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Abstract
We identify influential early adopters in a social network, where individuals are resource

constrained, to maximize the spread of multiple, costly behaviors. A solution to this problem

is especially important for viral marketing. The problem of maximizing influence in a social

network is challenging since it is computationally intractable. We make three contributions.

First, we propose a new model of collective behavior that incorporates individual intent,

knowledge of neighbors actions and resource constraints. Second, we show that the multi-

ple behavior influence maximization is NP-hard. Furthermore, we show that the problem is

submodular, implying the existence of a greedy solution that approximates the optimal solu-

tion to within a constant. However, since the greedy algorithm is expensive for large net-

works, we propose efficient heuristics to identify the influential individuals, including

heuristics to assign behaviors to the different early adopters. We test our approach on syn-

thetic and real-world topologies with excellent results. We evaluate the effectiveness under

three metrics: unique number of participants, total number of active behaviors and network

resource utilization. Our heuristics produce 15-51% increase in expected resource utiliza-

tion over the naïve approach.

1 Introduction

Often, we are unable to adopt a behavior—despite knowledge of behavior utility, interest in
adoption and knowledge of behavior adoption amongst friends—becausewe lack the resources
to adopt the behavior. Consider the following scenarios:Many of John’s friends are planning to
take the free flu shot offered at the university health clinic this week. Unfortunately for John,
he is planning to be away from the university at that time and unable to make use of the oppor-
tunity. Mary wants to buy and cook with organic produce like her neighbors, but in her small
town the only grocer that sells organic produce is ten miles away; unlike her neighbors, she
does not own a car, and thus cannot afford to spend time traveling to the store and back on a
public bus. Both examples point to absence of resources, either time, or a tangible resource like
a car being an important barrier to adoption of behavior.
This paper investigates the problem of how to maximize the spread of multiple, costly

behaviors in a social network when individuals have limited resources. In general, resources
can be time, money or any tangible asset. We plan to address this problem by identifying a
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small set of influential individuals, who by becoming early adopters of the behavior will maxi-
mize the spread of the behavior in the network. The ability to identify such individuals is vital
to viral marketing. The problem ofmultiple behavior “influencemaximization” can be shown
to be computationally intractable. Indeed, a simpler version of influencemaximization, when
we are interested in maximizing the spread of a single behavior, without resource constraints
has been shown to be NP-hard [1].
Our research in the more generalized influencemaximization problem is motivated by a

desire to model and analyze a more realistic decisionmaking process: individuals have to
decide which subset of behaviors—amongst those that their friends have adopted—to adopt
that consume fewer resources than what they possess. Faced with such a scenario, we would
expect a rational individual to adopt that subset of behaviors that maximizes their utility while
subject to resource constraints. That individuals with limited resources affect the behavior
dynamics has empirical support: Hodas and Lerman [2] suggests that resource constraints help
explain why information stops spreading on networks like Twitter. Resource constraints not
only limit individual participation, but also shape how behaviors spread in a network.
Although there is some work on diffusion of two competitive behaviors, the general idea of
individual level resource constraint, and the presence of multiple costly behaviors is largely
unexplored in past work.
In this paper, we develop a model of multiple behavior diffusion that captures the complex

dynamics of multiple behavior adoption in resource constrained networks.We answer two spe-
cific questions with this model: who are the kmost influential individuals in a network? and
what set of behaviors should these influential individuals adopt, if they are chosen as the early
adopters? We make several contributions in this paper.

• To the best our knowledge, our work is the earliest of its kind to analyze the influence of
individual resource constraints on multiple, costly behavior adoption in an network.We
propose a model of multiple behavior adoption that extends the earlier threshold model
developed by Granovetter [3], via incorporating resource constraints and individual intent.
Thus, an individual adopts a behavior when she receives a “social signal”—knowledge of
neighbors actions—of sufficient strength (that is, when sufficient number of neighbors have
adopted), the behavior is of high utility and when she has the resources to do so.

• We show that the influencemaximization problem in the multiple behavior case is NP-hard.
However, we note that this result is unsurprising since the influencemaximization problem
in the single behavior case which is a special case of the research question addressed in this
paper was shown to be NP-hard by Kempe et al. [1]. Importantly, we prove that the influence
maximization problem for multiple behaviors, with individual resource constraints is sub-
modular, implying the existence of a greedy algorithm that approximates the optimal solu-
tion within a factor of 1 − 1/e.

• We propose several efficient heuristics to approximately solve the NP-hard influencemaxi-
mization problem, including identifying the behavior that each seed ought to adopt. For
example, our Expected Immediate Adoption heuristic is O(n log n +m), where n is the num-
ber of nodes in the graph andm is the number of edges. In contrast, the greedy algorithm
that best approximates the optimal solution is O(n2) with a large constant since the greedy
algorithm requires costly stochastic simulation to evaluate the diffusion. The heuristics to
assign behavior include assigning behaviors randomly to each node, assigning behaviors pro-
portional to cost, and assigning all seed nodes to have the highest cost behavior.

