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Abstract

The cranial anatomy of the flat-skulled hadrosaurine Edmontosaurus regalis (Ornithischia:

Hadrosauridae) is extensively described here, based on the holotype and paratype collected

from the middle part of the Horseshoe Canyon Formation in southern Alberta. Focus is

given to previously undocumented features of ontogenetic and phylogenetic importance.

This description facilitates overall osteological comparisons between E. regalis and other

hadrosaurids (especially E. annectens), and revises the diagnosis of E. regalis, to which a

new autapomorphy (the dorsal half of the jugal anterior process bearing a sharp posterolat-

eral projection into the orbit) is added. We consider the recently named Ugrunaaluk kuukpi-

kensis from the upper Campanian/lower Maastrichtian of Alaska a nomen dubium, and

conservatively regard the Alaskan material as belonging to Edmontosaurus sp.. A phyloge-

netic analysis of Hadrosauroidea using maximum parsimony further corroborates the sister-

taxon relationship between E. regalis and E. annectens. In the strict consensus tree, Hadro-

saurus foulkii occurs firmly within the clade comprising all non-lambeosaurine hadrosaurids,

supporting the taxonomic scheme that divides Hadrosauridae into Hadrosaurinae and Lam-

beosaurinae. Within Edmontosaurini, Kerberosaurus is posited as the sister taxon to the

clade of Shantungosaurus + Edmontosaurus. The biogeographic reconstruction of Hadro-

saurinae in light of the time-calibrated cladogram and probability calculation of ancestral

areas for all internal nodes reveals a significantly high probability for the North American ori-

gin of the clade. However, the Laramidia–Appalachia dispersals around the Santonian–

Campanian boundary, inferred from the biogeographic scenario for the North American ori-

gin of Hadrosaurinae, are in conflict with currently accepted paleogeographic models. By

contrast, the Asian origin of Hadrosaurinae with its relatively low probability resulting from

the biogeographic analysis is worth seriously considering, despite the lack of fossil material

from the Santonian and lower Campanian of Asia. Extra fossil collecting in appropriate geo-

graphic locations and stratigraphic intervals of Asia and Europe will help to clarify the bio-

geographic dynamics of hadrosaurine dinosaurs in the near future.
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Introduction

Hadrosauridae is a derived group of ornithopod dinosaurs, currently known from the Upper

Cretaceous (Santonian–Maastrichtian) of Eurasia and America [1–3]. The abundance and

nearly cosmopolitan distribution of hadrosaurids implies that they were very successful, large-

bodied herbivores during the closing stages of Cretaceous [4]. Hadrosauridae is phylogeneti-

cally defined as the least inclusive taxon containing Saurolophus and Parasaurolophus [5]. It is

traditionally divided into two clades: the flat-skulled or solid-crested Hadrosaurinae and the

hollow-crested Lambeosaurinae, based on the variable morphology of the facial skeleton, nota-

bly that of the paired premaxillae and nasals [1, 6].

Edmontosaurus regalis (the type species of the genus Edmontosaurus) has been recognized

as a well-sampled flat-skulled hadrosaurine from North America [7, 8]. This species has proved

integral to understanding patterns of ornithischian diversity [8], morphological variation of

specific structures (such as the jaw muscles and circumnarial depression) in dinosaurs [9, 10],

and histological growth dynamics of hadrosaurids [11]. Edmontosaurus regalis was named by

Lambe [12] on the basis of two incomplete, partially articulated skeletons, namely the holotype

(CMN 2288) and paratype (CMN 2289). Since the beginning of the 20th century, a large num-

ber of E. regalis specimens including the holotype and paratype, together with multiple bone-

beds, were documented in the uppermost Campanian Horsethief Member of the Horseshoe

Canyon Formation, along the central region of the Red Deer River valley in southern Alberta

[13–15] (Fig 1). CMN 2288 was found by Levi Sternberg in 1912, along the east bank of the

Red Deer River, opposite to the mouth of the Three Hills Creek (Fig 1B). The holotype quarry

lies about 60 m above the river level, between the number 8 and number 9 coal seams. Subse-

quently, George F. Sternberg discovered CMN 2289 in 1916 along the west bank of the Red

Deer River, 11 km west of the town of Morrin (Fig 1B). CMN 2289 occurs just below the num-

ber 9 coal seam, approximately 30 m above the river level [16, 17]. Bonebed material attribut-

able to E. regalis has also recently been reported from the Horsethief Member near Edmonton,

Alberta [18]. Given that a few Edmontosaurus-like remains have been identified just below the

Horsethief Member, the stratigraphic range of E. regalis may extend down into the upper half

of the Drumheller Member [17]. A coeval skull and partial vertebral column recently described

from the Wapiti Formation near Grade Prairie, Alberta [19] supports this interpretation.

Numerous disarticulated juvenile bones, possibly attributable to E. regalis (see Discussion), are

also known from the Liscomb bonebed in the upper part of the Prince Creek Formation along

the northwestern bank of the lower Colville River of northern Alaska [10, 20]. Radiometric

dating constrains the narrow stratigraphic interval that encompasses this bonebed to the late

Campanian–early Maastrichtian [21, 22]. The Liscomb quarry has proved difficult to precisely

date because some studies provide inconsistent age estimates (late Campanian versus early

Maastrichtian) for the bounding strata [20].

Lambe [16] described the cranial anatomy of Edmontosaurus regalis in detail, based on the

holotype and paratype. His paper has greatly facilitated subsequent osteological studies of

North American hadrosaurids. However, some anatomically and phylogenetically significant

information for E. regalis was not mentioned or emphasized in Lambe’s paper, largely due to

historical shortsightedness. Here, 100 years after the initial description of the species, we pro-

vide an important supplement to the cranial morphology of the types of E. regalis, in order to

systematically revise this taxon and make a more detailed assessment of the phylogenetics and

biogeography of Hadrosaurinae.

Institutional abbreviations: AENM, Amur Natural History Museum, RAS, Blagoveschensk,

Russia; AMNH, American Museum of Natural History, New York, USA; BYU, Brigham

Young University, Provo, USA; CCM, Carter County Museum, Ekalaka, USA; CM, Carnegie
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Museum of Natural History, Pittsburgh, USA; CMN, Canadian Museum of Nature, Ottawa,

Canada; FMNH, The Field Museum, Chicago, USA; GMV, Geological Museum of China, Bei-

jing, China; IVPP, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing,

China; MOR, Museum of the Rockies, Bozeman, USA; NHM, Natural History Museum, Lon-

don, United Kingdom; NMMNH, New Mexico Museum of Natural History and Science,

Albuquerque, USA; OTM, Old Trail Museum, Choteau, USA; PIN, Paleontological Institute of

the Russian Academy of Sciences, Moscow, Russia; RAM, Raymond M. Alf Museum, Clare-

mont, USA; ROM, Royal Ontario Museum, Toronto, Canada; SDSM, South Dakota School of

Fig 1. Geographic and stratigraphic distribution of Edmontosaurus regalis in Alberta (modified from [8, 17]). A, map of southern

Alberta; the grey rectangle highlights the central region of the Red Deer River valley, where E. regalis specimens were collected. B,

magnified map of the grey rectangular region in Fig 1A, showing the localities of the holotype (CMN 2288) and paratype (CMN 2289) of E.

regalis. C, stratigraphic subdivision of the Horseshoe Canyon Formation, with the stratigraphic range of E. regalis.

https://doi.org/10.1371/journal.pone.0175253.g001

Supplementary cranial description of Edmontosaurus regalis

PLOS ONE | https://doi.org/10.1371/journal.pone.0175253 April 6, 2017 3 / 40

https://doi.org/10.1371/journal.pone.0175253.g001
https://doi.org/10.1371/journal.pone.0175253


Mines and Technology, Rapid City, USA; TMP, Royal Tyrrell Museum of Palaeontology,

Drumheller, Canada; UALVP, University of Alberta Laboratory of Vertebrate Paleontology,

Edmonton, Canada; UAM, University of Alaska Museum, Fairbanks, USA; USNM, United

States National Museum, Smithsonian Institution, Washington, DC, USA; YPM, Yale Peabody

Museum of Natural History, New Haven, USA; ZCDM, Zhucheng Dinosaur Museum, Zhu-

cheng, China.

Anatomical abbreviations: aa, anterior apex of jugal; adp, anterodorsal process; af, alveolar

foramina; alc, anterolateral concavity of premaxilla; alp, anterolateral process of palatine; amc,

anteromedial concavity of premaxilla; an, angular; ap, anterior process; ar, anterior ramus; arp,

alar process of basisphenoid; art, articular; avf, anteroventral flange of nasal; avp, anteroventral

process of maxilla; bo, basioccipital; bpp, basipterygoid process of basisphenoid; bs, buccal

shelf of dentary; bsp, basisphenoid–parasphenoid complex; co, crista otosphenoidalis of proo-

tic; cp, coronoid process of dentary; cs, contact surface for designated bone; d, dentary; df, dor-

sal flange of pterygoid; dmf, dorsomedial flange of maxilla; dqp, dorsal quadrate process of

pterygoid; dr, dorsal ramus of maxilla; edm, edentulous dorsal margin of dentary; en, external

naris; ep, ectopterygoid; epr, ectopterygoid ridge of maxilla; eps, ectopterygoid shelf of maxilla;

er, ectopterygoid ramus of pterygoid; es, enameled surface of tooth crown; ex, exoccipital–

opisthotic complex; f, frontal; fm, foramen magnum; fo, fenestra ovalis; iaf, internal antorbital

fenestra; ica, foramen for internal carotid artery; itf, infratemporal fenestra; j, jugal; jp, jugal

process of lacrimal; jv, exit for jugular vein; jw, jugal wing of quadrate; l, lacrimal; laf, large

anterior foramen of maxilla; lc, lateral condyle of quadrate; ldf, laterodorsal flange of surangu-

lar; lr, lateral ridge of nasal; lsp, laterosphenoid; m, maxilla; maf, mandibular adductor fossa;

mc, medial condyle of quadrate; mes, medial shelf of surangular; mg, Meckelian groove of den-

tary; mp, medial process of pterygoid; mpr, median primary ridge of tooth crown; ms, metotic

strut of exoccipital; mx, matrix; n, nasal; nc, neurocranium; om, oral margin of premaxilla; or,

orbit; os, occlusal surface; osp, orbitosphenoid–presphenoid complex; p, parietal; pd, preden-

tary; pdb, posterodorsal buttress of quadrate; pdf, posterodorsal flange of ectopterygoid; pdp,

posterodorsal process; pf, posterior foramen of lacrimal; pl, palatine; plp, palatine process of

maxilla; pls, posterolateral spur of quadrate; pm, premaxilla; pmp, posteromedial process of

nasal; po, postorbital; pop, postorbital process of jugal; pp, posterior plate of nasal; pr, palatine

ramus of pterygoid; prf, prefrontal; pro, prootic; pt, pterygoid; ptp, pterygoid process of max-

illa; pvf, posteroventral fossa of prefrontal; pvfl, posteroventral flange; pvp, posteroventral

process of premaxilla; pw, pterygoid wing of quadrate; q, quadrate; qg, quadrate glenoid of sur-

angular; qh, quadrate head; qj, quadratojugal; qjn, quadratojugal notch of jugal; qs, quadrate

shaft; rp, retroarticular process of surangular; sa, surangular; snd, subnarial depression; so,

supraoccipital; sp, splenial; sq, squamosal; stf, supratemporal fenestra; syp, symphysial process

of dentary; tr, tooth row; v, vomer; vpm, vestibular promontory of premaxilla; vqp, ventral

quadrate process of pterygoid.

