 50 m s each) using the GenePulser-elec-

troporator (Bio-Rad, Hercules, CA) with tweezer-type electrodes (BTX/Harvard Apparatus,

Holliston, MA) [39].

Fluorescence microscopy, Western blotting and GFP ELISA

In vivo expression of the plasmid DNA-derived protein products (GFP and its antigen recom-

binants) was verified by fluorescence microscopy, Western blotting and ELISA using naïve

fish as a negative control. Nikon AZ100 fluorescent microscope was used for the microscopy.

For Western blotting and ELISA, the fish were dissected under UV light and their dorsal mus-

cles that showed the fluorescence indicative of vaccine antigen expression were collected for

analysis. The samples were homogenized in TriReagent (Molecular Research Centre, Inc., Cin-

cinnati OH, USA) with ceramic beads (MO BIO Laboratories, Carlsbad CA, USA) using a

PowerLyzer™ 24 Bench Top Bead-Based Homogenizer (MO BIO Laboratories), followed by a

protein extraction protocol according to the manufacturer’s instructions.

The Pierce1 BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA) was used to

define the total protein concentration of each lysate. For Western blotting, a volume corre-

sponding to a total protein amount of 7.5–15 μg of each fish homogenate was resolved on a

4–20% Mini-PROTEAN1 TGX™ Gel (BioRad) and blotted onto a nitrocellulose membrane

using Trans-Blot1 Turbo™ Mini Nitrocellulose Transfer Packs (BioRad). The horse radish per-

oxidase conjugated GFP Tag Monoclonal Antibody (GF28R) (Thermo Fisher) was used for

detection of the target protein. The GFP ELISA Kit (Cell Biolabs, San Diego, CA) was used

for determining the relative levels of GFP according to the manufacturer’s instructions. The

absorbance values were transformed into GFP concentrations using a GFP standard, and the

amount of GFP in each sample was normalized with the total protein concentration of the

sample and with the average of the GFP controls in the experiment. Non-immunized AB fish

were used as a negative control in both Western blots and ELISA.

M. marinum infections

Fish were infected either with a low (~40 cfu) or high (~10,000 cfu) dose of M. marinum four

weeks after immunization. M. marinum ATCC 927 was cultured at 29˚C in standard mycobac-

terium medium, 7H9 (BD Biosciences), and prepared for infections as described in [8]. For

infections, fish were anesthetized with 0.02% 3-aminobenzoic acid ethyl ester. The desired

dose of M. marinum diluted in 0.2 M sterile KCl was injected intraperitoneally (i.p.). Thereaf-

ter, the fish were immediately released into a recovery tank. Infection doses were verified by

plating the bacteria onto 7H10 plates (BD Biosciences). Following the infections, the well-
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being of the fish was monitored daily, and fish showing signs of stress or mycobacterial disease

during the experiment follow-up period were euthanized with 0.04% 3-aminobenzoic acid

ethyl ester.

Nucleic acid extraction and quantification of bacterial burdens

To assess vaccine efficacy on a primary infection, AB fish immunized with experimental or

control (GFP) antigens (~15 fish/group) were infected with a low dose (~40 cfu) of M. mari-
num four weeks post-immunization. Five weeks after infection, the fish were subjected to

DNA extraction. Fish showing signs of disease during the five-week follow-up interval were

euthanized immediately and included in the cfu analysis. The contents of the peritoneal cavity,

including the visceral organs, of euthanized fish was collected into homogenization tubes

(Mobio, California, USA) and homogenized in 1.5 ml of TRI reagent (MRC, OH, USA) using

the PowerLyzer24 bead beater (Mobio). Homogenized samples were sonicated using an m08

water bath sonicator (Finnsonic, Lahti, Finland) and DNA extractions were then carried out as

in [38]. The bacterial burden per fish was measured from the DNA samples by qPCR with M.

marinum-specific primers using a standard curve with previously determined bacterial loads

as described in [8]. Antigen immunizations that showed a protective effect (or tendency) were

repeated one or two more times with similarly sized groups.