We use three different metrics to evaluate the different heuristics: unique number of partici-
pants, number of behaviors in the network and expected resource utilization.We test our
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approach on synthetic and real-world topologies with excellent results. We show that two heu-
ristics that evaluate InfluenceWeight and Expected Immediate Adoption provide very good
solutions to the seed selection problem. Our seed selection heuristics produce 15-51% increase
in expected resource utilization over the naïve approach of identifying individuals with the
highest degree as influential.We find that when behaviors are assigned to seeds proportional to
behavior cost, we have the highest resource utilization, and when all seeds are assigned the low-
est cost behavior, we see the highest participation.
The rest of the paper is organized as follows. In the next sectionwe review the relevant liter-

ature. In Section 3 we formally define our behavior diffusionmodel. In Section 4 we define the
seed selection problem, prove intractability results, and provide an approximation algorithm
for a slightly simplifiedmodel. In section 5 we present different heuristics and compare their
performance for synthetic as well as real world networks. In Section 6 we discuss different
behavior distribution strategies and present simulation results. In Section 7 we discuss open
issues, extensions and our conclusions. The supporting information file S1 Appendix illustrates
and elaborates a few technical issues that are not addressed fully in the main paper.

2 Related Work

There is a rich body of literature spanning multiple disciplines that have analyzed the problem
of diffusion of behavior. It would be infeasible to present an exhaustive survey of past work
related to this paper and we hope to present a representative sample here.
Motivated by the work of Rogers [4] amongst others, Bass [5] proposed a temporal model of

sales of infrequently bought consumer durables (e.g. buying refrigerators). The model proposed
that the probability of initial purchase at a time t, given that no purchase has been yet made is a
linear function of previous buyers. Based on earlier work that identified different buying behav-
iors, Bass [5] proposed that there were essentially two types of consumer behavior—innovators
and imitators. Innovators bought products without being influenced by social pressures,
whereas imitators were influenced by the adoption decisions of other buyers. While Bass model
has been highly influential—the result is a simple model of aggregate behavior whose parame-
ters can be estimated from sales data—it is a population model that ignores the network struc-
ture in which an individual finds herself. Granovetter [3] proposed a simple social influence
model of adoption: an individual adopts a behavior if a certain fraction of the group adopt the
behavior, and where the fraction exceeds the individual’s private threshold.
As Young [6] points out in his study of innovation diffusion, a major limitation of threshold

models is that we do not know why an individual is influenced by his peers since Granovetter’s
model lacks an economic incentive for the individual to adopt the behavior. This can be
addressed via a threshold model that arises out of a network coordination game: an individual
adopts a behavior to coordinate with her network neighbors in a manner that maximizes her
utility. It is easy to show that the network coordination game, where each neighbor has adopted
behaviors with different utilities, is equivalent to each individual possessing a local, private
threshold that must be exceeded for her to adopt.
Watts [7] analyzes random graphs using the linear threshold model to identify conditions

for the emergence of global cascades. A node is called vulnerable if its threshold θ� 1/Kwhere
it has K neighbors. The vulnerable nodes are said to percolate when they form a giant compo-
nent. He find that if vulnerable nodes percolate then global cascades can occur. In more recent
workWatts and Dodds [8] critically evaluate the “influential hypothesis” which has played a
significant role in the development of the theory of social diffusion processes. The influential
hypothesis posits that opinion leaders or “influentials” act as intermediaries in the dissemina-
tion of the information frommass media to general public. Watts and Dodds [8] show that
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except for some special situations large scale social cascades are driven by a critical mass of eas-
ily influenced individual rather than the influentials. However, mechanisms to efficiently trig-
ger cascades in such networks is unclear.
The idea of modeling complex social phenomena like behavior diffusion using the mathe-

matical model of networks and network based stochastic processes pertains to the field of com-
plex network analysis. For general introduction to complex networks and application of the
methods in varied areas of scientific research see [9–11].
There has beenmuch work in Computer Science on the problem of influencemaximiza-

tion—how to efficiently identify seeds (or “innovators” in the parlance of [5]) that maximally
influence the network. Domingos and Richardson [12] and Kempe et al. [1] initiated the
study of the computational problem of seed selection in the context of a “viral” social diffusion
process. [1] formalized the algorithmic problem for Independent Cascade and Linear Thresh-
oldmodels, proved the intractability results and provided a greedy approximation algorithm
based on earlier work by Nemhauser et al. [13]. However the greedy algorithm is computa-
tionally very expensive in practice since identifying each seed requires a large number of sto-
chastic simulations, Much of the recent work(e.g. [14]) has focused on reducing the
computational complexity of the simulations. Identifying cheap computational heuristics that
match the performance of Kempe et al. [1] are surprisingly less common. Chen et al. [15] who
developed computationally cheap heuristics for the Independent Cascademodel that matches
the performance of the greedy approximation algorithm is an exception. In the Independent
Cascademodel, a vertex v has a fixed probability p of influencing each of its network neigh-
bors to adopt the behavior. Crucially in the model, it can attempt to influence each of its
neighbors just once with probability p. There has beenmuch work to identify these probabili-
ties for the independent cascademodel [16–18].
Motivated by earlier work in Economics on cascades by Arthur [19], Chierichetti et al. [20]

and Martin et al. [21] study the scheduling of cascades on a arbitrary graph. In the problem
that Chierichetti et al. [20] study, there are two competing products and individuals choose
one product over the other keeping in mind two factors: their own preference for each product
and the payoff from aligning with the choices of their neighbors. If one product has a prefer-
ence probability p the other has preference probability 1 − p. They show that if they can sched-
ule the order in which individuals make decisions on which of the two competing products
that they adopt, the number of adoptions is linear in the size of the social network. There is an
important difference between the Arthur [19] model and the linear threshold model adopted
in this paper. The difference is that while in the Arthur [19] model, a person examines the
numbers of adoptees for both products to make a decision, in the linear threshold model, a per-
son makes a decision on adopting a product only based on number of adoptees for that prod-
uct. Due to this distinction, the number of adoptees for a product in the linear threshold model
is monotone over time and the outcome is order independent.
Seeman and Singer [22] examines the adaptive seeding problem in the framework of two-