Results

Systematic paleontology

Dinosauria Owen, 1842 [23]

Ornithischia Seeley, 1887 [24]

Ornithopoda Marsh, 1881 [25]

Iguanodontia Dollo, 1888 [26] sensu Sereno, 1998 [5]

Hadrosauroidea Sereno, 1986 [27] sensu Sereno, 1998 [5]

Hadrosauridae Cope, 1870 [28] sensu Sereno, 1998 [5]

Hadrosaurinae Lambe, 1918 [29] sensu Sereno, 1998 [5]
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Edmontosaurini Brett-Surman, 1989 [30]

Edmontosaurus Lambe, 1917 [12]

Edmontosaurus regalis Lambe, 1917 [12]

Synonym. Thespesius edmontoni Gilmore [31]; Anatosaurus edmontoni Lull and Wright

[7]

Holotype. CMN 2288, partial, articulated cranium with a nearly complete left half and an

incomplete postcranial skeleton, including six articulated anterior cervical vertebrae, eleven

dorsal vertebrae, five caudal vertebrae, rib fragments, the sacrum, right scapula, left humerus,

right ischium, and right hind limb missing some phalanges, and fragments of the paired ilia

and pubes.

Paratype. CMN 2289, incomplete, partially articulated cranium and nearly complete,

largely disarticulated postcranium, including three cervical vertebrae, fifteen dorsal vertebrae,

five caudal vertebrae, seven cervical ribs, numerous dorsal ribs, the paired scapulae, right cora-

coid, paired sternals, paired humeri, paired ulnae, right radius, left second metacarpal, unguals

of left manual digit II and right manual digit III, left ilium, paired pubes, paired ischia, paired

femur, paired femora, paired tibiae, paired fibulae, and right astragalus, right metatarsals II

and III, and left metatarsal IV (described in Campione [14]).

Referred material. All other known Edmontosaurus specimens recovered from the mid-

dle portion of the Horseshoe Canyon Formation and Unit 4 of the Wapiti Formation. Impor-

tant specimens include: AMNH 5254, partial cranium; CM 26259, complete cranium and

partial postcranium; CMN 8399, nearly complete skeleton missing the middle and posterior

caudal vertebrae; CMN 8744, incomplete cranium; FMNH P15004, complete cranium; NHM

R8927, complete cranium and postcranium; ROM 658, partial cranium; ROM 801, partial cra-

nium and postcranium; ROM 867, incomplete cranium and postcranium; UALVP 53722, par-

tial cranium, several cervical and dorsal vertebrae, and skin impressions showing fleshy cranial

crest; and USNM 12711, complete cranium (modified from Campione and Evans [8]).

Locality and horizon. Outcrop and subsurface along the Red Deer River around the

Drumheller, Morrin and Three Hills areas, southern Alberta, Canada [13]; along the North

Saskatchewan River near Edmonton, Alberta [18]; and along the Red Willow River near

Grande Prairie, Alberta [19].

Most specimens were found along the north-south oriented central area of the Red Deer

River, and come from the Horsethief Member of the Horseshoe Canyon Formation, and possi-

bly the upper half of the underlying Drumheller Member, ranging in age from 72.5 to 71.0 Ma

(latest Campanian) [8, 17] (Fig 1). The Danek bonebed material from the North Saskatchewan

River is restricted to the Horsethief Member [18]. The Red Willow River material is from Unit

4 of the Wapiti Formation, and is time-contemporaneous with the Drumheller Member of the

Horseshoe Canyon Formation [19].

Revised diagnosis. Hadrosaurine of the genus Edmontosaurus characterized by the fol-

lowing three autapomorphies, most readily visible in large, presumably adult individuals:

tapered ventral expansion of the subrectangular anterior end of the nasal; dorsal half of the

jugal anterior process bearing a sharp posterolateral projection into the orbit; and mediolater-

ally wide, nearly horizontal shelf along the dorsal-facing base of the postorbital sutural surface

of the jugal. Also diagnosed by the following unique combination of features: anteroposteriorly

short prenarial region of the snout that is no more than 25% as long as the skull; postorbital

strongly expanded laterally; deep fossa along the right-angled lateral half of the posteroventral

side of the prefrontal; and truncated dorsolateral process of the laterosphenoid that is about

70% as long as the temporal plate of the bone. This taxon differs from Edmontosaurus annec-
tens in having an anteroposteriorly short and dorsoventrally high cranium, a more swollen

oral margin of the premaxilla that is posterodorsally curled and lip-like, two premaxillary
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foramina in the prenarial region of the circumnarial fossa separated by a relatively narrow ves-

tibular promontory, a prominent arched posterodorsal margin of the circumnarial fossa

ascending to the dorsal surface of the narial region of the snout, a slight insertion of the nasals

into the frontals with a proportionally longer external interfrontal suture, a mediolaterally ori-

ented, crenulated nasofrontal suture on the ectocranial surface, an anteroposteriorly wide,

strongly bulgy laterally jugal process of the postorbital accompanied by a greater development

of the postorbital pocket, and slightly mesiodistally narrower tooth crowns of the middle den-

tary having height/width ratios greater than 2.90 (modified from Campione and Evans [8];

Xing et al. [10]).

Remarks. In adult individuals of Edmontosaurus regalis, the well-defined posterodorsal

margin of the strongly excavated circumnarial fossa ascends to the dorsal surface of the narial

region of the snout, and markedly overhangs the dorsal edge of the external naris. Campione

and Evans [8] first documented this feature, and regarded it as a diagnostic character of E.

regalis that distinguishes the taxon from E. annectens. Nevertheless, Xing et al. [10] excluded

this feature from the diagnosis of E. regalis because it seemed to be present in a few specimens

of E. annectens, including the CCM unnumbered cranium. Our further observations indicate

that the narial region in these specimens has suffered either distortion or artificial reconstruc-

tion. Therefore, the arcuate lateral ridge of the nasal ascending to the dorsal surface of the

snout cannot be considered a natural character for E. annectens. In most cases, the arcuate lat-

eral ridge of the nasal in E. annectens is positioned below the dorsal surface of the narial region

of the snout in lateral view. We concur with Campione and Evans [8] that the prominent

arched posterodorsal margin of the circumnarial fossa ascending to the dorsal surface of the

narial region of the snout represents a diagnostic character of E. regalis, when compare to E.

annectens. However, this feature is not autapomorphic for the taxon because the former is

shared with Shantungosaurus giganteus (e.g. GMV 1780–2 and ZCDM HS0008; see Fig 4 in

Xing et al. [10]).

Osteological description and comparisons

The crania of the holotype and paratype of Edmontosaurus regalis are redescribed in this sec-

tion, with the skeletal reconstruction of the species illustrated in Fig 2. Both CMN 2288 and

CMN 2289 presumably represent the adult stage of E. regalis as indicated by their large size,

the highly co-ossified braincase with closed neurocranial sutures, and the high number of alve-

oli in a single dentary. Here we emphasize important anatomical features not documented by

Lambe [16], features of ontogenetic and phylogenetic significance, and remarkable osteological

discrepancies among E. regalis and other hadrosaurids. Cranial measurements of the two spec-

imens are listed in S1 Table.

Facial skeleton. Premaxilla (Figs 3 and 4). The left premaxilla is well preserved in CMN

2288. This element consists of a laterally expanded oral region, a shortened, transversely thin

posterodorsal process, and an elongate, sheet-like posteroventral process. The element bounds

the external naris anteriorly and ventrally. The maximum width of the oral region is about 1.2

times greater than the minimum breadth of the posterior constriction. The outline of the oral

margin is shallowly arched in dorsal view. The margin is strongly posterodorsally reflected,

providing a thickened, lip-like anterior fence for the premaxilla. This is very similar to the con-

dition in Edmontosaurus annectens (e.g. ROM 57100) and Shantungosaurus giganteus (GMV

1780–2), but is in striking contrast to the dorsoventrally flattened, slightly anteroventrally

deflected oral margin in Brachylophosaurus [32], and the thin, gently upturned one in Grypo-
saurus [33]. In adults, the oral margin of the premaxilla in E. annectens is less swollen than that

in E. regalis [8, 10]. Posterior to the oral margin, the circumnarial fossa in CMN 2288 has an
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anteriorly positioned, crescent-shaped outer narial fossa, as in other hadrosaurines [1]. A dor-

solaterally-facing, subtriangular vestibular promontory divides the outer narial fossa into ante-

romedial and anterolateral concavities. The oval anteromedial concavity is slightly deeper and

much wider than the teardrop-shaped anterolateral concavity. The prenarial region of the cir-

cumnarial fossa (the outer narial fossa) is proportionally shorter than that in E. annectens (e.g.

AMNH 5730), with an anteroposteriorly narrower vestibular promontory.

The oral region extends and narrows posterodorsally to form the lateroventrally sloping

posteroventral process. Immediately posterior to the vestibular promontory, the subnarial

depression is well excavated and elongate. It occupies the anterior four fifths of the dorsolateral

Fig 2. Reconstruction of Edmontosaurus regalis mainly based on CMN 2288, CMN 2289, CMN 8399, and UALVP 53722

(modified from Campione and Evans [8]).

https://doi.org/10.1371/journal.pone.0175253.g002

Fig 3. Incomplete cranium of Edmontosaurus regalis (CMN 2288) in left lateral (A, B) and dorsal (C, D) views; photographs

(left) and line drawings (right).

https://doi.org/10.1371/journal.pone.0175253.g003
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side of the posteroventral process. This depression forms part of the circumnarial fossa, which

is posteriorly limited by an arcuate ridge, as in Eotrachodon orientalis [34]. The posteroventral

Fig 4. Close-ups of the cranium of Edmontosaurus regalis (CMN 2288). A, left laterodorsal view of the snout. B, anterodorsal view of

the snout. C, left laterodorsal view of the skull roof. D, left anterolateral view of the posterior half of the skull. E, posterior view of the skull. F,

left anterolateral view of the neurocranium through the orbit. The prominent postorbital pocket is indicated by a red arrow.

https://doi.org/10.1371/journal.pone.0175253.g004
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process overlies the anteroventral process of the maxilla, and overlaps the anteroventral corner

of the posterior plate of the nasal and anterodorsal portion of the lacrimal laterally. Unlike the

condition in Brachylophosaurus (e.g. CMN 8893) andMaiasaura (e.g. ROM 44770), the pos-

teroventral process does not reach the prefrontal. The posterodorsal process arises from the

posteromedial part of the oral region, and contacts the anterodorsal process of the nasal lat-

erally, along the anterior half of the dorsal edge of the external naris. Moving posteriorly, the

process gradually thins transversely. It is about 40% as long as the posteroventral process. In

CMN 2288, there is one premaxillary foramen at the anteriormost end of the subnarial depres-

sion and another in the posterior region of the anteromedial concavity. The palatal surface of

the premaxilla does not have a rugose, shallowly arcuate lateroventral flange just anterior to

the contact between the premaxilla and maxilla, which is observed in Brachylophosaurus and

Maiasaura.

Maxilla (Figs 3–6). The maxilla is roughly triangular in lateral view, with a nearly straight

ventral edge and a tall dorsal ramus centered over the midline of the bone. In CMN 2289, the

length of the maxilla at the level of the ventral edge is approximately 430 mm, which is ~160%

Fig 5. Left and right maxillae of Edmontosaurus regalis (CMN 2289) in lateral (A, B), medial (C, D), dorsal (E, F), and ventral (G,

H) views.

https://doi.org/10.1371/journal.pone.0175253.g005
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greater than the maximum height of the element. The tooth row is partially exposed ventrally,

and accounts for ~85% of the length of the maxillary ventral edge. Because the posterior end of

the maxilla is laterally obscured by the dentary and jugal, the total number of tooth positions

in CMN 2288 cannot be counted with precision.