Survival follow-up

For survival experiments, the control and experimental fish (19–34 fish/group) were infected

with a high dose (~10.000 cfu) of M. marinum and followed for twelve weeks. Fish included in

the survival experiments were monitored daily for their well-being and humane end point cri-

teria ratified by the national ethical board were followed. Fish showing signs of discomfort or

disease were euthanized using 0.04% 3-aminobenzoic acid ethyl ester. Antigen immunizations

that showed a protective effect (or tendency) (RpfE, PE31, MMAR_3501, esxM, cdh) were

repeated one or two more times with similarly sized groups.

Power calculations and statistical analyses

The required sample size (n) for each experiment was calculated using the following formula:

n ¼ 2ðZa þ Z1� bÞ
2s2 ;
=D

2
, in which Zα (1.96) is a constant set based on the accepted error α

(0.05), Z1-β (0.8416) is a constant set according to the power of the study (0.8), σ is the esti-

mated standard deviation (0.5). Δ is the difference in the effects of the two treatments com-

pared (estimated effect size), and was set to 0.5 (50%) relating to a reduction in the bacterial

burden or improvement in the survival percentage. This is approximately the same as the effect

that is achieved by the BCG vaccination [38,39]. Based on these calculations, the minimum

group size was set to 14 fish [49].

Statistical analyses were done using the GraphPad Prism 5.02 software (GraphPad Software

Inc., California, USA). The statistical tests used were the log rank Mantel–Cox test for the sur-

vival experiments, and the Mann–Whitney test for bacterial counts and ELISA results. Values

of p�0.05 were considered significant.

Results

Choice of antigens and antigen construction

For the vaccine antigen screen, we selected genes that belong to diverse functional categories

and are expressed at different stages of the mycobacterial life cycle. In addition, we chose anti-

gens with different (observed or predicted) cellular locations, although we focused on secreted

Identification of novel antigen candidates for a tuberculosis vaccine in the zebrafish

PLOS ONE | https://doi.org/10.1371/journal.pone.0181942 July 25, 2017 5 / 21

https://doi.org/10.1371/journal.pone.0181942


and membrane-associated proteins, as these presumably are more likely to elicit responses by

the host immune system [50]. We chose the antigens based on literature (see below) and

homology data in online databases Tuberculist [40] and Marinolist [41].

Resuscitation promoting factors (Rpf) are proteins with peptidoglycan-hydrolysing

activity and are thought to be important for mycobacterial virulence and especially for

resuscitation from dormancy. Mutant bacterial strains with Rpf deficiencies display defects

in replication, reactivation and in persistence to stress, presumably due to alterations in

the structure of their cell wall [10,51–53]. There are five rpf genes in the M. tuberculosis
genome (rpfA-E) [42] and four in M. marinum (rpfA, -B and -E, and resuscitation-promot-
ing factor-like protein (mmar_2772) homologous to M. tuberculosis rpfC, which is hereafter

referred to as rpfC). Despite the name, the expression profiles of the M. tuberculosis rpf
genes differ according to the infection phase, suggesting that they have distinct functions

[54]. As Rpfs have also been reported to have immunogenic properties in mice [55] and in

humans [56]; for a review see [57], we included all four M. marinum antigens in our

screen.

Another relatively well-studied group of potential mycobacterial antigens are the PE/PPE

proteins, which are named after the proline-glutamic acid (PE) and proline-proline-glutamic

acid (PPE) motifs near their N-termini. The pe/ppe genes constitute *10% of the genome of

pathogenic mycobacteria, and their expression is differentially regulated by stress and other

environmental conditions, including inside granulomas. PE/PPE proteins are commonly

localized to the bacterial cell surface or are secreted, enabling them to elicit and modulate host

immune responses. Many PE/PPE proteins have been shown to be highly antigenic [58] and

several have been studied as vaccine candidates, of which a candidate comprising a polyprotein

of Mtb32 (PepA) and Mtb39 (PPE18) has progressed to clinical studies [59]. For our screen,

we chose three members of this protein family that had not yet been tested as vaccine candi-

dates, namely PE5_1, PE19_1 and PE31.

