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Abstract

Objectives

To assess the neurobiological substrate of initial cognitive decline in Parkinson’s disease

(PD) to inform patient management, clinical trial design, and development of treatments.

Methods

We longitudinally assessed, up to 3 years, 423 newly diagnosed patients with idiopathic PD,

untreated at baseline, from 33 international movement disorder centers. Study outcomes

were four determinations of cognitive impairment or decline, and biomarker predictors were

baseline dopamine transporter (DAT) single photon emission computed tomography
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(SPECT) scan, structural magnetic resonance imaging (MRI; volume and thickness), diffu-

sion tensor imaging (mean diffusivity and fractional anisotropy), cerebrospinal fluid (CSF;

amyloid beta [Aβ], tau and alpha synuclein), and 11 single nucleotide polymorphisms

(SNPs) previously associated with PD cognition. Additionally, longitudinal structural MRI

and DAT scan data were included. Univariate analyses were run initially, with false discov-

ery rate = 0.2, to select biomarker variables for inclusion in multivariable longitudinal mixed-

effect models.

Results

By year 3, cognitive impairment was diagnosed in 15–38% participants depending on the

criteria applied. Biomarkers, some longitudinal, predicting cognitive impairment in multivari-

able models were: (1) dopamine deficiency (decreased caudate and putamen DAT availabil-

ity); (2) diffuse, cortical decreased brain volume or thickness (frontal, temporal, parietal, and

occipital lobe regions); (3) co-morbid Alzheimer’s disease Aβ amyloid pathology (lower CSF

Aβ 1–42); and (4) genes (COMT val/val and BDNF val/val genotypes).

Conclusions

Cognitive impairment in PD increases in frequency 50–200% in the first several years of

disease, and is independently predicted by biomarker changes related to nigrostriatal or cor-

tical dopaminergic deficits, global atrophy due to possible widespread effects of neurode-

generative disease, co-morbid Alzheimer’s disease plaque pathology, and genetic factors.

Introduction

In Parkinson disease (PD) cognitive impairment can occur in a range of cognitive domains[1],

dementia (PDD) affects up to 80% of patients long-term[2], mild cognitive impairment

(PD-MCI) occurs in 25–30% of non-demented patients[1] and is a risk factor for dementia[3],

and cognitive deficits are present in some patients at the time of diagnosis[4].

A range of demographic and clinical correlates or potential risk factors for cognitive decline

have been identified, including increasing age and duration of PD, male sex, specific motor

features (postural instability gait disorder [PIGD] subtype), and a range of non-motor symp-

toms (e.g., visual hallucinations, apathy, depression, and rapid eye movement (REM) sleep

behaviour disorder)[5].

Cortical Lewy body disease (LBD) pathology appears to be the major contributing pathol-

ogy to cognitive decline in PD[6], but Alzheimer disease (AD)-related changes are also present

in a significant percentage of patients[7]. A range of neurotransmitter deficits have been

implicated, including in acetylcholine[8], dopamine[9], and norepinephrine systems[10].

Genetic influences have been identified in some studies, including apolipoprotein E4 [ApoE4]

status[11] and SNPs in brain-derived neurotrophic factor (BDNF) val66met[12], catechol-O-

methyl-transferase (COMT) val158met[13], and microtubule-associated protein tau (MAPT)

[14]. Finally, diffuse (primarily medial temporal lobe, parietal lobe and prefrontal cortex) gray

matter atrophy and white matter changes have been associated with cognitive decline in PD

[15, 16].

The research on the neural substrates of the initial stages of cognitive decline in PD, starting

with disease onset, are limited, with previous studies often characterized by single site partici-

pation, relatively small sample sizes, cross-sectional design, or a limited biomarker assessment.
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The Parkinson’s Progression Markers Initiative (PPMI) is an ongoing, prospective, longitudi-

nal, biomarker-rich observational study of disease progression in early PD[17]. The biomark-

ers obtained in the PPMI study include dopamine transporter (DAT) SPECT imaging, brain

structural MRI, CSF and blood biomarkers as well as DNA for genotyping. The goals of these

analyses were to evaluate which baseline and longitudinal biomarkers may predict cognitive

impairment in early PD.