Anteriorly, the maxilla is bifurcated into anterodorsal and anteroventral processes by a

deep, posteriorly convex embayment. The anterodorsal process is anteroposteriorly elongate

and mediolaterally flattened, as in other hadrosaurines. It gradually tapers anteriorly, but is

entirely concealed laterally by the posteroventral process of the premaxilla when in articula-

tion. This condition is also seen in Gryposaurus notabilis (e.g. ROM 873) and Saurolophus
angustirostris (e.g. PIN 551/359). By contrast, the anterodorsal process of the maxilla is laterally

visible through the external naris in articuated skulls of Brachylophosaurini [6]. In CMN 2289,

the anterodorsal process projects dorsally from the dorsomedial corner of the anteroventral

process. It is dorsally raised relative to the anteroventral process, and protrudes further anteri-

orly than the latter. In dorsal view, the medial side of the anterodorsal process bears a trans-

versely narrow, triangular shelf for the reception of the vomer. The shelf is anteroposteriorly

elongate, diminishing in width towards the dorsal ramus. The anterodorsal surface of the ante-

roventral process is modestly inclined ventrally and slightly concave. Its medial half, together

with the lateral side of the anterodorsal process, forms the contact surface for the premaxilla,

and is continuous posterodorsally with the sutural surface for the lacrimal along the dorsal

margin of the dorsal ramus. A large, round anterior foramen on the anterodorsal surface of the

anteroventral process is located half-way up the bone. This foramen is not covered by the pre-

maxilla in CMN 2288.

Between the anterior foramen and the sutural surface for the jugal is a fully exposed, subtra-

pezoidal anterolateral promontory of the maxilla. The promontory is anteroposteriorly short-

ened along its dorsal half, compared to the equivalent in Secernosaurus and Gryposaurus. The

dorsal ramus participates in the dorsal half of the jugal sutural surface. The apex of the dorsal

Fig 6. Articulated left maxilla, palatine and ectopterygoid, and articulated right maxilla, palatine and ectopterygoid of

Edmontosaurus regalis (CMN 2289) in lateral (A, B) and medial (C, D) views.

https://doi.org/10.1371/journal.pone.0175253.g006
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ramus is bluntly round in lateral view, in contrast to the pointed dorsal extremity in all lam-

beosaurines, such as Parasaurolophus tubicen (e.g. NMMNH P-25100) and Tsintaosaurus spi-
norhinus (IVPP V725). The sutural surface for the jugal is irregularly diamond-shaped. Its

ventral half faces laterodorsally, and bears a lateroventrally directed posterior margin as in all

hadrosaurines except brachylophosaurins. The sharply defined anterior margin of the ventral

half of the jugal sutural surface curves posteroventrally and laterally, and abuts the robust

ectopterygoid ridge posteriorly. The ventral tip of the jugal sutural surface has a round emi-

nence that is less developed than the equivalent in Kundurosaurus (e.g. AENM 2/84). Just ante-

roventral to the jugal sutural surface, the lateral surface of the maxilla is perforated by three

large, ovate foramina that are anterodorsally-posteroventrally aligned.

The lip-shaped ectopterygoid ridge is straight and robust along its entire length. This ridge

is located approximately one quarter of the way up the maxilla, where the bone is widest med-

iolaterally. A tall, gradually posteriorly descending flange projects dorsally from the medial

surface of the maxillary posterior third. The subtriangular, dorsally directed palatine process

and finger-shaped, posteriorly directed pterygoid process are located at the anterodorsal and

posterodorsal corners of the dorsomedial flange, respectively. Lateral to the base of the flange,

a shallow, transversely narrow groove occurs along the dorsal side of the ectopterygoid shelf.

In medial view, the prominent notch between the dorsal ramus and palatine process forms

part of the internal antorbital fenestra. A dorsally convex row of alveolar foramina arches

across the medial surface of the maxilla at mid-height, as in other hadrosaurids.

Nasal (Figs 3, 4 and 7). As in Acristavus gagslarsoni (MOR 1155), Kundurosaurus nagornyi
(e.g. AENM 2/57), and Edmontosaurus annectens (e.g. USNM 3814), the nasal is hatchet-

shaped in lateral view. It consists of an anteroposteriorly elongate anterodorsal process, a large,

trapezoidal posterior plate that is laterodorsally convex, and a dorsoventrally thin, subrectan-

gular posteromedial process. Except for the anterior half of the anterodorsal process, the nasal

meets its counterpart along the smooth posterior three quarters of the dorsoventrally narrow

dorsomedial surface. The anterodorsal process delimits the external naris dorsally. The ante-

rior half of the process is nearly straight, mediolaterally compressed, and subrectangular. It

flanks the posterodorsal process of the premaxilla laterally, and terminates at the anterior end

of the external naris. This is distinct from the anteriorly pointed process in Gryposaurus (e.g.

CMN 2278), Kritosaurus (BYU 12950), andMaiasaura (e.g. ROM 44770). The anteroventral

corner of the anterodorsal process in CMN 2288 exhibits a tapered, slightly flared ventral

expansion that is absent in E. annectens [8]. The lateroventral margin of the anterodorsal pro-

cess abuts the vestibular promontory of the premaxilla. In CMN 2289, the dorsomedial surface

of the anterior half of the anterodorsal process has a long, posteriorly tapered sutural surface

for the premaxilla, which is ornamented with numerous longitudinal striations. The posterior

half of the anterodorsal process gradually widens and deepens posteriorly along its dorsal

region, to partially shroud the posterodorsal region of the circumnarial fossa, where the latero-

ventral margin of the anterodorsal process bifurcates posteriorly into a prominent, arched lat-

eral ridge and the more medially positioned dorsal edge of the external naris. The thick lateral

ridge is dorsally convex, extending posteroventrally to the lateral side of the posterior plate.

This ridge forms the posterodorsal margin of the strongly excavated circumnarial fossa, the

roof of which ascends to the dorsal surface of the narial region of the snout. By contrast, the

position of the lateral ridge of the nasal is relatively low in Kerberosaurus (AENM 1/318), E.

annectens (e.g. YPM 2182), and juvenile E. regalis (e.g. CM 26259). The posteriormost end of

the lateral ridge in E. regalis forms a subtriangular protuberance, and is much thicker than the

rest of the ridge.

A triangular flange projects anteroventrally from the anteroventral corner of the medial

surface of the posterior plate. The dorsal margin of the flange defines the external naris
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posteroventrally, and is continuous with the lateroventral margin of the anterodorsal process.

Posterior to the anteroventral flange, the main body of the posterior plate contacts the lacrimal

posteroventrally, and is laterally overlapped by the anteromedial part of the prefrontal along its

posterior terminus. The lateral side of the articulated nasal and lacrimal is slightly recessed to

form a posterodorsally directed, finger-shaped contact surface for the premaxilla. Posterior to

the posteroventral process of the premaxilla, a small part of the nasal-lacrimal contact is visible

laterally in the articulated cranium of CMN 2288. The dorsal surface of the posterior plate is

essentially flat. It does not bear the preorbital nasal protuberance in Gryposaurus and Rhinorex
[35, 36]. The posteromedial process of the nasal laps onto the anterior platform of the frontal,

and meets the prefrontal laterally. The ratio of the process length relative to the total length of

the nasal is about 0.24, and the process is slightly shorter than that in Edmontosaurus annec-
tens, where the equivalent ratio is over 0.29. In dorsal view, the dorsal nasofrontal suture is

mediolaterally oriented and crenulated. It defines two small, slightly divergent processes of the

Fig 7. Articulated left nasal, prefrontal, lacrimal and frontal, and articulated right nasal, prefrontal, lacrimal and frontal of

Edmontosaurus regalis (CMN 2289) in lateral (A, B), medial (C, D), dorsal (E, F), ventral (G, H), and posterior (I, J) views.

https://doi.org/10.1371/journal.pone.0175253.g007
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paired nasals adjacent to the sagittal plane, which extend posteriorly onto the middle regions

of the paired frontals. The external suture between the nasal and prefrontal approximates a

right angle; it runs dorsoventrally and anteroposteriorly along the laterodorsal surface of the

facial skeleton between the narial and orbital regions.

Prefrontal (Figs 3, 4 and 7). The prefrontal contacts the nasal anteromedially, the lacrimal

ventrally, and the frontal posteriorly. The nearly square preorbital region of the prefrontal is

mediolaterally thin and slightly convex laterodorsally. This region is anteroposteriorly elon-

gate, occupying the anterior third of the bone, as in Edmontosaurus annectens. In contrast, the

equivalent structure is extremely shortened in Saurolophus (e.g. AMNH 5220) and Prosaurolo-
phus (e.g. ROM 1928). The posterior two thirds of the prefrontal in CMN 2288 and CMN 2289

broadens transversely to reach 2 times the maximum width of the anterior third, where it con-

tributes to the anterodorsal part of the orbital margin. The lateral half of the orbital region of

the prefrontal is right-angled in lateral view, in contrast to the arcuate lateral profile in Brachy-

lophosaurini and basal hadrosauroids. Its posteroventral surface bears a deep, circular fossa, as

in E. annectens. In dorsal view, the prefrontal posteriorly wedges into the anterolateral part of

the frontal. The dorsal prefrontal-frontal suture is more posteriorly positioned than the ventral

one. Ventrally, the prefrontal overlaps the lacrimal dorsolaterally, with a roughly W-shaped

posterior suture and a U-shaped lateral suture between the two bones.

Lacrimal (Figs 3, 4 and 7). The lacrimal is well preserved in CMN 2289, especially the left

one, where its contacts with the neighboring bones are clearly visible. This bone is subtrapezoi-

dal in lateral view, with a transversely thickened posterior third. A low, subtriangular eminence

is present in the centre of the lateral side of the lacrimal. The eminence tapers anteroventrally

between the sutural sufaces for the premaxilla and jugal. There is a deep, anteroventrally-pos-

terodorsally oriented trough on the medial surface of the anterior two thirds of the lacrimal.

This trough passes posterodorsally through the rest of the bone, and opens into the oval poste-

rior foramen that is common among hadrosauroids [32, 37]. The striated surface around the

trough indicates that the trough was medially covered by the dorsal ramus of the maxilla. The

posterior foramen is dorsoventrally deeper than mediolaterally wide.

In posterior view, the lacrimal is bounded by the sharp posterolateral and posteromedial

margins. Lateral to the posterior foramen, the dorsal half of the posterolateral region of the lac-

rimal curves and thins laterally to form a fan-shaped flange along the anterior orbital margin,

where the element reaches its greatest mediolateral width. A thin, subrectangular sheet projects

dorsally from the posterior half of the dorsomedial part of the lacrimal. The sheet meets the

prefrontal laterally and the nasal dorsomedially, and is about 40% as deep as the entire lacri-

mal. Medially, the lacrimal contacts the nasal anterodorsally along an anteroventrally-postero-

dorsally oriented, roughly W-shaped suture. The sutural surface for the jugal occurs along the

entire ventral side of the lacrimal, except for the smooth anteriormost end and rugose medial

edge of the latter that would contact the maxilla. The jugal surface is transversely narrow, later-

oventrally facing and anteriorly tapering, with an obtusely angled lateral margin that opens

ventrally. A stout, triangular jugal process is present at the posteroventral corner of the lateral

surface of the bone, as in other hadrosaurines.

Jugal (Figs 3, 4 and 8). As in other hadrosauroids, the jugal is bowed laterally and mediolat-

erally compressed between its contacts with the maxilla anteriorly and quadratojugal posteri-

orly [38, 39]. This triradiate bone has a dorsoventrally expanded, asymmetrically spade-shaped

anterior process that tapers anteriorly to a stout triangular apex. In CMN 2288, the maxilla-

lacrimal contact is laterally covered by the jugal. The anterior apex occurs within the dorsal

half of the anterior process as in Gryposaurus (e.g. MOR 478-6-10-87-2), Kundurosaurus (e.g.

AENM 2/921-2), and Prosaurolophus (e.g. CMN 2870), but is slightly shorter than that of

these taxa. By contrast, the extremely elongate anterior apex is located at the mid-height of the
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subtriangular anterior process of the jugal in Acristavus,Maiasaura, and Brachylophosaurus.
Posterior to the apex, the anterodorsal surface of the anterior process in both CMN 2288 and

CMN 2289 is modestly anteroventrally inclined and transversely narrow, forming an angle of

40˚ with the horizontal. The surface is gently excavated to receive the lacrimal. The postero-

dorsal part of the anterior process broadens mediolaterally and deepens dorsoventrally, where

it is remarkably flared posterolaterally to form a sharp projection that invades the orbital mar-

gin. In lateral view, the convex ventral edge of the anterior process is shallowly arcuate, and is

comparable to that in Saurolophini. Medially, the rugose contact surface for the maxilla is pos-

teriorly delineated by the prominent, dorsoventrally oriented, weakly wavy posteromedial

margin of the anterior process. The dorsal half of the margin is formed by the narrow, strip-

like palatine sutural surface that contrasts with the relatively wide, lunate equivalent in many

lambeosaurines, such as Amurosaurus riabinini [40].