We also included proteins with a signature expression profile in certain phases of the infec-

tion. For this, we chose the outer membrane protein A (ompA), whose homolog in M. tubercu-
losis induces strong IFN-γ responses in cattle [60], and the predicted transmembrane protein

MMAR_3501 encoded by the Dormancy survival regulon (DosR), that is highly immunogenic,

especially in patients with LTBI [61]. In addition, we selected the Early secreted antigenic tar-

get (ESAT)-6/10-kDa culture filtrate protein (CFP-10) family member esxM, whose homolog

in M. tuberculosis, Rv3620c, is a secreted, antigenic protein [62]; the lipoprotein lprG, whose

homolog in M. tuberculosis has been shown to induce the activation of memory T cells in

humans [63]; and MMAR_4207, a predicted transmembrane protein of unknown function

with a highly conserved homolog in M. tuberculosis [40,41].

Knowing that mycobacteria undergo extensive metabolic changes during the different

stages of their lifecycle [64], we chose components of metabolic pathways as vaccine anti-

gens. The biosynthesis of cysteine is needed in the oxidative defense and for dormant

mycobacteria to persist inside infected macrophages. Therefore, we selected cysQ and

cysM, two critical enzymes of this pathway [65,66]. In addition, we chose cdh, a predicted

membrane protein and CDP-diacylglycerol pyrophosphatase, which is involved in the bio-

synthesis of phospholipids, and whose M. tuberculosis homolog Rv2289 shows high abun-

dance in the virulent H37Rv strain, but is nearly absent from the avirulent H37Ra strain

[67].

The selected antigens together with their M. tuberculosis homologs are listed in Table 1. For

clarity, the same grouping according to the (predicted) function of the antigen proteins will be

used throughout the paper.
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Expression of selected antigens in M. marinum

The expression of the selected M. marinum genes in the ATCC 927 strain was verified by

qRT-PCR (Fig 1). For this purpose, we used a log phase bacterial culture (OD600 of ~0.6),

which represents actively growing, infectious mycobacteria. Although the relative expression

levels of the candidate genes observed in our bacterial culture varied in a range of a ten times

higher expression (RpfA and esxM) to 10−5 (pe31) compared to the reference gene MMITS
expression, each of the selected genes was verified to be expressed. Based on this, all 15 anti-

gens were selected for further studies and cloned into an expression vector as GFP–tagged

fusion proteins.

Verification of antigen expression by the vaccines

One of the key issues in DNA vaccination is achieving adequate antigen expression in the tar-

get tissue. To assess this, the in vivo expression of the vaccine constructs was analyzed with

three different methods, each utilizing the GFP tag fused with the antigen. First, antigen

expression was visualized in situ, in the dorsal muscles of the fish, with a fluorescent micro-

scope. Although not quantitative, visual inspection provides a quick and easy way to evaluate

successful vaccinations and antigen expression in each individual fish without harming them.

Table 1. The selected antigens and their M. tuberculosis homologs with predicted functions.

Accessionnumber Protein name M.tuberculosis protein

(% homology)

Protein

Size

(aa)

Predicted

protein function

Reference

Resuscitation Promoting Factors

MMAR_4665 RpfA Rv0867c (84%) 386 Peptidoclycan hydrolase. May promote the

resuscitation of dormant cells.

[42,51,53]

MMAR_4479 RpfB Rv1009 (85%) 363 Peptidoclycan hydrolase. May promote the

resuscitation of dormant cells.

[8,42,52]

MMAR_2772 resuscitation-promoting

factor-like protein

Rv1884c/RpfC (66%) 138 Peptidoclycan hydrolase. May promote the

resuscitation of dormant cells.