stage stochastic optimization. The problem here is: given a seed budget, and a subsetX of acces-
sible users, how to choose a set of seeds from X, utilizing only part of the seed budget, such that
the expected value of the influence function (i.e. spread) can bemaximized by utilizing the
remaining seed budget on some subset of their neighbors. Rubinstein et al. [23] analyzes the
same problem in the more general setting, where different individuals have different activation
costs. Although they call this setting by the name “knapsack” constraint, it differs from the
knapsack constrain that we have imposed in our model (see section 3) in two important aspect:
first, they do not consider multiple competing behaviors, and second, in their setting it is more
appropriate to consider that the advertiser or the campaign runner is solving a knapsack
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problem, whereas in our model each individual is solving a knapsack type of constraint for
making behavior adoption decisions.
In Economics, there is a rich body of work [24–26] that examines both social learning—

how individuals adopt beliefs—and consequently identifying influentials. Social learning is
the idea that rational agents take optimal decisions based on the observations of other agents.
While assumptions vary—whether the network is fully observable; only adoptions but not
payoffs are observable—the idea that individuals choose the behavior that maximizes their
utility has a natural appeal. For example, Bala and Goyal [24] introduce the idea of “learning
from neighbors”—analysis of a set of infinite agents who can observe the actions and out-
comes of only their network neighbors. The main result is that in a connected graph, if the
actions are ranked by payoffs, then in the long run, everyone chooses the same action with
probability one.
The DeGroot [27] influencemodel has seen significant follow up work (e.g. [25]). In the

basic model, a person updates their belief (e.g. about the occurrence of an event) using a
weighted sum of the beliefs of their neighbors. A directed graph is called aperiodic if 1 is the
greatest common divisor of all the lengths of the different directed cycles, and a closed set of
nodes is one where any node in this set is not influenced by nodes outside this set. For a con-
nected, aperiodic, directed graph, we can show that all closed strongly connected components
arrive at a consensus; different closed components will in general arrive at different consensus
values. A node not belonging to any closed component will arrive at a belief that is a weighted
average of consensus beliefs of components to which it is connected. Thus we can compute a
measure of “influence” in the followingmanner. Assume that T is the influenceweight matrix
of the social network where Ti,j is the weight that node i has for node j. Then, it is straightfor-
ward to show that sj the influence of a node j is the the jth entry of the leading left eigenvector s
of T, where sT = s. One weakness in thinking in terms of influence in the DeGroot [27] model
is that since only the closed sets of nodes arrive at a consensus, it is possible to construct
directed graphs where a small set of closed nodes have all the influence since only closed sets of
nodes will have non-zero entries in the eigenvector s. This is exactly the issue in the original
PageRank algorithmwhere the PageRanks of nodes except for closed sets will go to zero. A sim-
ple solution in the PageRank case was to used a scaling with random restarts. Extending the
scaled PageRank model to the DeGroot [27] model essentially implies that individuals look at
the average beliefs of their neighbors with probability p and a randomly chosen individual’s
belief with probability 1 − p, where p is the scaling factor.
There is a clear distinction between the linear threshold models (e.g. [1]) analyzed in Com-

puter Science literature and the DeGroot [27] influencemodel or the Bayesian social learning
frameworks (e.g. [24]) analyzed in research papers in Economics. In the linear threshold
model, the adoption is “progressive”—once a node adopts a behavior, it will never drop that
behavior [1]. In the DeGroot [27] influencemodel and the social learning frameworks, individ-
uals update their beliefs at every time-step as a weight average of the beliefs of their network
neighbors. Their beliefs will converge in the limit. It can be shown the convergence speed
depends on the size of the second largest eigenvalue of T, the influenceweight matrix. See Jack-
son [28] for a textbook proof.
Our work on maximizing the spread of behavior in resource constrained networks is

informed by this literature, but is markedly different in a number of aspects.Much of the exist-
ing literature is concernedwith diffusion of a single influence, while simultaneous diffusion of
multiple influences is a more realistic scenario. The idea that individuals are resource con-
strained is important—were it not so, adoption rates of multiple behaviors would follow trivi-
ally from prior work on influencemaximization [1]. Introduction of resource constraints
implies that each individual now has to choose from a subset of behaviors adopted by his
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network neighbors such that the cost of her behaviors is less than her available resource in a
manner that maximizes utility. Thus, each individual solves a knapsack problem of picking
behaviors to maximize their utility while these behaviors satisfy their individual resource con-
straints. Bharathi et al. [29] and Carnes et al. [30] discuss the problem of multiple competing
influences, but they also do not incorporate the resource constraints or the utility maximizing
behavior of individuals into their models. That individuals in a social network are resource
constrained has an empirical basis—Hodas and Lerman [2] provide empirical evidence in sup-
port of the hypothesis that social contagions are constrained by finite amount of resources (e.g.
time to process information) available to the individuals constituting the social network. How-
ever, their work does not shed any light on the algorithmic question of influencemaximization
in resource constrained networks.
Our notion of individual resource constraints is a form of bounded rationality, a well known

idea in Economics (e.g. [31, 32]). In our framework, individuals cannot view the entire net-
work, but only their network neighborhood.However, we do assume that the network neigh-
borhood is fully observable and that each individual is rational—able to evaluate the utility of a
set of behaviors in her neighborhoodand be able to identify the set that maximizes utility. To
the best of our knowledge the present work is the first investigation of the seed selection prob-
lem for multiple behavior diffusion in a resource constrained social network.