Materials and methods

Participants

Newly diagnosed, untreated PD patients (N = 423) were enrolled in PPMI from June 2010—

May 2013 out a cohort of 489 screened patients. At baseline PD participants were required to:

(1) have a recent idiopathic PD diagnosis; (3) be untreated for PD; (4) have a dopamine trans-

porter (DAT) deficit on imaging; and (5) not have dementia as determined by the site investi-

gator. The aims and methodology of the study have been published elsewhere[17] and are

available at www.ppmi-info.org/study-design. The overall study was approved by the Research

Subjects Review Board at the University of Rochester, and the study was approved by the insti-

tutional review board at each site, and participants provided written informed consent. Clini-

cal data out to three years post-baseline was utilized. Data was downloaded on September 21,

2015; at the time of data download 38 PD patients had discontinued study participation (9.0%

discontinuation).

Experimental design

Cognitive abilities. Cognition was assessed at baseline and annually. Global cognition

was assessed with the Montreal Cognitive Assessment (MoCA). In addition, a detailed cogni-

tive battery, as previously described and referenced[18], assessing the following domains was

administered: memory (Hopkins Verbal Learning Test-Revised [HLVT-R]); visuospatial func-

tion (Benton Judgment of Line Orientation [JOLO]) 15-item (split-half) version; processing

speed-attention (Symbol-Digit Modalities Test [SDMT]); and executive function and working

memory (Letter-Number Sequencing [LNS] and semantic fluency [animals, vegetables and

fruits]). Level II PD-MCI criteria[19] were not applicable given the lack of a separate language

assessment or 10 cognitive tests across 5 domains. Published norms for each test were applied.

Definitions of cognitive impairment. For the purposes of these analyses cognitive

impairment was defined three different ways:

1. The recommended MoCA cut-off for PD of<26 was applied[20]. Additionally, MoCA

score was also examined as a continuous variable.

2. Using the detailed cognitive battery, cognitive impairment was defined as at least two test

scores>1.5 standard deviations below the standardized mean score, a level of impairment

within the recommend range (>1.0–2.0) of standard deviations below the mean to support

a PD-MCI diagnosis[19]. Single scores were generated for each test, except for the HVLT-

T, for which two scores were used (immediate free recall and recognition discrimination).

3. The site investigator’s clinical diagnosis of cognitive impairment (PD-MCI or PDD) versus

no cognitive impairment was made annually. Each site investigator was provided an in-

struction sheet that outlined how to assess cognitive decline, functional impairment, and

general interpretation of cognitive tests to make a diagnosis of PD-MCI[19] or PDD[21].

As previously described [18], the site investigator’s annual determination of cognitive

impairment was introduced after some participants already had completed their baseline
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and year 1 visits (106/423 [25.1%] of available patients had this assessment performed at

baseline, and 271/395 [68.6%] at year 1).

Secondary analyses examined only incident cognitive impairment, including only those

participants who did not meet one of the three criteria for cognitive impairment at the baseline

visit (N = 394).

Biomarkers. Details about the biospecimen collection and analysis has been published[17].

1. DAT SPECT imaging (DaTscanTM) was obtained at baseline and annually. Ipsilateral (i.e.,

brain hemisphere on same side as predominant motor symptoms) and contralateral (i.e.,

brain hemisphere on opposite side as predominant motor symptoms) caudate and putamen

values were used.

2. CSF was obtained at baseline, month 6, year 1, and then annually using collection steps as

described [22]. At the time of data download, values were available only for the baseline

visit. Reported are levels of alpha synuclein (α-synuclein), total tau, p-tau181, beta-amyloid

1–42 (Aβ42), t-tau:Aβ42 ratio, p-tau181:Aβ42 ratio, and p-tau181:total tau ratio. These CSF

biomarkers were measured in centralized laboratories using the xMAP INNO-BIA AlzBio3

immunoassay (Fujirebio, Ghent Belgium) for total tau, p-tau181 and beta-amyloid 1–42

(Aβ42) at the UPenn Biomarker Research Laboratory) or with commercially available

ELISA kits (Covance laboratory, Dedham, MA) as described in detail elsewhere[22].