[54–56]

MMAR_3776 RpfE Rv2450c (74%) 244 Peptidoclycan hydrolase. May promote the

resuscitation of dormant cells.

[40,41,57]

PE/PPE proteins

MMAR_5258 PE5_1 Rv1386/PE15 (70%) 103 Membrane protein of unknown function. [43,58]

MMAR_2670 PE19_1 Rv1788/PE18 (89%) 99 Membrane protein of unknown function. [43,58]

MMAR_4241 PE31 Rv1195/PE13 (70%) 99 Membrane protein of unknown function. [43]

Transmembrane proteins and secreted factors

MMAR_4207 Rv1234 (95%) 175 Conserved hypothetical membrane protein of

unknown function.

[40,41]

MMAR_3501 Rv1733c (38%) 193 Conserved hypothetical membrane protein of

unknown function.

[61]

MMAR_4637 ompA Rv0899/ompA (67%) 332 Structural outer membrane protein that may protect

the integrity of the bacterium.

[60]

MMAR_2674 esxM Rv3620c/esxW (87%) 98 Secreted, ESAT-6/CFP-10 family protein, function

unknown.

[62]

MMAR_2220 lprG Rv1411c/lprG (78%) 233 Conserved lipoprotein of unknown function. [63]

Metabolic enzymes

MMAR_3112 cysQ Rv2131/cysQ (78%) 263 Monophosphatase involved in sulphur metabolism. [65,66]

MMAR_4629 cysM Rv1336/cysM (76%) 314 Cysteine synthase. [65,66]

MMAR_3445 cdh Rv2289 (68%) 264 Secreted CDP-diacylglyserol pyrophosphatase

involved in phospholipid biosynthesis.

[67]

https://doi.org/10.1371/journal.pone.0181942.t001
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As shown in Fig 2, all of the tested antigens showed detectable GFP expression seven days after

vaccination. Fluorescence above the background level of non-immunized fish was observed

for all of the candidate antigens, and this was always located near the injection site in the dorsal

muscle.

To quantify antigen expression, a GFP enzyme-linked immunosorbent assay (ELISA) was

used for proteins extracted from the dorsal muscles of the vaccinated fish. The quantitated

expression of the recombinant constructs relative to the GFP control (samples from fish

injected with an empty plasmid) is shown in Fig 3. All immunizations led to quantifiable GFP

expression. Most antigens had expression levels comparable to the GFP control, while RpfA,

RpfB and MMAR_3501 antigens had a rather low expression (10–16% of the GFP control),

and the RpfE fusion protein showed expression levels exceeding that of the GFP control.

Fig 1. Expression of the antigens in the M. marinum ATCC 927 strain. A liquid culture of M. marinum was grown to a log phase, bacteria were harvested

by centrifugation and subjected to RNA extraction and DNase treatment. Antigen expression was confirmed by qRT-PCR using primers specific for each

antigen (S1 Table). The M. marinum transcribed internal spacer (MMITS) was used as a reference gene. The horizontal lines represent medians and the

bars and whiskers represent minimum and maximum values. N = 6.

https://doi.org/10.1371/journal.pone.0181942.g001
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To validate the correct size of the recombinant antigen fusion proteins, they were visualized

with Western blotting, using a HRP-conjugated GFP antibody (Fig 4). The GFP control (fish

immunized with an empty plasmid) produced a strong band of the expected size (GFP protein,

27 kDa). Importantly, expression of all of the antigens resulted in a detectable band corre-

sponding to the calculated molecular weight of the GFP fusion protein (Fig 4).

Vaccine efficiency against a low-dose M. marinum infection

In most humans, a M. tuberculosis infection most often leads to a sub-clinical, latent infection,

where the infection retains the potential to reactivate [68,69]. Ideally, a TB vaccine would pre-

vent new infections; however, a more realistic goal would be a vaccine that helps the host to

limit and control the infection and to prevent the dissemination into a fulminant disease [33].