Fig 8. Left and right jugals of Edmontosaurus regalis (CMN 2289) in lateral (A, B) and medial (C, D) views. Close-ups of the jugal

anterior process of CMN 2288 in lateral (E) and posterolateral (F) views. Left and right quadratojugals of Edmontosaurus regalis (CMN

2289) in lateral (G, H) and medial (I, J) views. The sharp posterolateral projection of the jugal along the orbital margin is indicated by an

arrow.

https://doi.org/10.1371/journal.pone.0175253.g008
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The postorbital process projects posterodorsally from the middle of the jugal, and is slightly

tilted anteriorly along its dorsal half where the elongate contact surface for the postorbital

occurs. The process has a bend roughly midway, with an angle of 150˚. The dorsal half of the

postorbital process is more mediolaterally compressed than the ventral half. There is a medio-

laterally wide, nearly horizontal shelf at the dorsal-facing base of the postorbital contact surface

[8]. The posterior neck below the infratemporal fenestra is more robust than that in all other

hadrosauroids except Edmontosaurus annectens. In CMN 2289, the ratio between the depths of

the posterior and anterior necks is ~1.50. Very similar to the condition in Gryposaurus not-
abilis (e.g. TMP 80.22.1) and Probrachylophosaurus bergei (e.g. MOR 2919), the posteroventral

flange is strongly convex ventrally. It is more developed than the equivalent in Prosaurolophus
maximus (e.g. USNM 12712) and Saurolophus angustirostris (e.g. PIN 551/357). The postero-

dorsal process is dorsoventrally deep and subquadrangular, in contrast to the relatively nar-

row, fan-shaped posterodorsal process in Brachylophosaurini [41]. The dorsal margin of the

process is more dorsally deflected than the ventral margin. In medial view, the middle region

of the jugal bears a large, suboval pit that probably functioned in muscle attachments.

Quadratojugal (Figs 3, 4 and 8). The quadratojugal is a thin, plate-like element that is sand-

wiched between the jugal and quadrate. The paired quadratojugals in CMN 2289 are nearly

complete, and are missing their anteriormost parts. Judging from the medial outline of the

quadratojugal sutural surface of the jugal, the quadratojugal appears to have a nearly vertical

anterior edge and a roughly right-angled anteroventral corner. The lateral side of the bone is

slightly anteroposteriorly convex, while the medial side is generally flat. The posteroventral

region of the quadratojugal slightly projects ventrally to form a short triangular flange, in strik-

ing contrast to the elongate hook-like flange inHypacrosaurus altispinus.
The anterior three fifths of the lateral side of the quadratojugal forms a rugose sutural facet

for the jugal posterodorsal process. This facet is posteriorly bounded by a faint, deeply arched

ridge. The rest of the lateral side is relatively smooth, and is externally exposed in articulated

crania such as CMN 2288. In medial view, a shallow, anteroposteriorly narrow, crescent-

shaped depression occurs along the arcuate posterior margin of the quadratojugal to accom-

modate the entire quadratojugal notch of the quadrate, suggesting that there was no gap

between the quadratojugal and quadrate when in articulation.

Quadrate (Figs 3, 4 and 9). The quadrate is dorsoventrally elongate and robust. It curves

slightly posteriorly along its dorsal half, with a deflection angle of 155 degrees. The quadrate

head is slightly anteroposteriorly longer than mediolaterally wide, and has a roughened, gently

convex dorsal surface with an oval outline. A weakly developed buttress is found in the postero-

lateral region of the quadrate head, as in Shantungosaurus (e.g. ZCDM HS0031) and Prosaurolo-
phus (e.g. ROM 1928). This condition strongly contrasts with the pronounced posterdorsal

process of the quadrate in Probrachylophosaurus and Gryposaurus [33, 42]. The ventral half of

the anteriorly projecting lateral flange of the quadrate shaft is slightly notched to receive the

quadratojugal. The quadratojugal notch is symmetrical and shallowly arcuate, with a progres-

sively descending anteroventral edge, closely resembling the condition in Acristavus, Kunduro-
saurus, and Eotrachodon but differing from the deep, asymmetrical notch bearing an anteriorly

directed ventral edge in Aralosaurus and Prosaurolophus. In lateral view, the contact surface of

the notch is narrow and slightly sunken, and faces anterolaterally. The thin, striated jugal wing

occurs immediately dorsal to the quadratojugal notch.

The pterygoid wing arises from the medial surface of the quadrate shaft, and projects ante-

romedially. The wing is anteroposteriorly flattened and tongue-shaped in anterior outline. In

dorsal view, it forms an angle of 70˚ with the jugal wing. The flat anterior surface of the ptery-

goid wing might act as the attachment area for M. adductor mandibulae posterior, as noted

by Holliday [9]. As in Velafrons coahuilensis [43], a small spur protrudes medially from the
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posterolateral margin of the quadrate shaft, slightly below the mid-height of the bone. Between

the posterolateral spur and the base of the pterygoid wing is a deep, longitudinal groove in the

middle of the posterior side of the quadrate. Ventrally, the medial condyle is smaller and much

more dorsally positioned than the lateral condyle. However, in Probrachylophosaurus bergei
(e.g. MOR 2919), the medial condyle is slightly elevated relative to the lateral one.

Squamosal (Figs 3, 4 and 10–12). The squamosal is a quadradiate, laterodorsally bowed

bone that comprises the posterolateral corner of the supratemporal fenestra and the medioven-

tral half of the intertemporal bar. As in other hadrosaurines, the central region of the squamo-

sal is not drastically elevated relative to the neurocranium. The anterior half of the element is

laterodorsally overlapped by the postorbital, where an extremely narrow band of the squamo-

sal is dorsally exposed and forms part of the lateral margin of the supratemporal fenestra. In

ventral view, a short, mediolaterally compressed process extends anteriorly from the central

region of the squamosal, to meet the base of the jugal process of the postorbital. The quadrate

cotylus is deep and suboval, and has a parasagittal long axis. This cotylus is slightly posteroven-

trally inclined, forming an angle of 20˚ with the dorsal side of the skull roof. Just below the

postorbital-squamosal joint, there is a deep, strongly constricted precotyloid fossa that tapers

posterodorsally and medially. The fossa limits the anteroventrally and slightly laterally

directed, subconical precotyloid process anterodorsally. The precotyloid process is subtriangu-

lar in cross-section. It is proportionally shorter than that in Prosaurolophus (e.g. ROM 787),

Lophorhothon (FMNH P27383), Kritosaurus (e.g. NMMNH P-16106), and Gryposaurus (e.g.

AMNH 5350). The postcotyloid process is anteroposteriorly broad and anteroventrally curved.

The process overlaps the ventral half of the exoccipital paroccipital process laterodorsally

along its posterolateral region.

In posterior view, the lateral surface of the squamosal is moderately tilted dorsomedially.

The central region of the bone contacts the dorsal half of the exoccipital paroccipital process

along the deeply arcuate, sharply defined posterodorsal margin. The medial rami of the paired

squamosals are separated by a posterior extension of the parietal sagittal crest, which is distinct

from the connected squamosals seen in Saurolophus (e.g. AMNH 5221). Dorsally, the raised

posterior margin of the supratemporal fenestra divides each ramus into a strongly concave

anterodorsal surface and a slightly convex posterodorsal surface. The anteromedial region of

Fig 9. Left quadrate of Edmontosaurus regalis (CMN 2289) in lateral (A), medial (B), anterior (C), and posterior (D) views.

https://doi.org/10.1371/journal.pone.0175253.g009
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the medial ramus extends and curves anteriorly, and shares a wedge-shaped suture with the

parietal.

Postorbital (Figs 3, 4 and 10–12). The postorbital is composed of anteromedial, posterior,

and jugal processes. The bone varies substantially from that in all other hadrosauroid taxa. The

anteromedial surface of the jugal process is strongly concave posteriorly and expanded laterally

to form a large and deep pocket [8, 16]. The pocket is subovate and lateroventrally-dorsome-

dially oriented in anterior view, and is approximately 68% as wide as the frontal across the

orbital margin. By contrast, the postorbital pocket is relatively narrow mediolaterally and shal-

low anteroposteriorly in Edmontosaurus annectens (e.g. ROM 57100) and juvenile E. regalis
(e.g. CMN 8744), where the width of the pocket is less than 50% the maximum width of the

frontal. In both CMN 2288 and CMN 2289, the jugal process forms an equilateral triangle,

and curves anteroventrally. The strong anteroposterior expansion of the process leads to an

extreme constriction of the dorsal region of the infratemporal fenestra. However, the equiva-

lent structure in juvenile Edmontosaurus specimens (e.g. UAM ES12965) is relatively slender,

Fig 10. Partial, articulated skull roof and neurocranium of Edmontosaurus regalis (CMN 2289) in dorsal (A, B) and ventral

(C, D) views; photographs (left) and line drawings (right).

https://doi.org/10.1371/journal.pone.0175253.g010
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Fig 11. Partial, articulated skull roof and neurocranium of Edmontosaurus regalis (CMN 2289) in left lateral (A, B) and

right lateral (C, D) views; photographs (left) and line drawings (right).

https://doi.org/10.1371/journal.pone.0175253.g011

Fig 12. Partial, articulated skull roof and neurocranium of Edmontosaurus regalis (CMN 2289) in anterior (A, B) and

posterior (C, D) views; photographs (left) and line drawings (right). The well-developed postorbital pocket is indicated by an arrow.

https://doi.org/10.1371/journal.pone.0175253.g012
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and is more comparable to that in most hadrosaurines, such as Probrachylophosaurus (MOR

2919) and Saurolophus (e.g. AMNH 5220). Through ontogeny, the jugal process of E. regalis
becomes progressively larger relative to the skull roof.

The main body of the postorbital is dorsolaterally ornamented with a large, domed bump,

which follows the great development of the postorbital pocket. The shortened anteromedial

process abruptly widens to receive the frontal and parietal. The posterior process contacts the

squamosal ventromedially along its entire length, and terminates just above the anterior half of

the quadrate cotylus. In lateral view, the process is approximately level with the anteromedial

process. This contrasts with Kritosaurus navajovius (e.g. USNM 8629), in which the posterior

process of the postorbital is obliquely angled posteriorly relative to the anteromedial process

and extends onto the anterolateral surface of the central squamosal immediately dorsal to the

precotyloid fossa.

Frontal (Figs 3, 4 and 10–12). The frontal forms the anterior region of the skull roof, and is

excluded from the supratemporal fenestra by the postorbital-parietal joint. The dorsal surface

of the element is smooth and strongly depressed relative to the flat, rugose anterodorsal side of

the postorbital, as in Shantungosaurus giganteus and Edmontosaurus annectens [10]. In dorsal

view, the frontal contacts the postorbital along an interdigitated, posterolaterally convex

suture. The anterior platform of the frontal for receiving the nasal is substantially shorter than

that in Brachylophosaurus (e.g. MOR 1071-7-13-99-87-I) and Probrachylophosaurus (MOR

2919), and is less steeply angled than that inMaiasaura (e.g. OTM F138), Saurolophus (e.g.

AMNH 5221), and Prosaurolophus (e.g. TMP 1981.23.140).

Ventrally, the paired frontals form the dorsal border of the anterior exit for the olfactory

nerve (CN I) as they contact the narrow dorsal surfaces of the left and right orbitosphenoid–

presphenoid complexes. The posterolateral part of the frontal meets the dorsolateral process of

the laterosphenoid along a short scarf joint, whose ventral suture is continuous with the ante-

romedially-posterolaterally oriented lateral suture between the frontal and the orbitosphenoid.