3 Multiple Behavior Adoption for Resource Bounded Networks

In this sectionwe introduce our multiple behavior diffusionmodel. First, we will describe our
model of multiple behavior diffusionwhen individuals have bounds on resources available to
them. Then we will introduce metrics including resource utilization, unique participation and
number of behavior adoptions to evaluate the behavior adoption process. We represent the
social network by an undirected graph G = (V, E). Each node v 2 V of the graph G represents
an individual and an edge e 2 E between two nodes indicate a social relationship between the
two individuals.Without loss of generality, we assume that the goal is to spread k behaviors in
the network.

3.1 Our Diffusion Model

We now describe the model for each user, the properties of each behavior and the behavior
adoption process. For easy reference Table 1 presents the symbols used subsequently in this
paper. Conceptually our behavior adoption model can be described as follows—an individual
adopts a new behaviors if the behavior has some value to her i.e. she has some interest in the
behavior (intent), a significant number of her friends have adopted the behavior (social signal),
and she has enough available resource to pursue it (resource).
Each behavior i has a cost ci and a utility ui associated with it. In a simplification, we assume

that both the cost ci and the utility ui of behavior i are intrinsic to the behavior and independent
of the individual who adopts the behavior. Without loss of generality, we assume that 0�
ci, ui� 1.
Individuals are resource constrained: an individual may have limited time, money or may

not possess other material resources to adopt a behavior. Therefore, we assign a fixed resource r
(v) for each individual v 2 V towards adopting behaviors. The resource satisfies 0� r(v)�1. For
example, if we assume that individuals’ resources are independent and identically distributed
then the resource value r(v) can be assumed to be obtained from a uniformly distributed ran-
dom variableU(0, 1). Without loss of generality we assume that the resource type (e.g. money,
time) is the same as the cost type. LetN(v) denote the set of neighbors of v in the network. Then
we assume that a neighboring node u asserts a social influence on node vwith weight 1/|N(v)|.
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An individual will adopt a behavior i when she receives a strong social signal, has the
resources to do so and when there is sufficiently high payoff in adopting the behavior. A behav-
ior is a likely candidate for adoption when the strength of social signal exceeds a threshold, and
the individual has enough resource to adopt the behavior. Fig 1 depicts the situation where the
candidate behaviors are those for which the high social signal and resource availability condi-
tions are met. We assume that each individual v has a different, fixed, threshold θi(v) for each
behavior, and that each threshold is obtained independently from a uniformly distributed ran-
dom variableU(0, 1). The strength of social signal is measured by li(v) which is defined as the
sum of influenceweights—the social signal—exertedon v by its neighbors who have adopted
behavior i. The payoff pi(v) for a behavior i is defined as the weighted sum of the intrinsic util-
ity ui and the local network utility li(v). That is, pi(v) = wui + (1 − w)li(v). Where, w denotes the
relative weight of the intrinsic utility (i.e. intent). Fig 1 also shows this situation where the pay-
off is determined by social signal and intent. An individual adopts only those candidate behav-
iors that have high payoff (shown as the intersection betweenCandidate and Payoff in Fig 1). If
there are multiple candidate behaviors, then an individual adopts a subset of candidate behav-
iors that maximizes total payoff.
Let us examine the diffusion of behavior over time, to illuminate the key ideas. The process

takes place over discrete epochs. Notice that while individual actions in a network are asyn-
chronous, we can choose an appropriate time granularity for analysis to assume synchronized

Table 1. Glossary of symbols used in the paper. The first half contains symbols used in this section, and

the second half contains symbols used in the next section on influential identification problem.

Symbol Meaning

G The undirected graph that represents the social network

V The set of all individuals in the social network

E The set of all social relationships between individuals

k Number of behaviors

ci Cost of adoption associated with behavior i. 0� ci � 1

ui Utility obtained from adoption of behavior i. 0� ui � 1

r(v) Resource available to v 2 V for behavior adoption. 0� r(v)�1

N(v) The set of neighbors of v 2 V in the social network

θi(v) Threshold associated with behavior i for individual v 2 V. 0� θi(v)�1

li(v) Strength of social signal associated with behavior i—i.e. sumof influence weight exerted by the

neighbors with adopted behavior i—on v 2 V. 0� li(v)�1

w Relative weight assigned to utility for computing the individual payoff. 0� w� 1

pi(v) Payoff associated with behavior i for individual v 2 V, definedas wui + (1 − w)li(v)

s(v) The amount of resource that individual v 2 V spends to adopt behaviors

b The fixed budget (number) of seeds in the influential identificationproblem

S The set of seeds for the k different behaviors

σ(S) Expected number of individuals with at least one behavior at the end, starting with the seed set S

κ(v) The largest index j such that cj� r(v) for the individual v 2 V (We assume that the behaviors are

indexed in the non-decreasingorder of cost)

bv,w Influence weight exerted by the neighbor w on the individual v.w, v 2 V

SðtÞi The set of individuals with behavior i at the end of time step t in the sticky multiple behavior case