3. Structural MRI with minimum requirements for these analyses were obtained at baseline

and annually, and were available for a subset of participants at baseline (N = 160). These

participants were enrolled at 10 PPMI sites that used a standardized protocol for 3 Tesla

machines (all Siemens Healthcare, USA). A 3D magnetization prepared rapid gradient echo

(MPRAGE) sequence was used for imaging brain anatomy (176 axial slices, repetition

time = 2300 ms, echo time = 2.98 ms, flip angle = 9˚, voxel size 1 × 1 × 1 mm3). The images

were centrally processed at UCSF for cortical and subcortical morphometric measurements

using FreeSurfer version 5.1[23]. FreeSurfer is a suite of algorithmic tools that automatically

creates models of most anatomical brain structures on MRI based on a subject-independent

probabilistic brain atlas in combination with nonlinear image registration of individual

images to obtain subject-specific measurements. FreeSurfer version 5.1 uses a longitudinal

workflow that estimates brain morphometry unbiased toward the chronological scan order

by building first a template image from all time points as an unbiased prior distribution for

each subject before computing morphometric deformations for every time point. This strat-

egy reduces the random variation in the processing procedure and improves the robustness

and sensitivity of the overall longitudinal analysis. A previous test-retest study validated

that the longitudinal processing provides consistent brain parcellation[24]. All raw images

as well as the results of brain parcellation underwent a visual quality control by trained tech-

nicians. A partial failure rating for gross parcellation errors in 1 or more specific brain

regions occurred in about 15% of the image, but none had a complete parcellation failure.

The errors also did not appear to be systematic and MRIs with a partial failure rating were

still included in the analyses but only the correctly parcellated brain regions were assessed.

The outcome measures of the FreeSurfer workflow were 93 automatically-labeled brain

regions, including gyri and subcortical structures, for each subject. MRI data for baseline,

year 1 and year 2 visits were utilized for volume and thickness for 34 regions, with left and

right hemisphere values averaged.

4. Diffusion tensor imaging (DTI) MRI results were available for a subset of participants who

also had structural MRI (N = 151). DTI data from 9 of 160 with MRI had to be excluded

Biomarker prediction of cognitive impairment in de novo Parkinson disease
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because of poor data quality. DTI measures were mean diffusivity (MD) and fractional

anisotropy (FA) for 61 brain regions, with left and right hemisphere values averaged. A car-

diac-gated two-dimensional single-shot echo-planar sequence for mapping brain water

DTI (TR ranged from 8,400 to 8,800 depending on subjects’ heart rate, TE = 88ms, 2 mm

isotropic resolution; 72 contiguous slices, twofold acceleration, axial-oblique aligned along

the anterior-posterior commissure, with diffusion-weighted gradients along 64 sensitiza-

tion directions and a b factor of 1000s/mm2) was acquired for each participant. Processing

images were first visually inspected for significant image artifacts and then processed using

an automated processing script designed for longitudinal data analysis. The initial steps

include corrections for head motion, eddy-current effects and susceptibility distortions of

DTI[25], followed by the computation of standard scalar parameter maps of the diffusion

tensor, such as fractional anisotropy (FA), radial diffusivity (rD), and axial diffusivity (aD).

An intra-subject affine registration was performed between the parametric DTI maps and

the structural T1- and T2- weighted images at baseline. An inter-subject registration was

performed for group analysis using the standard protocol of DARTEL, which involves

tissue segmentation of the structural images for DARTEL initialization, a diffeomorphic

algorithm for inter-subject image registration, and finally a spatial normalization of the

registered images to MNI space[26], allowing the anatomical parcellation of the brain

according to the JHU-DTI-MNI (Type I WMPM)[27]. To reduce any group bias in the

anatomical parcellation, a group-averaged template was created from all subject images in

MNI space, followed by a non-linear registration between the JHU-DTI-MNI atlas and the

group-averaged template. The JHU-DTI-MNI atlas is reversely transformed to each subject

space, facilitating regions-of-interest (ROIs) extraction from each parametric DTI map at

baseline. For group analysis, DTI measures were extracted from 118 ROIs in the entire

white matter and subcortical regions, including the basal ganglia and brain stem sub-

regions. The outcome measures of the FreeSurfer workflow were 93 automatically-labeled

brain regions, including gyri and subcortical structures, for each subject, based on the Desi-

kan-Killiany brain structure atlas[28].