The endocranial surface of the frontal contributes to the anterior region of the shallow, subcir-

cular cerebral fossa.

Parietal (Figs 3, 4 and 10–12). The single parietal consists of paired anterolateral and pos-

terolateral processes, and an anteroposteriorly elongate main plate, with an hourglass-shaped

dorsal outline. Between the slender anterolateral processes, there is a mediolaterally narrow,

finger-shaped interfrontal process that arises from the main plate. The process is much more

exposed endocranially than dorsally. Ventrally, the anterior third of the main plate forms the

posterior cerebral fossa. As in other hadrosaurines, the sagittal crest of the main plate is

straight and level with the posterior half of the skull roof, contrasting with the strongly down-

warped sagittal crest in most lambeosaurines [44]. The crest remains narrow and sharp along

its middle part, but slightly widens at the anterior and posterior ends of the main plate. The

posterior third of the sagittal crest does not bear the bifurcated secondary structures observed

in some basal hadrosauroids, such as Levnesovia transoxiana (USNM 538191). The parietal

contacts the laterosphenoid, prootic, and supraoccipital ventrally along a medially and slightly

ventrally embayed suture. The posteroventral part of the parietal is firmly upheld by the

ascending process of the supraoccipital.

Palate. Ectopterygoid (Figs 6 and 13). The ectopterygoid is a dorsoventrally flattened

bone that comprises a long anterior ramus and a pair of tongue-like posterior flanges. This ele-

ment is best preserved but partially reconstructed with plaster in CMN 2289. The anterior

ramus covers most of the dorsal surface of the ectopterygoid shelf as it gradually narrows med-

iolaterally towards the external naris. This ramus is proportionately broader than inMaiasaura
and Brachylophosaurus. A rimmed, subtriangular eminence adjacent to both the anterior

ramus and posterodorsal flange projects medially from the dorsomedial margin of the
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ectopterygoid. When in articulation, the eminence is tightly locked between the pterygoid pro-

cess of the maxilla anterodorsally and the posterior part of the ectopterygoid shelf ventrally,

and is posteriorly and medially buttressed by the pterygoid. The posteromedial surface of the

entire posterodorsal flange, together with the medial surface of the posterior half of the poster-

oventral flange, constitutes a gently concave, auriform sutural surface for the pterygoid.

Palatine (Figs 3, 4, 6 and 13). The palatine is best preserved and exposed in CMN 2289. The

element has a thin, subtrapezoidal main plate, and a dorsoventrally expanded anterolateral

process. The main plate progressively decreases in height along its posterior two thirds, and is

anteromedially limited by a slightly anteriorly curved, cylindrical strut. In anterior view, the

dorsal part of the plate is moderately inclined medially relative to the vertical base of the bone.

Medially, a large, ovate fossa occupies the centre of the main plate. The palatine would receive

the palatine ramus of the pterygoid along the sharp dorsal margin and rugose dorsal region of

the ventromedial surface of its main plate. The ventromedial surface of the pointed anterodor-

sal corner of the main plate forms a subtriangular sutural surface for the vomer, which is

marked by fine, anterodorsally-posteroventrally oriented striations. The anterolateral process

extends at an angle of 110˚ from the anteroventral region of the main plate, and would contact

the posteromedial margin of the maxillary anterior process. A low, vertically oriented ridge

lies on the anteromedial side of the anterolateral process. The process probably defines the

internal antorbital fenestra posteriorly, as pointed out by Horner [45].

Pterygoid (Figs 3, 4 and 14). The pterygoid has been well illustrated and described for

Edmontosaurus regalis [16, 46], based on CMN 2289. This element does not differ significantly

from that of other hadrosaurids. The dorsal flange has an oval, posteromedially-facing, antero-

dorsally-posteroventrally elongate articular surface for the basipterygoid process of the basi-

sphenoid. The articular surface is slightly proportionately larger than that of Brachylophosaurus.

Fig 13. Left and right ectopterygoids of Edmontosaurus regalis (CMN 2289) in lateral (A, B) and medial (C, D) views. Left and right

palatines of Edmontosaurus regalis (CMN 2289) in lateral (E, F), medial (G, H), and anterior (I, J) views.

https://doi.org/10.1371/journal.pone.0175253.g013
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The prominent medial ridge of the ventral quadrate process in CMN 2289 is nearly straight, in

contrast to the strongly anterolaterally convex equivalent inHypacrosaurus (e.g. ROM 702) and

Corythosaurus (e.g. CMN 8676).

Vomer (Fig 4). The vomer is a long, mediolaterally thin, subtriangular bone that gradually

tapers anteriorly. This bone contacts the premaxilla anteriorly, the maxilla anterolaterally, the

palatine posterodorsally and laterally, the pterygoid posteromedially, and its counterpart dor-

somedially. In CMN 2288, the anterior parts of the paired vomers are visible throughout the

external naris.

Neurocranium. Orbitosphenoid–presphenoid complex (Figs 4, 10–12 and 15). The pre-

sphenoid and orbitosphenoid are fused into a single unit in CMN 2288 and CMN 2289. The

two bones form the anterodorsal part of the lateral wall of the braincase, and enclose most of

the ventral region of the prosencephalon. The left and right presphenoids converge ventrome-

dially to meet each other along the sagittal plane, and produce a reniform anterior exit of the

olfactory nerve, together with the paired frontals. The ventral half of the orbitosphenoid is

pierced by a large, oval foramen for the optic nerve (CN II), just above its nearly horizontal,

weakly sinuous suture with the basisphenoid–parasphenoid complex. The posteroventral cor-

ner of the orbitosphenoid is slightly notched to form the anterodorsal margin of the circular

Fig 14. Left and right pterygoids of Edmontosaurus regalis (CMN 2289) in anterolateral (A, B) and posteromedial (C, D)

views.

https://doi.org/10.1371/journal.pone.0175253.g014
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foramen for the occulomotor nerve (CN III) and abducens nerve (CN VI). This foramen is

located immediately laterodorsal to the pituitary fossa formed by the basisphenoid. In CMN

2288, the paired presphenoids contact the median cultriform process of the parasphenoid ven-

trally along the straight lateral sutures; the dorsal region of the orbitosphenoid is perforated by

a small foramen that probably conducted the trochlear nerve (CN IV).

Laterosphenoid (Figs 4, 10–12 and 15). The laterosphenoid is a subtriangular bone that

encloses the mesencephalon and posterior end of the prosencephalon laterally, between the

Fig 15. Anterior region of the neurocranium of Edmontosaurus regalis (CMN 2289) in left anterolateral (A) and right anterolateral (B) views.

Posterior region of the neurocranium of Edmontosaurus regalis (CMN 2289) in left lateral (C) and right lateral (D) views.

https://doi.org/10.1371/journal.pone.0175253.g015
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orbitosphenoid and prootic. The bone consists of a stout dorsolateral process and a large tem-

poral plate. The dorsolateral process is moderately shortened, about 70% the length of the tem-

poral plate. By contrast, the equivalent ratio is greater than 90% in all other hadrosauroids

except Edmontosaurus annectens. In CMN 2288 and CMN 2289, the blocky distal end of the

dorsolateral process fits into a deep pit on the ventromedial surface of the postorbital main

body. Anteriorly, the laterosphenoid has a strongly interdigitated union with the orbitosphe-

noid, where the suture between the two bones is unclear but discernable. The anteroventral

region of the laterosphenoid gently curves medially to form the posterodorsal margin of the

foramen for the occulomotor and abducens nerves. Posteriorly, the large, subcircular foramen

for the trigeminal nerve (CN V) occurs along the contact between the laterosphenoid and

prootic [47]. This foramen measures 25 mm in diameter. On the lateral surface of the temporal

plate, a wide, horizontal sulcus for the ophthalmic branch (CN V1) extends anteriorly from

the trigeminal foramen. Just below the trigeminal foramen, a narrow, anteroventrally directed

groove extending onto the lateral surface of the basisphenoid indicates the passage for the

mandibular branch (CN V3), as in other hadrosaurids [35, 38, 40].

Prootic (Figs 10, 11 and 15). The prootic is located centrally on the lateral wall of the

braincase, and probably protected the metencephalon laterally. The bone bears an elongate,

subrectangular posterolateral process between its contacts with the parietal and exoccipital. In

lateral view, the anterior portion of the prootic exhibits a shallowly arcuate embayment that

forms the posterior margin of the trigeminal foramen. Ventrally, the element is seamlessly

fused to the basisphenoid. Posterior to the trigeminal foramen, the central body of the prootic

is pierced by a small foramen for the facial nerve (CN VII). This foramen is contiguous with

two narrow grooves on the lateral surface of the bone, which are directed posterodorsally and

anteroventrally, respectively. The posterodorsal groove is slightly shorter and more poorly

defined than the anteroventral one, and conducted the hyomandibular branch of the facial

nerve [38, 47]. The second groove accommodated the palatine branch of the same cranial

nerve, as in other hadrosaurids [38, 47]. The prootic defines the large fenestra ovalis antero-

dorsally, where the bone contacts the exoccipital posteriorly. The ventral part of the prootic–

exoccipital suture cannot be observed in CMN 2289, but it is visible in juvenile Edmontosaurus
(e.g. UAM ES4357). In CMN 2289, a nearly horizontal crista otosphenoidalis is well developed

on the dorsolateral surface of the prootic; the crista emerges from the anterolateral margin of

the bone, and extends posterolaterally onto the anterodorsal surface of the proximal region of

the paroccipital process. In comparison, the crista otosphenoidalis of Brachylophosaurus, Kri-
tosaurus and Gryposaurus is relatively slender and strongly inclined posterodorsally.

Exoccipital–opisthotic complex (Figs 3, 4, 10–12 and 15). In all specimens of Edmonto-
saurus regalis, the exoccipital and opisthotic are fully fused together, with no distinguishable

suture between the two bones. Therefore, the exoccipital–opisthotic complex is herein ab-

breviated as the exoccipital. The paired exoccipitals probably surrounded the myelencephalon

posterolaterally at the posterior end of the braincase. Either element is composed of a short

occipital plate, a robust paroccipital process, a tall posteromedial shelf, and a bulbous condyloid.

The anterior region of the occipital plate circumscribes most of the fenestra ovalis postero-

ventrally. The fenestra ovalis is partially divided internally by a prominent, anteroventrally

directed lamina, namely the crista interfenestralis. The posteroventral part of the fenestra may

represent the lateral exit for the glossopharyngeal nerve (CN IX). The metotic strut adjacent

to the fenestra ovalis is continuous posterodorsally with the anteroventral region of the pa-

roccipital process. Further posteriorly, the lateral surface of the base of the occipital plate is

pierced by four small oval foramina that are nearly equal in size. Directly below the robust

metotic strut, the first three of these foramina are close to one another, and lie a short distance

from the last one. The dorsal one of the first three foramina probably transmitted the vagus
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nerve (CN X), while the anteroventral one likely acted as the exit for the jugular vein [47, 48]. The

combination of the two foramina is possibly homologous with the metotic foramen, as described

by Gower and Weber [49]. By contrast, there is no single exit for the jugular vein beneath the

vagus foramen in Brachylophosaurus, Kundurosaurus, and Saurolophus. In CMN 2289, the two

more posteriorly located foramina probably conducted the branches of the hypoglossal nerve

(CN XII). A thick, nearly vertical septum separates the vagus foramen from the foramen for the

anterolateral branch of the hypoglossal nerve, as in Shantungosaurus giganteus (e.g. GMV 1780–

1) and Edmontosaurus annectens (e.g. ROM 64623). This condition differs from the thin, strongly

posteriorly inclined septum observed inGryposaurus notabilis (e.g. AMNH 5350).