S(t) The set of individuals with at least one behavior at the end of timestep t

σ0(S) Expected number of nodes with at least one behavior at the end ofthe process, starting with seed

set S

R(v, X) The set of nodes with behavior seeded by v 2 S, and reachablefrom v through a live edge path

under the particular choice oflive/blocked edges X

doi:10.1371/journal.pone.0162014.t001
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decisionmaking.We assume each node is aware of the behaviors adopted by her neighbors.
The individual v first identifies all candidate behaviors. A behavior j is a candidate to be
adopted if two conditions hold. First, the social signal strength for behavior jmust exceed the
threshold for that behavior at node v, i.e. lj(v)� θj(v). Second, the individual vmust have the
resources to adopt the behavior, i.e. r(v)� cj. The first condition is the familiar Linear Thresh-
old (LT) model [1]. In problem formulation there are multiple behaviors, and the individual v
chooses a subset of candidate behaviors that maximizes the total payoff, subject to the condi-
tion that the sum of the adoption costs of the behaviors is less than the resource constraint. Let
Bv be the set of candidate behaviors for an individual v. So v adopts a set of behaviors B� Bv
that maximizes ∑i 2 B pi(v) subject to the constraint that ∑i 2 B ci� r(v). At every epoch, the
individual v evaluates all behaviors, including behaviors already adopted, to evaluate payoff.
The behavior diffusion process continues until no additional adoption is possible.
In our diffusionmodel, we assume that the total resources available r(v) at each node are

known, while the threshold for adoption θ for any behavior is unknown. This assumption is
reasonable when people are willing to make public their available resources to participate in a
set of behaviors. This can arise say in a private, mobile social network app focused on adoption
of healthy behaviors including wellness, healthy eating and exercise, where individuals join the
network to participate in healthy behaviors but each individual is resource limited. An individ-
ual may declare that she has only one hour to spend on exercise each week, but would like to be
nudged to participate in a health-related activity.
Fig 2 shows an illustration of the spread of behaviors with a four node network where three

different behaviors—recycling, using public transport and eating locally grown food—are
denoted by behaviors 1, 2 and 3 respectively. At time step 0 the state of the network is shown in
Fig 2(b). At this time step, for v, the social signal of eating locally grown food is weak. So v con-
siders only the recycling and the using public transport behaviors for adoption. After maximiz-
ing payoff subject to the resource constraint, v adopts only the recycling behavior. Although
public transport has strong social signal, v cannot adopt that behavior because it does not have

Fig 1. Payoff for adopting a behavior comes from anindividual’s intent and social signal.

doi:10.1371/journal.pone.0162014.g001
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enough resources to adopt the behavior. Notice that the payoff for recycling is higher than that
of public transport, though the intrinsic utility of recycling was lower than that of public
transport.
For the purpose of deriving the analytical proofs, we shall assume that the adoption of

behaviors is “sticky”, that is, once a node adopts a behavior it never drops the behavior. This

Fig 2. Multiple behavior adoption model.

doi:10.1371/journal.pone.0162014.g002
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simplification is also known as progressive behavior adoption [1]. Once a node adopts a “sticky”
behavior its available resource to adopt other behaviors decreases.
Having described the multiple behavior diffusion process, now we describe different mea-

sures of behavior diffusion.

3.2 Measurement of Diffusion

We measure the effectiveness of the diffusion process with three metrics: total participation,
total adoption and resource utilization. The metrics are useful to understand the different seed
selection heuristics discussed in the next section. Since the behavior adoption is a stochastic
process, we compute the expected value of each metric through simulation.

Total Participation This metric counts the number of individuals who have adopted at least
one behavior (i.e. become active) during the process; we measure the expected number of
adoptions via simulation. Exact computation of this metric is shown to be #P-hard [33]).

Total Adoption In contrast to total participation, we need to keep track of the total number
adoptions of behaviors during the diffusion process.We count the number of adoptions
over all the behaviors during a diffusion process and via simulation determine the expected
adoptions. Notice that since an individual can adopt more than one behavior, total partici-
pation can be less than total adoption. For the familiar single behavior adoption problem,
these two measure will be identical.

Resource Utilization This metric captures the efficiency of the network to adopt costly behav-
iors. Not all resources available in a social network may be used for behavior adoption. This
is because individuals have variable resources, and they may be unable to adopt the subset of
behaviors that fully takes advantage of their desire to participate because of two reasons.
First, theymay have more resources than needed to adopt a behavior. Second, if their friends
(i.e. network neighbors) have limited resources, then the social signals that they receive will
be about adopting low-cost resources, and hence a particular individualmay never see costly
behaviors in their social circle that they could potentially adopt. Let us assume that a node v
with resource r(v) has adopted one or more behaviors. Let s(v) be the amount of resource
that v has used to adopt those behaviors, where s(v)� r(v). Therefore the individual has
r(v) − s(v) amount of his resource remaining unused. Thus, Resource utilization is the
expected value of the ratio ∑v 2 V s(v)/∑v 2 V r(v) i.e. the ratio of total utilized resource to the
total amount of available resource of all the individuals in the social network.

Having discussed the multiple behavior diffusion process under resource constraints and
three measures of diffusion of behavior, we now turn to discuss the problem of identifying the
top-k influential nodes or seeds in a resource constrained network. There are two principal
questions: how to efficiently identify influential nodes; for each node, assign the set of behav-
iors that this node ought to adopt. In the next section, we shall formally define the influential
identification problem, show intractability and present an approximation algorithm. In Section
5, we shall introduce several heuristics to identify influential nodes and well as show experi-
mental results. In Section 6, we address the question of distributing behaviors onto the influen-
tial nodes.

4 The Influential Identification Problem

In this sectionwe introduce the first algorithmic problem that we want to address in the con-
text of multiple behavior diffusion in a resource constrained social network. This problem is
called seed selection problem. In the next sectionwe will formally define this problem and
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analyze its complexity. Then we will describe and analyze different strategies for solving the
problem. Then we will provide experimental evaluation of those strategies on synthetic as well
as real world social networks.

4.1 Problem Definition

There are two key problems: we need to identify the set of early adopters or seed nodes and we
need to determine which behaviors ought to be adopted by each seed node.We assume that
the number of initial adopters is small in comparison to the size of the network. This is reason-
able as it corresponds to an advertiser with a finite budget to persuade the seeds to adopt. Here
we identify two subproblems which are related to seed identification. To simplify things, in this
sectionwe will assume that the behaviors are uniformly distributed over the seed set.