Fig 2. In situ GFP expression in immunized zebrafish. AB fish were immunized with 12 μg of experimental

or control vaccine plasmids, followed by electroporation. Seven days post-injection, the successful vaccinations

and expression of the antigen-GFP fusion proteins were verified by fluorescence microscopy. The fluorescence

resulting from the expression of the antigen-GFP fusion protein is seen in the dorsal muscle near the injection

site. For each antigen, a representative example is shown. Non-immunized AB fish were used as a negative

control.

https://doi.org/10.1371/journal.pone.0181942.g002

Identification of novel antigen candidates for a tuberculosis vaccine in the zebrafish

PLOS ONE | https://doi.org/10.1371/journal.pone.0181942 July 25, 2017 9 / 21

https://doi.org/10.1371/journal.pone.0181942.g002
https://doi.org/10.1371/journal.pone.0181942


Fig 3. Quantification of mycobacterial antigen expression with GFP ELISA. AB fish were immunized with 12 μg of experimental or

control vaccine plasmids, followed by electroporation. Seven days post-injection, fish were dissected under a UV light and the dorsal muscles

were collected and homogenized with ceramic beads, followed by protein extraction. 7.5–15 μg of each protein lysate in a 1% SDS buffer was

used for a GFP ELISA analysis. A standard curve was used to quantify the absorbance values, which were then normalized with the average

of the control values of each experiment before the values were pooled. Non-immunized AB fish were used as the negative control. Mean

±SD is shown. N�4 per group. * p<0.05, ** p<0.01, *** p<0.001 (Two-tailed Mann-Whitney test).

https://doi.org/10.1371/journal.pone.0181942.g003
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In the adult zebrafish, a primary infection can be modelled by a low-dose M. marinum infec-

tion, which in most fish leads to a latent disease with stable bacterial counts [8]. To assess the

efficacy of the selected antigens against a primary infection, the fish were first immunized with

the experimental and control vaccine plasmids, and four weeks later i.p. infected with ~40 cfu

of M. marinum. Five weeks post-infection, the fish were sacrificed and the bacterial burden of

each fish was quantified by qPCR (Fig 5). To enable the comparison of data from multiple

Fig 4. Schematic representation of the vaccine antigens. The M. marinum proteins are represented by

bars, different colors indicate cellular location based on the literature and/or Trans Membrane prediction using

Hidden Markov Models (TMHMM). The vaccine antigen-GFP fusion proteins are represented by lines, together

with their expected molecular weights (See legend for more details). On the right, an immunoblot analysis of

antigen-GFP fusion proteins. For the analysis, AB fish were immunized with 12 μg of experimental or control

(empty plasmid with GFP only) vaccines, followed by electroporation. Seven days post-injection, fish were

dissected under UV light and the dorsal muscles were collected and homogenized, followed by protein

extraction. 7.5–15 μg of each protein lysate was run on an SDS-PAGE gel, blotted onto a nitrocellulose

membrane followed by immunodetection with a horse radish peroxidase (HRP) conjugated anti-GFP antibody.

Non-immunized AB fish were used as the negative control.

https://doi.org/10.1371/journal.pone.0181942.g004
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experiments without bias from variations in the basal levels, the bacterial count of each sample

was normalized with the median cfu value of the GFP control group of the same experiment.

The raw values of the bacterial counts in each sample compared to the control group(s) are

shown in S1 Fig. While most of the 15 antigens tested did not affect the progression of the

infection in terms of bacterial numbers and none of them was able to clear the infection

completely, four of the candidate vaccines reduced the bacterial burden significantly (two-

tailed Mann-Whitney test). These included RpfE, which led to an 88% reduction in median

bacterial counts; together with two PE protein family members, PE5_1 and PE31, and the met-

abolic protein cdh, which reduced the bacterial burden by 56%, 50% and 62%, respectively.