The condyloid is large, posteriorly projected and lateroventrally convex, with a fairly rugose

lateral surface. It contacts the unpaired basioccipital ventrally along a slightly sinuous suture,

and forms the laterodorsal part of the reniform occipital condyle. The condyloid is crescentic

in occipital view, whereas in Gryposaurus,Kritosaurus and juvenile Edmontosaurus the poste-

rior outline of the condyloid is either subtriangular or trapezoidal. The paroccipital process is

an elongate, horn-shaped projection that extends and curves lateroventrally and slightly anteri-

orly from the posterodorsal region of the occipital plate. In occipital view, the left and right

paroccipital processes lock the posterior end of the supraoccipital in between. The proximal

part of the process is strongly expanded anteroventrally-posterodorsally, where its dorsal sur-

face is slightly more dorsally positioned than the posterodorsal edge of the supraoccipital. In

adults, E. regalis has a relatively shorter and more robust paroccipital process than Grypo-
saurus, Kritosaurus and Prosaurolophus of similar size. The posteromedial shelf contacts its

complement along a prominent median ridge, and together they form a deeply depressed,

strongly posterodorsally tilted posterior wall of the braincase above the foramen magnum.

Supraoccipital (Figs 4, 10 and 12). The supraoccipital, located immediately dorsal to the

united exoccipitals, does not differ in any significant aspect from that of other hadrosaurids.

Only the posterior region of the bone is visible in CMN 2288 and CMN 2289. In occipital

view, the lateral boss in the posterolateral region of the dorsal surface of the supraoccipital

invades the medial ramus of the squamosal. The posterior surface of the supraoccipital is

dorsoventrally low and moderately anterodorsally inclined; it has numerous fine horizontal

fissures along the entire width of the bone. This condition contrasts with the relatively smooth,

nearly vertical posterior side of the supraoccipital in many non-hadrosaurid iguanodontians,

such as Dakotadon lakotaensis (SDSM 8656) and Probactrosaurus gobiensis (e.g. PIN 2232/17-

1). In CMN 2289, the supraoccipital does not wedge anteriorly into the laterally exposed con-

tact between the parietal and prootic.

Basisphenoid–parasphenoid complex (Figs 4, 10–12 and 15). The basisphenoid is indis-

tinguishably fused with the parasphenoid at late ontogenetic stages. The two unpaired bones

together constitute the anteroventral part of the braincase, the centre of which probably

accommodated the pituitary gland dorsally. The elongate cultriform process of the parasphe-

noid curves anterodorsally from the base of the basisphenoid, where the lateroventrally

directed basipterygoid processes diverge from each other, forming an angle of approximately

125˚. Each basipterygoid process is rod-shaped and distally tapered into a blunt point. The

anterior side of the upper half of the process gradually narrows dorsomedially to form a sharp

margin. The margin well defines the slightly concave, smooth anteroventral surface between

the basipterygoid processes, which is located directly anterior to the transverse ridge and its

small median protuberance. Posterior to the base of the basipterygoid processes, the postero-

ventral region of the basisphenoid contacts the basioccipital along weakly undulating lateral

and ventral sutures, and forms the anterior two thirds of the sphenooccipital tubera. The sphe-

nooccipital tubera are very rugose and roughly bulboid. They are ventrally separated by a shal-

low midline groove.
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In lateral view, the basisphenoid–parasphenoid complex constitutes the ventral margin of

the foramen for the occulomotor and abducens nerves. Posteriorly, the basisphenoid does not

appear to participate in the formation of the trigeminal foramen, because of the presence of a

sinuous, anteroposteriorly oriented lateral suture between the basisphenoid and laterosphe-

noid well below the foramen and immediately anterior to the dorsal part of the alar process.

The ventral part of the alar process anterolaterally conceals a small oval foramen that is inter-

preted as the lateroventral entrance for the carotid canal (i.e. the passage of the internal carotid

artery) [35, 38, 47]. Anteriorly, the endocranial surface of the basisphenoid is deeply excavated

by a dorsoventrally tall pituitary fossa, located anteroventral to the endocranial floor. The left

and right carotid canals extend anterodorsally and medially from their lateroventral entrances,

through the basisphenoid, onto the posteroventral surface of the pituitary fossa, where a pair

of large, round foramina occur. Dorsal to the internal exits for the left and right carotid canals,

two relatively small foramina on the posterodorsal surface of the pituitary fossa open postero-

dorsally onto the dorsum sellae (i.e. the anterior end of the endocranial floor) via another two

small foramina. The two pairs of foramina probably represent the endocranial openings of the

left and right abducens nerves [47].

Basioccipital (Figs 4, 10–12 and 15). The basioccipital forms the posterior third of the sphe-

nooccipital tubera, the posterior two thirds of the endocranial floor, and the ventral portion

of the occipital condyle. This element is subtrapezoidal in occipital view. The ventral surface

of the posterior half of the basioccipital is strongly convex mediolaterally, and possesses nu-

merous short, randomly oriented indentations. As in Edmontosaurus annectens (e.g. AMNH

427) and Shantungosaurus giganteus (e.g. ZCDM HS0001), the occipital condyle is strongly

deflected posteroventrally, forming an angle of approximately 42˚ with the anterior region of

the skull roof. By contrast, in all other hadrosaurids, the corresponding deflection angle is no

more than 25˚ [10].

Lower jaw. Dentary (Figs 3, 4, 16 and 17). Both the left and right dentaries are well pre-

served in CMN 2289, although the right one appears to be slightly distorted due to post-depo-

sitional dorsoventral crushing. The anterior part of the dentary ramus is gently anteroventrally

deflected, forming an angle of 14˚ with the horizontal posterior part of the ramus. In compari-

son, the ventral deflection of the dentary anterior part is much stronger in Kritosaurus (e.g.

AMNH 5799) and Gryposaurus (e.g. ROM 873), with a relatively steep dorsal contact surface

for the predentary. Posterior to the symphysial process, the edentulous region of the dentary in

CMN 2289 is approximately 38% as long as the tooth row. In fact, the ratio between the length

of the edentulous region and that of the tooth row varies significantly among the adult den-

taries of Edmontosaurus regalis, ranging from 0.34 to 0.50. The dentary has an anteroposter-

iorly elongate, subelliptical tooth row, the lingual surface of which is slightly anteroposteriorly

and dorsoventrally convex. The tooth row bears 48 vertical tooth positions and a transversely

narrow, dorsolaterally concave occlusal surface. In medial view, the long axis of the tooth

row parallels the ventromedial margin of the middle part of the dentary ramus. This condition

contrasts with the modestly anterodorsally inclined long axis of the tooth row in Acristavus
gagslarsoni (e.g. MOR 1155) and Probrachylophosaurus bergei (MOR 2919). The tooth row

extends slightly posterior to the coronoid process. As in all other hadrosaurines except Brachy-

lophosaurini, the apex of the coronoid process in E. regalis is subcircular and anteroposteriorly

expanded, with a pronounced posterior extension. The buccal shelf between the base of the

coronoid process and the posterior end of the tooth row is mediolaterally broad and deeply

depressed. Posteriorly, the anterior region of the mandibular adductor fossa becomes progres-

sively narrower and shallower towards the apex of the coronoid process.

Surangular (Figs 3, 4, 17 and 18). The surangular morphology of Edmontosaurus regalis
closely resembles that of other hadrosaurines: the posterior half of the element is dorsoventrally
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shortened, with a strongly ventrally twisted dorsolateral flange and a nearly straight, posteriorly

directed retroarticular process. The anterior half of the surangular is markedly dorsomedially

excavated by the posterior region of the mandibular adductor fossa that has a deeply arcuate

edge contour, and is laterally shaped by a mediolaterally thin, ascending anterodorsal process.

The anterodorsal process occurs directly dorsal to the posterior region of the mandibular

adductor fossa. The posteromedial margin of the former is continuous posteroventrally with the

dorsal edge of the latter. In articulated mandibles, including CMN 2288, most of the lateral sur-

face of the anterodorsal process is concealed by the lateral wall of the triangular depression on

the posterior surface of the dentary coronoid process, very similar to the condition in other

hadrosaurids. By contrast, in many basal hadrosauroids such as Equijubus normani (IVPP

V12534), only the anterior half of the anterodorsal process is laterally covered by the depressed

posterior part of the coronoid process when in articulation.

In dorsal view, the surangular is modestly curved posteromedially near the centre, where

the subtriangular laterodorsal flange emerges; the deflection angle along the surangular ventro-

medial margin is approximately 153˚. The thickened ventromedial margin of the surangular

produces an elongate, slightly convex contact surface for the angular. A narrow, subtriangular

shelf extends medially and slightly dorsally from the dorsal surface of the middle of the suran-

gular, where the oval glenoid is present. As in Gryposaurus monumentensis (RAM 6797), the

Fig 16. Left and right dentaries of Edmontosaurus regalis (CMN 2289) in lateral (A, B), medial (C, D), dorsal (E, F), ventral (G, H),

and posterior (I, J) views.

https://doi.org/10.1371/journal.pone.0175253.g016
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anterior part of the medial shelf abuts the posteroventral edge of the mandibular adductor

fossa. In CMN 2288, the medial shelf of the surangular does not meet the splenial; a distinct

gap occurs between them. The condition is also observed inMaiasaura (e.g. ROM 44770) and

Brachylophosaurus (e.g. CMN 8893). The glenoid between the laterodorsal flange and medial

shelf is gently concave and marked by numerous small pits and fine striations. It would proba-

bly articulate with the entire lateral condyle and lateral third of the medial condyle of the quad-

rate dorsally in CMN 2289. The posteroventral corner of the retroarticular process is broadly

arched in lateral view, contrasting with the nearly right-angled posteroventral margin of

the process seen in most lambeosaurines, such as Lambeosaurus magnicristatus (e.g. TMP

66.04.01) and Parasaurolophus walkeri (e.g. ROM 768).

Angular (Figs 17 and 18). The angular is the longest post-dentary bone of the mandible.

The bone is laterodorsally-ventromedially compressed, and is slightly curved dorsomedially

along its posteror third. The complicated laterodorsal surface of the surangular contacts the

dentary anteroventrally, the surangular posterodorsally, and the splenial dorsally. The paired

angulars of CMN 2289 are missing their anterior thirds and posteriormost ends. In dorsolat-

eral view, the flat contact surface for the dentary reaches its maximum depth at the anterior

third of the bone, the dorsomedial and lateroventral margins of which well define the surface.

Further posteriorly, the aforementioned surface gradually decreases in depth due to the emer-

gence and widening of the gently concave, more dorsally positioned sutural surface for the sur-

angular, and terminates at about 40% the length of the angular from the posterior margin. Just

above the surangular facet, the contact surface for the splenial occurs along the posterior half

of the dorsal side of the bone. The surface is bent and relatively narrow. In CMN 2288, the

angular is completely obscured laterally by the surangular.

Fig 17. Incomplete, articulated right dentary, surangular, angular, splenial and articular of Edmontosaurus regalis

(CMN 2288) in lateroventral (A), dorsomedial (B), dorsal (C), and ventral (D) views.

https://doi.org/10.1371/journal.pone.0175253.g017
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Splenial (Figs 3, 17 and 18). There is no evidence of a single prearticular posterolaterally

overlapping the splenial in all available Edmontosaurus regalis material. Therefore, the prearti-

cular and splenial might be completely fused to each other before the juvenile stages. The left

and right splenials of CMN 2289 are disarticulated and well preserved, yet slightly recon-

structed with plaster. The bluntly round posterior end is missing in both elements. The splenial

is mediolaterally flattened, extending anteriorly to form an elongate, slender anterior process

that accounts for approximately 27% the length of the bone. The lateral side of the process con-

tributes to the anterior region of the contact surface for the dentary. Posterior to the anterior

Fig 18. Incomplete, articulated right surangular and angular of Edmontosaurus regalis (CMN 2289) in lateroventral (A),

dorsomedial (B), and dorsal (C) views. Incomplete left angular of Edmontosaurus regalis (CMN 2289) in laterodorsal (D) and

ventromedial (E) views. Partial right splenial of Edmontosaurus regalis (CMN 2289) in lateral (F), medial (G), and dorsal (H) views.