5. Genotyping was performed with NeuroX, a genotyping platform comprised of standard

Illumina exome content (~240,000 variants) and over 24,000 custom content variants

focusing on neurologic diseases (~24,000 variants)[29]. Single nucleotide polymorphisms

(SNPs) previously associated with cognitive impairment or decline in PD were examined

(i.e., apolipoprotein E4 [ApoE4], glucocerebrosidase [GBA; N3705], leucine-rich repeat

kinase 2 [LRKK2; G20195], synuclein [rs3910105 and rs356181], microtubule associated

protein tau [MAPT; rs17649553, which is in linkage dysequilibrium with the H1 haplotype],

brain-derived neurotrophic factor val66met [BDNF val66met], and Catechol-O-methyltrans-

ferase val158met [COMT val158met]). rs17649553 is in strong linkage dysequilibrium with

an “H1 tagging” SNP (rs242928; D’ = 0.991, R2 = 0.203).

Statistical analysis. Longitudinal logistic or linear mixed-effect models were used to find

baseline and longitudinal predictors (treated as time-dependent predictors) of cognitive

impairment over the 3-year time period. The following covariates were considered for each

cognitive outcome: age, sex, race, education level, levodopa equivalent daily dose (LEDD)[30],

baseline MDS Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) motor score, baseline

depression (GDS-15 score�5), baseline psychosis (MDS-UPDRS 1.2 item score >0), and

baseline REM sleep behavior disorder (RBDSQ score�5). To select the most appropriate set

of covariates for each outcome, a combination of Akaike information criteria (AIC) fit statis-

tics and univariate p-values were used to perform a backwards selection of covariates to find

Biomarker prediction of cognitive impairment in de novo Parkinson disease
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the best model fit. AIC fit statistics were also used to determine whether site should be

included as a random effect for each outcome. In addition to these selected covariates, models

examining MRI volume also adjusted for total intracranial volume (ICV), and models examin-

ing MRI DTI measures also adjusted for white matter density in each individual region

examined.

After covariates and random effects were selected for each outcome, univariate analyses

were run for each biomarker variable to predict cognitive impairment over time. Due to the

large number of predictors, a false discovery rate (FDR) approach (FDR = 0.2) was used to

select biomarker variables from the univariate analyses for inclusion in multivariable models

run with other biomarkers. Then, variables were removed from the multivariable model

individually in a backwards selection process until all remaining variables were significant at

0.1 level. To avoid collinearity with biomarkers, the following rules were used when fitting

the multivariable models: if contralateral putamen or caudate measures were significant in a

univariate manner, they were considered in the multivariable model. If not, but ipsilateral

putamen or caudate measures were significant in a univariate manner, they were considered

in the multivariable model. Similarly, if any of the individual CSF biomarkers were signifi-

cant in a univariate manner, they were considered in the multivariable model; CSF ratios

were only considered in the multivariable model if neither of the individual biomarkers was

significant.

As structural and diffusion tensor MRIs were only available in a subset of patients, two pop-

ulations were analyzed for each cognitive outcome: (1) the subset of participants with MRI

data (these models included MRI plus other biomarker data), and (2) the full population (these

models included only other biomarker data). Separate models were run for baseline predictors

(all biomarkers) and longitudinal predictors (DAT imaging and structural MRI).

All statistical analyses were performed using SAS 9.4 (SAS Institute Inc., Cary, NC).

Results

Participant characteristics

Baseline demographic and clinical characteristics for all PD participants (N = 423) are in

Table 1. The cohort is approximately two-thirds male, overwhelmingly white, and highly edu-

cated. The characteristics for the subset of participants with MRI data (N = 160) was similar to

that of the full population. Table 2 lists the number of PD participants with biomarker avail-

ability at each time point. Genetic, CSF, and DTI testing was done at baseline, and DAT imag-

ing and MRI thickness and volumes at baseline, year 1 and year 2.

Cognitive outcomes over time

Cognitive assessments were available for up to 423 participants at baseline, 395 at year 1, 376 at

year 2, and 239 at year 3 (dropout rate<10%, so the decreasing number of participants over

time is largely due to the fact that many participants had not yet reached year 3 of study partic-

ipation at the time of data download).

Over the 3-year period the mean MoCA score declined by approximately 1 point on aver-

age, and the frequency of participants screening positive for cognitive impairment (i.e., MoCA

score <26) increased from 22% to 37%, with dementia-level impairment (i.e., MoCA score

<21[20]) increasing from 1% to 6% over time, see Table 3. Cognitive impairment increased

from 11% to 15% based on detailed neuropsychological test results. Using the site investigator’s

diagnostic determination, the diagnosis of MCI increased from 9% to 21% and PDD from 0%

to 3%.