Vaccine efficiency against a high-dose M. marinum infection

In young children, a M. tuberculosis infection may lead to an acute, fulminant infection. The

BCG vaccine protects children against this miliary TB, but due to safety issues, the use of BCG

is limited in low-risk areas and excluded from HIV co-infected patients [1,5,35,69]. Therefore,

a safer vaccine for preventing the dissemination of TB is required. To model a miliary TB

infection in the adult zebrafish, we used a high-dose M. marinum infection that leads to an

acute disease and relatively high mortality [8]. As a proof-of-concept, we have shown that

Fig 5. RpfE, PE5_1, PE31 and cdh antigens reduce bacterial burdens in adult zebrafish infected with a low-dose of M. marinum. AB fish were

immunized intramuscularly with the experimental and control (GFP) antigens, followed by an intraperitoneal infection with ~40 cfu of M. marinum. Five weeks

post-infection, the fish were euthanized, and their internal organs were dissected, homogenized and subjected to DNA extraction. The bacterial burden in

each fish was determined by qPCR with M. marinum specific primers. The experimental cfu values in each experiment are normalized with the median cfu of

the GFP controls of the same experiment. The lines represent median values, and the bars and whiskers the minimum and maximum values for each group,

respectively. N = 10–29 per group. * p<0.05, ** p<0.01 (two-tailed Mann-Whitney test).

https://doi.org/10.1371/journal.pone.0181942.g005
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zebrafish can be partially protected against a high-dose M. marinum infection by BCG vaccina-

tion, indicated by improved survival [38,39]. We used a similar approach to test the effect of

the candidate DNA vaccines. Of the original 15 antigens, we chose 10 for assessment in a high-

dose infection assay, including the four that significantly reduced the bacterial burden in the

low-dose infection assay. As previously, the fish were immunized with the experimental and

control antigens and infected with M. marinum five weeks later, this time with ~10.000 cfu.

Survival of the fish was monitored for 12 weeks, during which all fish showing signs of disease

were euthanized. The survival curves of each immunization compared with the control group

of the same experiment are shown in Fig 6. One of the tested antigens, RpfE, led to a signifi-

cantly improved survival (40% compared to the 16% of the control group). In addition, immu-

nization with RpfA slightly enhanced fish survival from week 10 post infection onwards,

although the effect was not statistically significant.

Discussion

TB has a long history with mankind and it still remains a global challenge [70]. The bacterium

has had time to evolve and adapt to its human host, and to develop means to avoid host

immune responses or to use them for its own benefit [64,71]. Due to the complicated interac-

tions between the bacterium and its host, proper in vivo models are needed for studying TB.

The zebrafish, together with its natural pathogen M. marinum, have emerged as a feasible sys-

tem to model TB [8–11]. Studies in zebrafish larvae and adults have shown several similarities

in immune responses against mycobacterial infections in zebrafish and humans. These include

the Toll-like receptor (TLR) signaling [18,19,72], leukotriene A4 hydrolase and the Tumor

necrosis factor signaling [22,73,74], Th2 type cells [23,24] and lysosomal trafficking [25]

and furin [26]. In addition, the zebrafish model has been used to study mycobacterial viru-

lence factors and immune evasion strategies, revealing that many of them are used by both

M. marinum and M. tuberculosis. Examples of this include the genes in the RD1 locus [19,

27,29]; the chemokine CXC-motive containing receptor 3 (CXCR3) signaling [20]; efflux

pumps to achieve antibiotic tolerance [28], or the use of surface-associated membrane lipids

to prevent the induction of TLR signaling [31]. Mycobacteria are also able to exploit the

host’s resources for their own benefit, for example by inducing the expression of matrix

metalloproteinase-9 (MMP9) in the host for the recruitment of macrophages [29] or by ini-

tiating granuloma-associated angiogenesis [30]. Consequently, the zebrafish model has

already been used for designing novel drugs and therapies against TB [21,25,30,32]. More-

over, owing to its small size, fast production of offspring and relatively low housing costs,

the zebrafish is also a suitable model for large scale biomedical screening studies [75]. Con-

sidering the scale of the global TB problem, the emergence of multi-drug resistant M. tuber-
culosis strains and the difficulty of predicting protective immune responses, the discovery of

new drugs and vaccines likely will require such screening models [6].