Nearly complete, articulated left splenial and articular of Edmontosaurus regalis (CMN 2289) in lateral (I), medial (J), and dorsal

(K) views.

https://doi.org/10.1371/journal.pone.0175253.g018
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process, the remainder of the dentary facet is subtriangular and tapered posteriorly. It termi-

nates adjacent to the midpoint of the lateral surface of the splenial. Ventrally, the contact sur-

face for the angular is smooth and transversely broad. It protrudes laterally to produce a short,

dorsoventrally thin shelf along the posterior two thirds of the bone. The shelf does not meet

the ventromedial margin of the surangular in CMN 2288. Furthermore, the splenial in E. rega-
lis is slightly more posteromedially curved than that in Brachylophosaurus canadensis.

Articular (Figs 17 and 18). In CMN 2289, the left articular contacts the posterior portion of

the ipsilateral splenial medially along the sinuous anterior and dorsal sutures, and is missing

its posterodorsal region. This element is approximately quadrangular in lateral view, and

exhibits a dorsoventrally tall, subtriangular posterior outline that gradually narrows ventrally.

The subtly concave contact surface for the surangular faces lateroventrally and slightly poster-

orly. The mediolaterally thickened dorsal part of the bony articular does not appear to form

the medial region of the mandibular glenoid, contra Lambe [16]. This is because the bone does

not meet the more anterolaterally positioned medial shelf of the surangular that limits the lat-

eral two thirds of the mandibular glenoid medially, as in CMN 2288. We speculate that the

articular would have a cartilaginous anterior extension in life. The extension would fill the gap

between the surangular and splenial, and would contact the medial two thirds of the medial

condyle of the quadrate dorsally.

Dentition. Maxillary teeth (Figs 3–6 and 19). The left and right maxillae in CMN 2289

possess 53 and 51 alveoli, respectively. Only active teeth along the occlusal surface are recog-

nizable in CMN 2289 because replacement teeth of the dental battery are entirely obscured

from view by the thin medial parapet of the maxilla. In the middle dental battery, most of the

occlusal surface is formed by two functional teeth per alveolus, namely a worn crown and a

residual, more medially situated root. A small minority of alveoli along the middle part of the

dental battery hold a single functional tooth for each position, which is applied to most of the

Fig 19. Dentitions of Edmontosaurus regalis (CMN 2289). Exposed teeth in the middle of the left maxilla in labial (A) and occlusal (B)

views. Exposed teeth in the middle of the left dentary in lingual (C) and occlusal (D) views. Positions of active teeth on the occlusal surface

are indicated by blue arrows.

https://doi.org/10.1371/journal.pone.0175253.g019
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alveoli along the anterior and posterior regions of the battery. The enameled labial surface of

each tooth crown is diamond-shaped and evenly separated by a straight primary ridge. The

mesial and distal margins of the apical half of the surface is poorly denticulated, contrasting

with the large mammillate denticles seen in Brachylophosaurini. Of note, the maxillary tooth

crowns of CMN 2289 are mesiodistally narrower and apicobasally shorter than the dentary

ones. The tooth crown in the middle of the maxilla measures 8 mm in average maximum

width, and has an estimated height of 29 mm.

Dentary teeth (Figs 3, 4, 16 and 19). The dentary dentition of Edmontosaurus regalis has

been well studied by Lambe [16] and Xing et al. [10]. The middle region of the dental battery

in CMN 2289 shows a maximum of seven teeth per alveolus, including 3–4 functional teeth on

the occlusal surface. The enameled lingual surface of each tooth crown in the middle of the

dental battery is at least 37 mm high and 12 mm wide, with a height/width ratio ranging from

2.90 to 3.16. By contrast, tooth crowns in the adult dentaries of Edmontosaurus annectens are

slightly mesiodistally wider, and have height/width ratios up to 2.70. In CMN 2289, a median

primary ridge runs longitudinally throughout the entire lingual surface of each tooth crown.

This condition differs from the slightly distally offset primary ridge seen in Rhinorex condrupus
[36].

Discussion

Comparison with Edmontosaurus annectens

Edmontosaurus regalis and E. annectens are the only two valid species of the genus Edmonto-
saurus [8]. Our osteological evaluation of the types of E. regalis further confirms the subtle

morphological differences between this taxon and E. annectens. Edmontosaurus regalis is dis-

tinguished from E. annectens by the following nine non-autapomorphic characters consistently

expressed in large, presumably adult specimens: 1) the prenarial region of the snout is rela-

tively short anteroposteriorly, being no more than 25% as long as the skull; 2) the cranium is

relatively short anteroposteriorly and dorsoventrally high, with a length/height ratio less than

2.10; 3) the posterodorsally reflected anterior margin of the premaxilla forms a strongly swol-

len, lip-like oral region of the skull; 4) the external interfrontal suture is proportionately longer

because the posteromedial processes of the nasals are slightly inserted posteriorly into the fron-

tals; 5) the prominent arched posterodorsal margin of the circumnarial fossa ascends to the

dorsal surface of the narial region of the snout; 6) the jugal process of the postorbital strongly

bulges laterally, giving rise to a greater development of the postorbital pocket; 7) the dorsal

suture between the nasal and frontal is crenulated and mediolaterally oriented; 8) the subtrian-

gular vestibular promontory between the two premaxillary foramina in the prenarial region of

the circumnarial fossa is anteromedially-posterolaterally narrow, and therefore bounds a rela-

tively large anteromedial concavity posterolaterally; 9) each tooth crown in the middle of the

dentary is slightly mesiodistally narrower, with a height/width ratio greater than 2.90. In this

paper, the last three characters are newly identified and subsequently added to the diagnosis of

E. regalis. Furthermore, in E. regalis, the dorsal part of the jugal anterior process strongly flares

posterolaterally to form a sharp, posterodorsally tilted projection that invades the orbital mar-

gin. This feature is in marked contrast with the smoothly continuous posterodorsal surface of

the jugal anterior process acting as an indistinct, nearly vertical anteroventral margin of the

orbit in all other iguanodontians, and is herein considered autapomorphic for E. regalis.

Status of Ugrunaaluk kuukpikensis

Mori et al. [50] erected a new genus and species of Edmontosaurini, Ugrunaaluk kuukpikensis,
based mostly on juvenile material from the Liscomb bonebed in the Price Creek Formation of
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northern Alaska. These authors argued that U. kuukpikensis is taxonomically distinct from

Edmontosaurus in its possession of the following three diagnostic character: (1) the outer narial

fossa of the circumnarial depression is laterodorsally marked by a transverse ridge, lacking a

vestibular promontory; (2) the main body of the postorbital has a shallow internal fossa at

the base of the jugal process; (3) the posteromedial rim of the anterior process of the jugal is

strongly angled. They further distinguished U. kuukpikensis from E. regalis based on (4) the

wide lateral exposure of the quadratojugal in the former taxon. Here we regard this differential

diagnosis of U. kuukpikensis as problematic, and outline the reasons for questioning the valid-

ity of the species below.

The Ugrunaaluk material probably pertains to very young individuals much smaller than

most comparable material available for Edmontosaurus. For example, the Ugrunaaluk speci-

mens are approximately 50%–65% as long as the equivalent bones of the juvenile Edmonto-
saurus from Wyoming (ROM 53492–53541). Mori et al. [50] note that there is some overlap

between U. kuukpikensis and E. annectens in their size classes 2 and 3, but admit that the over-

lap involves very few specimens. There is no size overlap whatsoever between known material

of U. kuukpikensis and E. regalis. The authors were therefore forced to draw direct compari-

sons between the juvenile material of U. kuukpikensis and presumably adult material of E. rega-
lis and E. annectens, establishing a differential diagnosis for the first taxon on the basis of

arguably juvenile character states. Given the relatively small size and juvenile stages of the U.

kuukpikensis material, the scarcity of size-overlapping material between U. kuukpikensis and

Edmontosaurus, and the closest affinities between the two taxa, we cannot reject the following

hypothesis: characters 1, 2, 3, and 4 may be ontogenetically variable in individuals of U. kuuk-
pikensis, and therefore possibly represent transient states during the juvenile stages of Edmon-
tosaurus. In fact, the development of the premaxillary vestibular promontory and postorbital

internal fossa, as well as the decrease in width of the lateral exposure of the quadratojugal, is

certainly most pronounced in the largest, presumably oldest individuals of Edmontosaurus [8].

The limited available size-equivalent material for Ugrunaaluk kuukpikensis and Edmonto-
saurus further led Mori et al. [50] to draw comparisons, not simply between the fossils them-

selves, but between growth trajectories established on the basis of relatively few data points (3–

8 points for U. kuukpikensis). While we applaud the authors’ meticulousness, this approach is

problematic, given the issues inherent with establishing a growth trajectory based on just a few

specimens from one end of an ontogenetic spectrum [51].

With these considerations in mind, we see no compelling reason to accept that U. kuukpi-
kensis represents a valid taxon. We instead regard the Alaskan material conservatively as

Edmontosaurus sp. [8, 20]. We further suggest the possibility, as indicated by Xing et al. [10],

that this material represents a northern occurrence of E. regalis, as it displays some salient fea-

tures characteristic of the species. These include a relatively short prenarial region of the pre-

maxilla with a posterodorsally reflected, lip-shaped oral margin (e.g. UAM ES4184), and a

wide, anteroventrally tilted shelf at the base of the postorbital sutural surface of the jugal (e.g.

UAM ES4187 and UAM ES4241) [10, 50]. Such an interpretation would have interesting

implications regarding migration scenarios along latitudinal clines [52]. Finding more juvenile

material attributable to E. regalis, and/or more adult material attributable to U. kuukpikensis,
will go a long way toward resolving this taxonomic conundrum.

Phylogenetics of Hadrosauridae

A phylogenetic analysis of Hadrosauroidea resulted in 24 most parsimonious trees (MPTs) of

1037 steps, each with a consistency index of 0.476 and a retention index of 0.856. The strict

consensus of the recovered MPTs reveals that the sister taxon to Lambeosaurinae consists of
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Brachylophosaurini, Kritosaurini, Saurolophini and Edmontosaurini, as well as Hadrosaurini

that is solely represented by the enigmatic Hadrosaurus foulkii (Fig 20). In other words,H.

foulkii is found to be firmly within the monophyletic group comprising all non-lambeosaurine

hadrosaurids. Thus, we agree with the taxonomic scheme of Hadrosauridae both argued by

Lull and Wright [7] and Sereno [5], where Hadrosauridae is divided into two clades, namely

Hadrosaurinae and Lambeosaurinae. H. foulkii, Brachylophosaurini, and the clade of Krito-

saurini + (Saurolophini + Edmontosaurini) form an unresolved polytomy at the base of

Hadrosaurinae.

Based on the topology of the strict consensus tree, Edmontosaurini is depicted as the clade

consisting of all hadrosaurines closer to Edmontosaurus than to Saurolophus, Kritosaurus,
Brachylophosaurus, orHadrosaurus. This clade is tentatively composed of Kerberosaurus
manakini, Shantungosaurus giganteus, E. regalis, and E. annectens. The two valid species of

Fig 20. Strict consensus of 24 most parsimonious trees resulting from the maximum parsimony analysis of Hadrosauroidea,

showing the sister-group relationship between Hadrosaurinae and Lambeosaurinae within Hadrosauridae. Numbers above lines

represent bootstrap proportions, whereas those below lines represent Bremer decay values. Bootstrap proportions lower than 20 and

Bremer decay values less than 2 are not shown.

https://doi.org/10.1371/journal.pone.0175253.g020
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Edmontosaurus together form a monophyletic group highly nested within Edmontosaurini,

and are united by multiple synapomorphies: characters 27(1), 38(3), 48(2), 182(1), 221(1), 324

(1), and 327(0). Node support for the clade of E. regalis + E. annectens is extremely high, with a

bootstrap proportion of 91% and a Bremer decay value of 5 (Fig 20). A suite of synapomor-

phies, namely 1(2), 181(2), 183(1), 204(1), 234(0) and 309(2), definitely identify Shantungo-
saurus as the sister taxon to Edmontosaurus, which further corroborates the hypothesis of Xing

et al. [10] regarding the close relationship of the two genera. K.manakini is recovered at the

base of Edmontosaurini.