Biomarker prediction of cognitive impairment in de novo Parkinson disease
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Neurobiological predictors of cognitive impairment

Global cognitive impairment (MoCA). Baseline CSF, DAT imaging, DTI (MD and FA),

and MRI (volume and thickness) values, and the eight SNPs examined, did not predict MoCA

score <26 over time (data not shown). In the subset of patients with MRI data, baseline

decreased entorhinal (p = 0.007) and superior temporal lobe (p = 0.004) volumes were associ-

ated with greater decline in MoCA score over time.

Longitudinal DAT imaging did not predict MoCA score <26 over time. In the subset of

patients with MRI data, decreased caudal middle frontal (p = 0.096), superior parietal (p =

0.03), and superior temporal (p = 0.08) volumes over time were associated with MoCA score

<26 over time. Decreased lateral orbitofrontal (p = 0.05), superior parietal (p = 0.007), and

superior temporal (p = 0.07) volumes, and decreased precentral thickness (p = 0.02), over time

predicted greater decline in continuous MoCA score over time.

Neuropsychological test-defined cognitive impairment. Baseline CSF, DAT imaging,

DTI (MD and FA), and MRI (volume and thickness) values, and the eight SNPs examined, did

Table 1. Baseline demographic and clinical characteristics.

Variable

All PD participants PD participants

with MRI data

(N = 423) (N = 160)

Age

Mean years (SD; minimum, maximum) 61.7 (9.7; 33.5, 84.9) 61.0 (9.6; 38.0, 82.3)

Gender

Male 277 (65.5%) 103 (64.4%)

Female 146 (34.5%) 57 (35.6%)

Education

<13 years 76 (18.0%) 38 (23.8%)

13–23 years 344 (81.3%) 122 (76.3%)

>23 years 3 (0.7%) 0 (0.0%)

Race

White 391 (92.4%) 151 (94.4%)

Black/African-American 6 (1.4%) 3 (1.9%)

Asian 8 (1.9%) 3 (1.9%)

Other 18 (4.3%) 3 (1.9%)

Duration of disease (months)

Mean (SD; minimum, maximum) 6.7 (6.5, 0.4, 35.8) 6.87 (7.0; 0.4, 35.8)

MDS-UPDRS Part III score

Mean (SD; minimum, maximum) 20.9 (8.9; 4.0, 51.0) 20.9 (9.1; 4.0, 47.0)

GDS score (score�5) 59 (13.9%) 25 (15.6%)

MDS-UPDRS psychosis (score�1) 13 (3.1%) 6 (3.8%)

https://doi.org/10.1371/journal.pone.0175674.t001

Table 2. Biomarker availability at baseline and longitudinally.

Biomarker Number PD participants

Baseline Year 1 Year 2 Year 3

Genotyping 384 n/a n/a n/a

DTI FA and MD 151 n/a n/a n/a

MRI volume and thickness 160 148 110 n/a

CSF 412 n/a n/a n/a

DAT scan 418 358 296 n/a

https://doi.org/10.1371/journal.pone.0175674.t002
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Table 3. Cognitive outcomes over time.

Variable PD Subjects Change from Baseline to Year 3 (p value)

Baseline Year 1 Year 2 Year 3

(N = 423) (N = 395) (N = 376) (N = 239)

MoCA score <0.001

N 423 392 371 238

Mean (SD) 27.13 (2.3) 26.30 (2.8) 26.26 (3.2) 26.02 (3.3)

(Min, Max) (17.0, 30.0) (15.0, 30.0) (9.0, 30.0) (13.0, 30.0)

MoCA score <26 <0.001

N 423 392 371 238

Yes 93 (22.0%) 135 (34.4%) 121 (32.6%) 89 (37.4%)

MoCA score <21 0.002

N 423 392 371 236

Yes 4 (0.9%) 13 (3.3%) 20 (5.4%) 13 (5.5%)

JLO score 0.02

N 422 394 369 236

Mean (SD) 12.77 (2.1) 12.33 (2.4) 12.82 (2.3) 12.56 (2.4)

(Min, Max) (5.0, 15.0) (2.0, 15.0) (0.0, 15.0) (3.0, 15.0)