Although attenuated, the BCG vaccine is a live pathogen, and thereby imposes a risk of a

disseminated disease in immunocompromised individuals. This has limited its use in low-risk

countries [35]. Tragically, the people in high-risk areas, who could benefit from the BCG vacci-

nation, also have high a incidence of a co-infection with HIV, which prevents the use of BCG

in these individuals [1,3]. Therefore, safer vaccine alternatives are being actively investigated

and 14 candidates are currently in different phases of clinical trials. Subunit vaccines are gener-

ally considered safer than whole-cell vaccines, and several candidates are being studied at the

moment [33]. The antigens chosen for a subunit vaccine depend on the intended protective

category: a pre-exposure vaccine would contain antigens expressed in metabolically active and

replicating M. tuberculosis, while a post-exposure vaccine would consist of antigens expressed
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Fig 6. RpfE antigen improves survival of the fish infected with a high dose of M. marinum. AB fish were

immunized intramuscularly with the experimental and control (GFP) antigens, followed by an intraperitoneal
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during dormancy. As the subunit vaccine technology facilitates the use of several antigens, a

combination of them would ideally give protection against both the active and latent stages of

TB [33,76]. In our study, we tested 15 antigens that are expressed at different stages of the

mycobacterium lifecycle and belong to different functional categories. We chose not to use

BCG as a positive control because the most effective administration route for BCG in the zeb-

rafish is an intraperitoneal injection, while DNA vaccines are injected intramuscularly. In

addition, BCG is unable to replicate or form granulomas in the zebrafish and thus its protec-

tion is rather modest and variable [38, 39].

Prior to the screening in the infection assays, we verified the expression of the correspond-

ing mycobacterial genes in the ATCC 927 strain by qRT-PCR. In the vaccine plasmid, the

antigens were expressed as GFP fusion proteins, which facilitated the verification of their

expression in vivo. For this, we used fluorescence microscopy, ELISA and Western blotting to

allow the analysis of the expression of the antigens in situ, quantitatively and qualitatively,

respectively. All of the fusion proteins were detected in each of the assays. As fluorescent

microscopy allows the detection of antigen expression easily and without harming the fish, we

used it to assess the success of each vaccination during the screening.

We used two assay settings to study the efficiency of the antigens against a mycobacterial

infection: a low-dose infection followed by the quantification of the bacterial burden five

weeks after infection, and a high-dose infection followed by the monitoring of survival for 12

weeks. The former is set to simulate a primary infection, and the latter a fulminant disease. As

the stress caused to the fish by a high-dose infection and a survival assay is higher than that

caused by a low-dose infection, for ethical reasons, we decided to exclude some of the antigens

that did not show any protective effect against the low-dose infection from the survival study,

even though the infection phases studied by the assays are different.

Four antigens were found to have protective effects against a low-dose mycobacterial infec-

tion. These include the probable CDP-diacylglycerol pyrophosphatase cdh, and two antigens

belonging to the PE/PPE family, namely PE5_1 and PE31, and RpfE. Of these, cdh remains

rather poorly characterized. Both the PE5_1 and PE31 antigens led to an approximately 50%

reduction in the median cfu counts compared to the control group in the low-dose M. mari-
num infection assay. Their M. tuberculosis homologs, PE15 (Rv1386) and PE13 (Rv1195), have

been studied using a recombinant M. smegmatis strain. Both recombinants led to the enhanced

survival of bacteria within macrophages, presumably due to interference with host (innate)

immune signaling pathways [77,78]. The expression of pe13 was upregulated by diverse types

of stress, and led to the increased production of interlukin-6 (IL-6) and IL-1β in macrophages

[77], while PE15 upregulated anti-inflammatory cytokines and down-regulated proinflamma-

tory cytokines and nitric oxide [78]. Thus, it is possible that both of these proteins are involved

in evading the host immune response thereby promoting the survival of the mycobacteria.