The phylogenetic topologies of other major clades of Hadrosaurinae in the strict consensus

tree are briefly described as follows. In the monophyletic Brachylophosaurini, Probrachylopho-
saurus bergei is recovered as the sister taxon to Brachylophosaurus canadensis, as documented

by Freedman Fowler and Horner [42]; the clade of B. canadensis + P. bergei is posited as more

closely related toMaiasaura peeblesorum than to Acristavus gagslarsoni andWulagasaurus
dongi. With regard to the clade Kritosaurini, “Rhinorex” condrupus is depicted as the sister

taxon to Gryposaurus latidens, and is deeply nested within an otherwise monophyletic Grypo-
saurus. Lophorhothon atopus occupies the most basal position within Saurolophini.

It is worth noting that Eotrachodon orientalis is depicted as a relatively derived non-hadro-

saurid hadrosauroid, rather than one of the most basal hadrosaurids as suggested by Prieto-

Márquez et al. [34]. Sirindhorna khoratensis at the base of Hadrosauroidea is positioned higher

on the tree than Equijubus normani, but below Xuwulong yueluni. Furthermore, our current

analysis indicates that Olorotitan arharensis represents the first lineage of Lambeosaurini to

branch off.

Biogeography of Hadrosaurinae

Since the 1980s, issues concerning the ancestral areas and dispersal dynamics of hadrosaurines

during the latter half of the Late Cretaceous continue to be hotly debated [1, 2, 10, 30, 53–55].

Here, our temporally calibrated cladogram with probability calculation of ancestral areas pro-

vides some new insights into the biogeography of Hadrosaurinae (Fig 21). The results of our

biogeographic analysis suggest the following information: Hadrosaurinae (node 1) has a con-

siderably high probability (~81%) of having originated in North America; the first split of

Hadrosaurinae is inferred to have occurred no later than the end of Santonian; Edmontosaur-

ini (node 12) may originate in Asia, with a relatively high probability of 75%; during the latest

Santonian–earliest Maastrichtian, multiple dispersals between Asia and western North Amer-

ica (i.e. Laramidia) would happen presumably via the Bering land bridge; the probabilities of

the North and South American origins for Kritosaurini (node 6) are 75% and 25%, respectively

(Fig 21).

Interestingly, the biogeographic scenario for the North American origin of Hadrosaurinae

displays at least two Laramidia–Appalachia dispersal events around the boundary between

the Santonian and Campanian, given the presence ofHadrosaurus foulkii and Lophorhothon
atopus in lower Campanian exposures of Appalachia (i.e. eastern North America). This is

inconsistent with the Laramidian restrictions for all known North American members of Tyr-

annosauridae and Ceratopsidae [56, 57], and conflicts with the paleogeographic hypothesis

proposed by both Zharkov et al. [58] and Blakey [59], in which Laramidia was completely sep-

arated from Appalachia by the Western Interior Seaway during the Santonian to early Campa-

nian. It is noteworthy that Hadrosaurinae (node 1) also has a probability of 17% indicating the

ancestral area of Asia. In this biogeographic scenario, the occurrences of two hadrosaurine spe-

cies in the lower Campanian of Appalachia could be explained as a result of pre-Campanian

dispersals of some hadrosaurine clades from Asia to eastern North America throughout the
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European archipelago and landmass. Nevertheless, more fossil evidence from Asia and Europe

in support of the hypothesis is still necessary.

Despite the fact that the North American origin of Hadrosaurinae is strongly favored by the

biogeographic analysis, we cannot rule out the possibility that the clade originated in Asia. At

present, the widely accepted paleogeographic reconstructions of North America in the Santo-

nian–Campanian period demonstrate a strong bias against the biogeographic scenario for the

North American origin of Hadrosaurinae. Similarly, the fossil record of Hadrosaurinae known

from the Santonian and early Campanian of Asia is extremely scant: only a few isolated post-

cranial elements with hadrosaurine affinities have been reported; they were recovered from

the middle Santonian of central China [60]. To better elucidate the biogeographic history of

Fig 21. Time-calibrated cladogram of Hadrosaurinae derived from the strict consensus tree shown in Fig 20, with probability

estimation of ancestral continental regions for all nodes of the taxon. Blue stars indicate hadrosaurine species recovered from

Appalachia, eastern North America.

https://doi.org/10.1371/journal.pone.0175253.g021
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Hadrosaurinae, additional geological surveys and fossil collecting in Santonian and Campa-

nian outcrops of Asia and Europe would be considerably beneficial.

Methods

Anatomical study

The osteological information of Edmontosaurus regalis described here was acquired by first-

hand examinations and measurements of the types (CMN 2288 and 2289) publicly reposited

at the Canadian Museum of Nature (CMN) in Ottawa (Ontario, Canada). Meanwhile, all nec-

essary permits were obtained from the Paleobiology Section of the CMN for the described

study, which complied with all relevant regulations. Comparative anatomical data from other

iguanodontian taxa and referred material of E. regalis were collected by means of direct obser-

vation and from the relevant literature.

Phylogenetic analysis

In order to assess the systematic position of Edmontosaurus regalis and phylogenetic topology

of Hadrosauridae, a species-level cladistic analysis of Hadrosauroidea was conducted based on

a data matrix comprising 62 taxa and 346 unordered, equally weighted characters. The non-

hadrosauroid iguanodontian Ouranosaurus nigeriensis was constrained as the outgroup. Four

recently-named hadrosauroid species (i.e. Sirindhorna khoratensis, Eotrachodon orientalis, Pro-
brachylophosaurus bergei and Rhinorex condrupus) have been included in the analysis. The

character list was slightly modified from Wang et al. [61], and consists of 235 characters per-

taining to the cranium and 111 characters related to the axial and appendicular skeletons (see

S1 Text). The character coding of Kerberosaurus manakini was based on morphological infor-

mation collected from the material pertaining to this species and to its junior synonym Kun-
durosaurus nagornyi [10].

The character-taxon matrix (see S1 Dataset) was gathered in Mesquite version 3.10 [62],

and was later analyzed in TNT version 1.1 [63], where maximum parsimony was used as the

optimal criterion. A traditional search setting a random seed of 1 and 1000 replicates for Wag-

ner trees was performed, under the tree bisection reconnection (TBR) swapping algorithm

with 100 trees saved per replication. Bootstrap proportions and Bremer decay values for node

support were calculated by the “Resampling” option with 1000 replicates of standard absolute

frequencies and the “BREMER.RUN” script using minimum score in TNT, respectively. Phy-

logenetic definitions of Hadrosauriformes and its major clades largely follow Sereno [5], Brett-

Surman [30], and Gates et al. [6].

Biogeographic inference

The goals of our biogeographic analysis were to infer the ancestral areas and the latest split

ages of Hadrosaurinae and its major clades. The result of the phylogenetic analysis served as

the framework of the biogeographic investigations. The ancestral areas of nodes within Hadro-

saurinae were inferred using probability calculation under the rules of multiplication and addi-

tion (see S2 Text). The rules are applicable to both bifurcate nodes and polytomies. Prior to

calculation, each polytomy was transformed into multiple cladistic scenarios that all require a

fully bifurcated topology. The evolutionary splitting events of Hadrosaurinae were putatively

subject to dispersal and/or vicariance. We successively estimated the probabilities of ancestral

areas for nodes from the tip to the base of the hadrosaurine phylogenetic tree derived from the

strict consensus. The probabilities of ancestral areas of each node were completely determined

by those of its subclades being equally treated. When a subclade corresponds to a species-level
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taxonomic unit, the ancestral area of the former would be restricted to the continental region

where the material of the latter was recovered. The continental regions applied in this analysis

were Asia, North America, and South America, where currently known hadrosaurine species

have been recorded.

For the analysis, the presence of the Late Cretaceous land connections between Asia–North

America and North America–South America was considered plausible. However, we em-

ployed some conservative constraints on the potential dispersal route between Asia and South

America, as well as relevant probability calculation: the direct dispersal between the two conti-

nental regions was not allowed, and the probabilities of ancestral areas produced by multiply-

ing two fractions (up to 1) that represent subprobabilities of Asian and South American

origins, respectively, were inapplicable to the ultimate addition operations. This is because

any hadrosaurine dispersal routes between the two non-adjacent areas would pass through a

third continental region where the fossil evidence of relevant taxon/taxa with close affinities

should be documented. Moreover, for Hadrosaurinae and its major clades, the split events

were postulated to have occurred earlier than the first geological appearance of their respective

subclades. The biostratigraphic information of hadrosaurine taxa used in the biogeographic

analysis is based on published data documented in S2 Table. Given that the use of the geologi-

cal time scale (GTS) 2012–2016 after the innovation of the 40Ar–39Ar dating technique may

lead to the recalibration of absolute ages of known hadrosaurine taxa, the GTS 2009 was

adopted to locate the stratigraphic ages of selected taxa in the time-calibrated cladogram.

Supporting information

S1 Dataset. Character-taxon matrix in nexus format.

(NEX)

S1 Table. Cranial linear measurements for the holotype and paratype of Edmontosaurus
regalis.

(PDF)

S2 Table. Biostratigraphic information for hadrosaurine species used in the biogeographic

analysis.

(PDF)

S1 Text. Character list for the cladistic analysis.

(PDF)

S2 Text. Probability calculation of ancestral areas for nodes within Hadrosaurinae.

(PDF)

Acknowledgments

We are very grateful to Kieran Shepherd for allowing and facilitating access to Edmontosaurus
regalis specimens under his care, to Alan McDonald for minor preparation of the specimens,

to Alex Tirabasso and Natalia Rybczynski for sharing the 3D image of CMN 2289, to an anon-

ymous artist for restoration of Edmontosaurus regalis, to Danielle Dufault for permission to

update her skeletal reconstruction of the species, and to Scott Rufolo for taking photographs.

We also thank Xiaochun Wu, Xing Xu, Michael Brett-Surman, David Evans, David Eberth,

Frankie Bedek, Hirotsugu Mori, Vladimir Alifanov, Chinzorig Tsogtbaatar, Dani Fraser, Brad

McFeeters, and Yuguang Zhang for helpful discussion. Thanks also go to the reviewers (Drs.

Penélope Cruzado-Caballero and Nicolás Campione) and academic editor (Dr. Anthony Fior-

illo) for greatly improving the manuscript.

Supplementary cranial description of Edmontosaurus regalis

PLOS ONE | https://doi.org/10.1371/journal.pone.0175253 April 6, 2017 36 / 40

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0175253.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0175253.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0175253.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0175253.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0175253.s005
https://doi.org/10.1371/journal.pone.0175253


Author Contributions

Data curation: HX.

Formal analysis: HX.

Funding acquisition: HX JCM.

Investigation: HX JCM MLC.

Methodology: HX JCM.

Project administration: HX JCM.

Resources: JCM MLC.

Software: HX.

Supervision: HX JCM.

Writing – original draft: HX JCM.

Writing – review & editing: HX.

References
1. Horner JR, Weishampel DB, Forster CA (2004) Hadrosauridae. In: Weishampel DB, Dodson P,

Osmólska H, eds. The Dinosauria, second edition. Berkeley: University of California Press. pp. 438–

463.

2. Prieto-Márquez A (2010) Global historical biogeography of hadrosaurid dinosaurs. Zoological Journal

of the Linnean Society 159: 503–525.

3. Cruzado-Caballero P, Canudo JI, Moreno-Azanza M, Ruiz-Omeñaca JI (2013) New material and phylo-

genetic position of Arenysaurus ardevoli, a lambeosaurine dinosaur from the late Maastrichtian of Arén

(northern Spain). Journal of Vertebrate Paleontology 33(6): 1367–1384.

4. Lund EK, Gates TA (2006) A historical and biogeographical examination of hadrosaurian dinosaurs.

New Mexico Museum of Natural History and Science Bulletin 35: 263–276.

5. Sereno PC (1998) A rationale for phylogenetic definitions, with application to the higher-level taxonomy

of Dinosauria. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 210: 41–83.
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