HVLT immediate recall score 0.54

N 422 394 374 238

Mean (SD) 24.44 (5.0) 23.82 (5.4) 23.71 (5.5) 24.19 (6.1)

(Min, Max) (9.0, 36.0) (4.0, 36.0) (9.0, 36.0) (6.0, 36.0)

HVLT-R delayed recall score 0.06

N 422 394 374 237

Mean (SD) 8.36 (2.5) 8.10 (2.9) 8.21 (3.0) 8.08 (3.0)

(Min, Max) (0.0, 12.0) (0.0, 12.0) (0.0, 12.0) (0.0, 12.0)

HVLT-R retention score 0.38

N 421 392 374 236

Mean (SD) 11.18 (1.2) 11.14 (1.4) 11.26 (1.7) 11.08 (1.6)

(Min, Max) (0.0, 12.0) (0.0, 12.0) (0.0, 12.0) (0.0, 12.0)

HVLT-R discrimination recognition score 0.69

N 421 392 374 236

Mean (SD) 9.63 (2.6) 9.67 (2.5) 10.68 (2.4) 9.69 (2.5)

(Min, Max) (-4.0, 12.0) (-1.0, 12.0) (-2.0, 12.0) (-2.0, 12.0)

LNS score 0.006

N 422 393 374 238

Mean (SD) 10.59 (2.7) 10.36 (2.7) 10.32 (2.8) 10.15 (3.0)

(Min, Max) (2.0, 20.0) (2.0, 18.0) (2.0, 19.0) (1.0, 18.0)

Semantic fluency total score 0.04

N 422 393 374 238

Mean (SD) 48.67 (11.6) 48.75 (11.5) 48.98 (13.0) 47.47 (11.3)

(Min, Max) (20.0, 103.0) (18.0, 97.0) (15.0, 95.0) (9.0, 86.0)

SDMT score <0.001

N 422 394 373 236

Mean (SD) 41.18 (9.7) 40.78 (10.3) 39.95 (11.1) 39.14 (11.7)

(Min, Max) (7.0, 82.0) (5.0, 70.0) (2.0, 75.0) (0.0, 65.0)

2 scores >1.5 SD below standardized mean 0.05

N 415 386 360 226

Yes 44 (10.6%) 52 (13.5%) 45 (12.5%) 33 (14.6%)

(Continued )
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not predict test-based cognitive impairment over time (data not shown). Likewise, longitudi-

nal DAT imaging and MRI (volume and thickness) values did not predict test-based cognitive

impairment over time (data not shown).

Site investigator diagnosis of cognitive impairment. Table 4 shows lower baseline ipsi-

lateral caudate DAT availability and CSF Aβ 1–42 predicted cognitive impairment after FDR

Table 3. (Continued)

Variable PD Subjects Change from Baseline to Year 3 (p value)

Baseline Year 1 Year 2 Year 3

(N = 423) (N = 395) (N = 376) (N = 239)

Site investigator diagnosis cognitive impairment 0.001

N 106 271 366 235

Normal 97 (91.5%) 231 (85.2%) 306 (83.6%) 179 (76.2%)

Mild cognitive impairment 9 (8.5%) 38 (14.0%) 57 (15.6%) 50 (21.3%)

Dementia 0 (0.0%) 2 (0.7%) 3 (0.8%) 6 (2.6%)

MoCA = Montreal Cognitive Assessment.

JLO = Benton Judgment of Line Orientation.

HVLT-R = Hopkins Verbal Learning Test-Revised.

LNS = Letter-Number Sequencing.

SDMT-Symbol-Digit Modalities Test.

https://doi.org/10.1371/journal.pone.0175674.t003

Table 4. Baseline biomarker predictors of investigator diagnosis of cognitive impairment.