P1: Resource Utilization MaximizationGiven a fixed seed budget b and a fixed distribution
of behaviors in the seed set, we want to select b nodes in the network such that the resource
utilization metric is maximized.

P2: Total Participation (or Adoption) MaximizationGiven a fixed seed budget b and a fixed
distribution of behaviors in the seed set, we are interested in finding b nodes in the network
that maximize the total participation (or total adoption) in the network.

It can be easily shown that the optimization problems P1 and P2 are NP-complete. We
show that influencemaximization problem for LT model, which is proven to be an NP-com-
plete problem [1], is a special case of P1. Let the number of behaviors k = 1 and the cost of
adoption of that behavior is also 1. Each node v is allocated resource r(v) = 1. For these values
of the parameters our multiple behavior diffusionmodel reduces to the LT model of influence
propagation and resource utilization can be calculated as the ratio of the spread and total num-
ber of nodes in the network. Somaximizing the resource utilization translates into maximizing
the spread. Same transformation applies to problem P2 also since total participation (and total
adoption) is identical to the spread in the one behavior case. Next, we propose a number of
heuristics to solve the problem.

4.2 Approximation Algorithm for the Sticky Model

In this sectionwe will provide an approximation algorithm for a variant of the problem P2
(total participationmaximization) when behavior adoption is sticky—i.e. once an individual
adopts a behavior he never abandons that behavior. Note that both problems—P1, P2 are still
NP-hard in the Sticky model.We will construct our algorithm by first showing that the total
participation function is submodular. Then following a technique by [13] we will obtain an
approximation algorithm for the problem.

4.2.1 Submodularity of Total Participation. In this sectionwe will show that the total
participation function for the sticky model is submodular. Throughout this sectionwe will
assume that the k behaviors are indexed in the ascending order of their cost. For a given set S of
seeds for the k behaviors, let σ(S) denote the total participation i.e. the expected number of
active nodes, regardless of behavior adopted, at the end of the process.We will show that σ(S)
is a submodular function.Our proof consists of in three steps—first we define an equivalent
alternative process of the Sticky Multiple Behavior Diffusion process, then we show that the
alternative process and the sticky multiple behavior diffusion process are both equivalent in the
sense of the distribution, and finally we prove the submodularity for the equivalent process.
We introduce an alternative live edge process to model behavior diffusion since the thresh-

old model for behavior adoption is known to be not sub-modular [1]. For the alternative
model we would like to distinguish between the behaviors a node can adopt under some
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circumstances and those that it cannot under any circumstances. If the cost of adoption of a
behavior is greater than the available resource of a node then clearly the node cannot adopt
that behavior. Since the behaviors are indexed in the ascending order of their cost, this distinc-
tion can be made by a single indicator variable. For each node v, let us define κ(v) as the largest
index j such that cj� r(v). If v does not have enough resource to adopt any of the behaviors
then κ(v) is defined to be 0.
Prior to any diffusion each node v selects at most κ(v) edges—thus once for each behavior

that it can potentially adopt—by repeating with replacement the following random edge selec-
tion process κ(v) times. Each node v selects the edge ev,wwith probability bv,w and no edge with
probability 1 − ∑w 2 N(v) bv,w, where bv,w denotes the influenceweight exerted by the neighbor
w on v and ∑w 2 N(v) bv,w� 1. So v selects at most one edge for each of the κ(v) behaviors.
If an edge is selected then that edge is designated as the live edge for the behavior i. All the

other edges are considered blocked for that behavior. In this model we start with one set of
seeds for each of the k behaviors, k sets in total. In time step t, a node v considers a behavior i
for adoption such that: the behavior i is not already adopted by v and that a neighbor of v, con-
nected to v by the live edge for the behavior i, has adopted behavior i by time t − 1. The node
then adopts a subset of all such considered behaviors to maximizes its total payoff subject to
the constraint that the combined cost of the behaviors is less than the available resource. Once
a node adopts a behavior it becomes active with respect to that behavior and the behavior
sticks—when a node adopts a behavior it never gets rid of it.
Next we prove a lemma that the alternative live edge process is stochastically equivalent to

the Sticky Multiple Behavior Diffusionmodel described earlier.
Lemma 4.1 For a given seed set S, the following two distributions over the set of nodes are

the same:

1. The distribution over active sets obtained by running the sticky multiple behavior diffusion
model to completion starting with S.

2. The distribution over sets of active nodes reachable from S via live edges under the random
selection of edge model described above.

Proof. First we prove for the simpler case when k = 1, i.e. there is only one behavior that dif-
fuses in the network and then generalize to the case of arbitrary number of behaviors. Notice
that in this case each node will have at most one live edge. This case is similar to the Linear
Threshold (LT) model described in [1] with the key difference that in our case each node is
resource constrained. LetG = (V, E) be the given graph. We only need to consider the nodes v
with r(v)� c1. We delete all nodes with r(v)< c1 and edges associated with these nodes from G
producing a graph G0. Thus in G0, the behavior adoption process reduces to the single behavior
LT model discussed in [1].
Now we repeat that proof from Kempe et al. [1] since it will serve as the basis for the gener-

alized case of k> 1. We argue by induction over the time step t. Let S(t) be the set of nodes who
have adopted behavior 1 at the end of time step t for the sticky behavior diffusionmodel with
k = 1. We need to know the probability that a node v with r(v)� c1 that have not yet adopted
behavior 1 at the end of time step t will adopt the behavior in the next time step t + 1. This
probability is the same as the probability that the nodes in S(t) \ S(t − 1) will push the influence
weight of v over its threshold at time t, given that the threshold was not already crossed at time
t − 1. This probability is given by:

P
w2SðtÞ Sðt� 1Þbv;w

1 �
P

w2Sðt� 1Þbv;w
:
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For the alternative live edge process each node v with r(v)� c1 selects at most one live edge
randomly at the beginning of the process. Notice that we don’t have to select the live edges over
time, they can all be simply selected in the beginning.Under this model we need to compute
the probability that a node v with r(v)� c1 that has not adopted behavior 1 at the end of time
step t will adopt it in the next time step. This probability is precisely same as the probability
that the live edge of v comes from one of the nodes in S(t) \ S(t − 1), given that it did not came
from S(t − 1). This probability is also given by:

P
w2SðtÞ Sðt� 1Þbv;w

1 �
P

w2Sðt� 1Þbv;w
:

So by induction we find that the two processes define the same distribution over the active
sets. Next we provide the proof for when the number of behaviors k> 1. Notice that [1] only
proved the case of k = 1.
We prove the claim by induction on the time step t. Clearly the claim is true for t = 0. We

define SðtÞi as the set of active nodes with behavior i at the end of time step t of the sticky multi-
ple behavior diffusionmodel. Let SðtÞ :¼ [ki¼1

SðtÞi . That is, S
(t) is the set of nodes that have

adopted at least one behavior. Notice that S0 = S. Let v be a node that is not active at the end of
time step t and κ(v) = κ 6¼ 0, where κ(v) is the number of distinct behaviors v can adopt one at
a time. Then the probability that v will become active at the end of time step t + 1 is equal to
the probability that the nodes in S(t) \ S(t − 1) will push the influence weight of at least one of the
first κ behaviors over its corresponding threshold value, given that none of those thresholds
were already crossed. This probability is

1 �
Yk

i¼1

1 �

P
w2SðtÞi Sðt� 1Þ

i
bv;w

1 �
P

w2Sðt� 1Þ

i
bv;w

 !

On the other hand we run the live edge reachability process as described above and denote
by SðtÞi the set of all nodes with behavior i at the end of time step t. Let SðtÞ :¼ [ki¼1

SðtÞi . If node v
is not active at the end of time step t with κ(v) = κ 6¼ 0, then the probability that it will be active
at the end of time step t + 1 is equal to the probability that at least one of its κ live edges comes
from the nodes of S(t) \ S(t − 1) (with the corresponding behavior), given that none of those live
edges came from S(t − 1). This probability is also given by -

1 �
Yk

i¼1

1 �

P
w2SðtÞi Sðt� 1Þ

i
bv;w

1 �
P

w2Sðt� 1Þ

i
bv;w

 !

By induction over the time step of the process we see that the distribution over the active
sets at the end of the sticky multiple behavior diffusion process is same as the distribution pro-
duced by the alternative live edge process.
Next we prove the final result.
Theorem 4.2 For an arbitrary instance of the Sticky Multiple Behavior Diffusion model the

total participation function σ(.) is submodular.
Proof. Let us define σ0(S) as the expected number of active nodes at the completion of the

alternative random process. By Lemma 4.1, we can show that σ0(S) = σ(S), for all seed sets S
under same distribution of behaviors on the seed set, and where σ(S) is the total participation
(expected number of active nodes, active for any behavior) for the sticky multiple behavior
adoption process.
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Now we show that σ0(.), the total participation function is submodular. LetX be a particular
choice of live/blocked edges for all nodes. Let s0XðSÞ denote the cardinality of the set of active
nodes at the completion of the alternative process. Let R(v, X) denote the set of nodes reachable
from seed node v that satisfy the following condition—any node in R(v, X) has a behavior
seeded by v and the node is connected to v by a live edge path for that behavior under the
choice X. Therefore s0XðSÞ ¼ j[v2SRðv;XÞj.
First we will show that for a fixed choice X, s0Xð:Þ is submodular. Let S and T be two sets of

nodes such that S� T and v is any node. Let us consider s0XðS [ fvgÞ � s0XðSÞ. This is the num-
ber of nodes that are in R(v, X) but not in [u 2 S R(u, X). This number is at least as large as the
number of nodes in R(v, X) but not in the bigger union [u 2 T R(u, X). Therefore it follows that
s0XðS [ fvgÞ � s0XðSÞ � s0XðT [ fvgÞ � s0XðTÞ.
Finally we have

s0ðSÞ ¼
X

outcomes X

Pr½X�:s0XðSÞ

Since a non-negative linear combination of submodular functions is also submodular, σ0(.)
is submodular. This completes our proof.

4.2.2 The Approximation Algorithm. We are interested in obtaining an approximation
guarantee for the total participationmaximization problem under the Sticky multiple behavior
diffusionmodel. For this type of optimization problems involving submodular functions there
is a greedy algorithm that approximates the optimum within a factor of (1 − 1/e − �), where e is
the base of natural logarithm and � is any positive real number ([13, 1]). So the approximation
algorithm gives a performance guarantee of at least 63% of the optimum.We modify the basic
greedy algorithm to adapt it to the multiple behavior case (Algorithms 1, 2).

Algorithm 1: Approximation algorithm for the sticky multiple behavior diffusionmodel

Input:G ≔ (V, E), the socialnetwork;b, a vectorof size k containingnumber
of requiredseeds for each of the behaviors.

Output:S, a vectorof size k containingseed sets of requiredsize for all the
behaviors.