Further studies are required to determine the usefulness of these antigens as vaccine candi-

dates. For example, they could be studied as a combination of two or more antigens, or if they

are able to boost the protection offered by the BCG vaccination.

Of the mycobacterial antigens included in our screen, the Rpf proteins are probably the best

studied, both considering their role in mycobacterial pathogenicity and their potential medical

use. The latter is supported also by the results of this study, where RpfE was the only antigen

that provided protection against both a primary (low dose) and a fulminant (high dose)

infection with ~10.000 cfu of M. marinum. Fish were then followed for 12 weeks for survival. The survival curve

for each antigen immunization is shown separately with the GFP control group of the same infection

experiment(s). ** p<0.01 (Log-rank (Mantel-Cox) test). N�19 in each group.

https://doi.org/10.1371/journal.pone.0181942.g006
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infection. This is in line with previous results from mouse studies. In a mouse ex vivo model,

RpfE induced the maturation of dendritic cells via the TLR4 leading to the generation of Th1

and Th17 cell mediated immunity, without stimulating the suppressive regulatory T cells [79].

RpfE has been also studied to some extent as a DNA vaccine candidate in the mouse model,

where it has shown high immunogenicity and variable protection against M. tuberculosis both

in terms of cfu burdens and survival times [76,80]. Considering that Rpf proteins are variably

expressed during reactivation from dormancy, and that the M. marinum infection in adult zeb-

rafish displays a natural latency that can be reactivated experimentally or spontaneously [8,23],

the zebrafish model provides a promising platform to study Rpfs as vaccine candidates against

the reactivation of latent TB. This is an important aspect in the TB research, as immunization

of the latent M. tuberculosis carriers, especially adolescents and young adults, who are the main

source of TB transmission, would effectively limit new infections [81]. We have previously

shown that the adult zebrafish is partially protected against a M. marinum infection by the

BCG vaccine [38,39], and that this protection can be boosted by immunization with a DNA

vaccine consisting of RpfE combined with two other well-studied antigens ESAT-6 and Ag85

[39]. This makes the zebrafish a promising model for developing booster vaccines for BCG.

In conclusion, this study indicates that the M. marinum infection model in the adult zebra-

fish is suitable for early-stage pre-clinical TB vaccine screening and that the PE/PPE proteins

and Resuscitation promoting factors, especially RpfE, are interesting candidates for further

studies as antigens for DNA vaccines against TB.
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nical assistance with the laboratory work, and MSc Nicholas J.A. Halfpenny and Elina Pajula

for help with the experiments. We acknowledge Dr. Helen Cooper for revising the language of

the manuscript.

This work was supported by the Tampere Tuberculosis Foundation (HM, KEO, MP and

MR), the Finnish Academy (MR) (grant number 277495), the Sigrid Juselius Foundation (MP

and MR), the Jane and Aatos Erkko Foundation (MR), the Competitive State Research Financ-

ing of the Expert Responsibility Area of Tampere University Hospital (MR), and Competitive

State Research Financing of the Expert Responsibility area of Oulu University Hospital (MR),

Identification of novel antigen candidates for a tuberculosis vaccine in the zebrafish

PLOS ONE | https://doi.org/10.1371/journal.pone.0181942 July 25, 2017 16 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0181942.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0181942.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0181942.s003
https://doi.org/10.1371/journal.pone.0181942


the Finnish Anti-tuberculosis Foundation (HM, KEO and MP) and the Finnish Cultural Foun-

dation Pirkanmaa Regional Fund (KEO).

Author Contributions
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