Variable PD Subjects (N = 403)

Univariate

p-value

# Subjects Multivariable Analysis

Missing OR (95% CI) p-value

CSF Biologics

Alpha-Synuclein 0.87 13 - -

A-Beta 1–42 <0.001 13 0.995 (0.992, 0.998) 0.001

t-tau 0.87 17 - -

p-tau 0.56 15 - -

t-tau/A-Beta 1–42 0.02 17 Not included NA

p-tau/A-Beta 1–42 0.13 15 - -

p-tau/t-tau 0.51 19 - -

Genetics

ApoE4 0.67 40 - -

GBA N370S 0.18 37 - -

LRRK2 G2019S 0.31 36 - -

MAPT rs17649553 0.11 36 - -

SNCA rs3910105 0.36 36 - -

SNCA rs356181 0.96 36 - -

BDNF val66met 0.09 36 - -

COMT val158met 0.05 36 - -

DAT imaging

Contralateral Caudate 0.09 6 - -

Ipsilateral Caudate 0.03 6 0.450 (0.237, 0.855) 0.01

Contralateral Putamen 0.48 6 - -

Ipsilateral Putamen 0.24 6 - -

https://doi.org/10.1371/journal.pone.0175674.t004

Biomarker prediction of cognitive impairment in de novo Parkinson disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0175674 May 17, 2017 9 / 18

https://doi.org/10.1371/journal.pone.0175674.t003
https://doi.org/10.1371/journal.pone.0175674.t004
https://doi.org/10.1371/journal.pone.0175674


correction and on multivariable analysis. Smaller fusiform, lateral occipital, and lateral orbito-

frontal (for MRI volume) and decreased inferior cerebellar peduncle MD (for DTI MD) pre-

dicted cognitive impairment in multivariable analyses, see S1 Table.

Table 5 shows lower contralateral caudate DAT availability over time was associated with

cognitive impairment in multivariable analyses. In addition, smaller fusiform and superior

temporal lobe volumes, and larger caudal anterior cingulate and smaller fusiform thickness,

over time were associated with cognitive impairment in multivariate analyses, see S2 Table.

Examining the entire cohort (i.e., excluding MRI variables) and including only patients

who were cognitively intact at baseline (N = 394), baseline predictors of incident cognitive

impairment (based on site investigator diagnosis) were lower CSF Aβ 1–42, lower ipsilateral

caudate DAT availability, COMT val158met (val/val genotype), and BDNF val66met (val/val

genotype), see S3 Table. A longitudinal biomarker predictor of incident cognitive impairment

was decreased contralateral putamen DAT availability (p = 0.07).

Discussion

In this multi-modal longitudinal examination of predictors of cognitive impairment in early

PD, the biomarkers in general predicting cognitive impairment that remained significant in

multivariable models were: (1) dopamine deficiency; (2) brain-wide decreased volume or

thickness; (3) white matter tract abnormalities; (4) possible co-morbid AD pathology; and (5)

genetic SNPs summarized in S4 Table.

By year three after PD diagnosis, cognitive impairment was diagnosed in 15–37% partici-

pants and increased in frequency by 50–200% over this time period depending on the criteria

applied, consistent with the relatively high frequency[4, 31] and worsening over time[32]

reported in other early PD cohorts.

There were no biological predictors of neuropsychological test-defined impairment; one

possible explanation is that the smallest percentage of participants fulfilled this criterion for

cognitive impairment over time (15% versus either 24% or 37% for the other criteria). The

greatest evidence for biomarkers predicting cognitive decline in this early, relatively cogni-

tively intact population occurred when using the site investigator’s annual diagnosis of cogni-

tive impairment.

We found that both caudate and putamen DAT deficits, either at disease onset or worsen-

ing over time, predicted cognitive impairment. This confirms previous cross-sectional and

longitudinal research in early PD using DAT[33] or other striatal dopamine system imaging

ligands[34]. These findings suggest that enhancing dopamine function in early PD might

improve cognitive abilities, at least acutely or temporarily[35], and that serial DAT imaging

might serve as a cognitive biomarker in PD cognition studies.

Lower CSF Aβ 1–42 levels, suggestive of co-morbid AD Aβ amyloid brain deposition, have

been associated with memory impairment in de novo PD patients[31] and as well as future

Table 5. Longitudinal biomarker predictors of investigator diagnosis of cognitive impairment.

Variable PD Subjects (N = 365)

Univariate

p-value

# Subjects Multivariable Analysis

Missing OR (95% CI) p-value

DAT imaging

Contralateral Caudate 0.05 2 0.484 (0.237, 0.989) 0.05

Ipsilateral Caudate 0.03 2 Not included NA

Contralateral Putamen 0.22 2 - -

Ipsilateral Putamen 0.16 2 - -

https://doi.org/10.1371/journal.pone.0175674.t005
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cognitive decline[36, 37]. AD pathology is associated with increasing age in PD, but here an

association was shown between cognitive impairment and baseline Aβ 1–42 levels, when the

mean age of patients was only 62 years, suggesting that AD-related changes in PD can occur at

a relatively young age and long prior to the development of dementia, as reported for MCI in

the general population[38] and in preliminary PD neuropathological studies[39].

Multiple, widely spread brain regions of decreased volume, and to a lesser extent thickness,

predicted cognitive impairment, and for some brain regions cognitive impairment was pre-

dicted by ongoing atrophy, including frontal, parietal, temporal and occipital lobe regions.

These findings overlap with previous findings of temporal-parietal and frontal atrophy and

thinning with MCI in early PD [40]. It is possible that the cortical atrophy observed in vivo

using structural MRI is associated with cortical PD- or AD-related neuropathological changes,

which would be consistent with neuropathology studies showing that both cortical LBD pa-

thology and co-morbid Aβ amyloid plaque deposits are associated with cognitive impairment

in PD[41].

Specific brain regions (associated cognitive function) implicated included the lateral occipi-

tal (object recognition and spatial vision), lateral orbitofrontal (executive abilities), and ento-

rhinal (memory) cortices, subserving cognitive abilities that can be impaired early in the

course of PD. The latter finding is consistent with recent research that medial temporal lobe

atrophy is associated with cognitive impairment and decline in non-demented PD patients

[42].

Neither increased MD nor decreased FA predicted cognitive impairment. Previous research

in de novo PD reported an association between increased MD in frontal and parietal white

matter tracts and specific cognitive tests[43]. Cohort and study design differences may in part

explain these discrepant findings, but the analyses performed here were more stringent than

those utilized in previous research.

Two SNPs associated with cognitive decline, the COMT val158met SNP and BDNF val66-

met. There is a complex association between the COMT val158met SNP and cognition in PD,

influenced by both disease severity and use of dopaminergic medication[44]. In our analyses,

the high activity COMT val158met genotype was associated with cognitive impairment.

Regarding BDNF, its product is important for survival and differentiation of dopaminergic

neurons in the basal ganglia. A recent study found that the BDNF val-allele carriers had great

decline in executive abilities over time, consistent with our findings [45].

Unlike some previous studies, we did not show an association between ApoE4 or MAPT sta-

tus and cognitive impairment. For ApoE4, it is important to note that most previous studies

have focused on PD patients with dementia[46], and the PPMI sample is relatively young and

cognitively intact. For MAPT, the H1 haplotype has been associated with cognitive decline

or dementia in some[47] but not all[11] PD studies. Longer duration of follow up of this

cohort will unveil if genetic risks are important in later-onset or more advanced cognitive

dysfunction.

Strengths of the study are inclusion of multiple and international sites; the relatively large

sample size; inclusion of multiple biomarkers, including some obtained serially; enrollment of

participants starting at symptom onset; annual cognitive and clinical assessments; use of four

definitions of cognitive impairment; and a stringent, multi-step statistical analysis plan. Limi-

tations include: highly educated and overwhelmingly white cohort limiting generalizability;

variable sample sizes for the different biomarkers, with less than half the patients having

research quality MRI scans for inclusion; although CSF is collected serially in PPMI, currently

only baseline values are available; the cognitive battery utilized in PPMI is limited and the site

investigator’s diagnosis of cognitive impairment was available for the entire cohort only start-

ing at year two; other biomarkers associated with early cognitive decline in PD (e.g., measures
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of cholinergic integrity and FDG-PET) are not included in PPMI; and lack of comparison with

the healthy controls enrolled in PPMI to assess the disease specificity of our findings.

Cognitive decline in early PD is independently predicted by multiple biomarker changes,

including nigrostriatal dopamine system deficits, wide-ranging atrophy consistent with corti-

cal neurodegenerative disease, evidence for co-morbid AD pathology, and genetic factors. This

provides confirmation for heterogeneity in the neural substrate of the early cognitive deficits

in PD, and highlights the need to incorporate multiple biomarkers when risk factors for cogni-

tive decline. Validation and extension of these findings will help in the design of clinical trials

for cognitive impairment in PD, including those testing possible disease-modifying therapies

from disease onset, and also be a step toward personalized medicine.
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