1 Let V0≔ V and S ≔ �

2 repeat
3 for each behaviori do
4 Let (ui, si)≔ Core-Greedy(i,b[i], S, V0)
5 end
6 Let imax≔ arg maxi2{1, . . ., k} si;
7 Let v≔ uimax;
8 Set S[imax]≔ S[imax] [ {v} and b[imax]≔ b[imax] − 1;
9 Set V0≔ V0 − v;
10 if r(v)� cimax then
11 Set r(v)≔ cimax;
12 end
13 until b = 0;

In Algorithm 1, in line 4, we obtain the node ui associated with the maximum spread si for
behavior i via the Core-Greedy algorithm. Then, in lines 6–7, we identify the behavior imax
with the maximum spread and the corresponding node uimax that was the seed for the behavior.
This node v is then added to the set of seeds for that behavior (imax, line 8) and then removed
from the set of nodes to be considered as seeds in the next round (line 9). In line 11, if the
resource for the seed is less than the cost of the behavior, we “top-up” the resource of the seed
so that it can adopt the behavior. Notice that to avoid “topping-up” we can simply ignore
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nodes v that have resources less than the cost of the behavior to be adopted r(v)<ci when exam-
ining nodes in the Core-Greedy algorithm.

Algorithm 2: Core-Greedy algorithm used in the approximation algorithm for the sticky
model
Input:i the behavior;b[i], the numberof seeds requiredfor the ith behav-

ior; S, the set of alreadyselectedseeds for all the behaviors;V0 the
remainingpopulationof nodes from where one choosesnew seeds.

Output:(u, s) if b[i] is not zero then a tuple consistingof u, the best choice
of seed from the populationV0 for the ith behavior,given the already
selectedseedsetS, and s its correspondingspreadvalue (total
participation).

1 if b[i] = 0 then
2 Return(‘nobody’,0)
3 end
4 Let s be a vectorindexedby the set V0, and s = 0
5 for v 2 V0 do
6 Let S

0

≔ S
7 Set S

0

[i]≔ S
0

[i][{v};
8 Set s[v]≔ Estimate-Spread(S

0

);
9 end
10 Selectu≔ arg max v {s[v]|v2 V0};
11 Return(u, s[u]);

In Algorithm 2, we present the Core-Greedy algorithmwhich selects seeds given a
behavior, the set of nodes from which to choose the “best” node, the set of nodes already cho-
sen to be seed nodes. In line 8, we estimate the spread of the behavior through a stochastic sim-
ulation: given a specific node to be selected as the seed node, we compute the expected spread
via a simulation; in each run, we assign each node with a threshold picked fromU(0, 1) and
then let the behavior spread by assessing for each node that hasn’t yet adopted the behavior
whether it will adopt the behavior. Finally in lines 10–11 we select the node with the highest
expected spread and return this tuple.
In this sectionwe formally defined the seed selection problem and showed that the problem

is NP-hard. Then in Section 4.2 we showed the total participation functionwas sub-modular
leading to a greedy seed selection algorithm.
Although we achieve an approximation guarantee for the seed selection problem, the time

complexity of the approximation strategy is O(n2 kb), where n is the number of vertices in the
graph, k is the number of behaviors, and b is the number of seeds required. Moreover the con-
stant is large (Kempe et al. [1] use 10,000 simulations to estimate the expected spread) since we
need to simulate the diffusion process multiple times to estimate the spread throughout the
algorithm. This makes the approximation algorithm impractical for networks of large size and
motivates us to explore cheap heuristics that perform reasonably well for practical instances.
Different efficient heuristics for the seed selection problem is the topic of the next section.

5 Seed Selection: Heuristics and Experiments

In this sectionwe develop heuristics to identify seed nodes for behavior diffusion in a resource
constrained social network and then show experimental results that help us analyze the impact
of each heuristic.

5.1 Summary of Variation & Notation

There are a number of variations possible—in terms of resources and behaviors—for nodes
selected as seeds. The first issue is whether we top up the resource of a selected seed.Topping
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up a seed provides it with additional resources to adopt the behavior in case the behavior was
more costly than available resources. This corresponds to real life events like providing early
adopters with free items, gift coupons or other services like free access to recycling facilities etc.
Depending on whether we allow seeds to be topped up we have two variations of the seed selec-
tion algorithm—Topped Up (suffixT is added to the name of the algorithm) and No Top Up
(suffixNT is added). In theNT version only the nodes with sufficient resource for adopting a
behavior are considered as candidates for seed selection.On the other hand in the T version all
the nodes are considered as possible candidates.
Another variation is possible depending on whether a node can be selected as a seed for

more than one behavior or strictly one behavior. In the first case a seedmay be assignedmore
than one behaviors and we suffixM (formultiple) to the seed selection algorithm. In the second
case a seed is assigned exactly one behavior and we use the suffix S (for single). It is easy to see
that S version can never find a solution that is better than theM version for the same type of
top up regime.
Combining these two types of variations we can have four different variants of each seed

selection algorithm—S-T, S-NT,M-T andM-NT. In this paper most of the results are for the
S-T variant. However in Appendix B in S1 Appendix we present some results comparing these
different variations of the seed selection algorithm and discuss a few consequences.

5.2 Seed Selection Heuristics

We discuss heuristics based on node degree, influence weight and expected immediate adop-
tion for the behavior diffusionmodel under resource constraint. Notice that the node attributes
required in these heuristics can all be computed locally at each node without necessitating a
graph wide computation. These consideration automatically excludes more computation
intensive measures like betweenness centrality. We start by developing heuristics which are
based on node degree.

5.2.1 Node Degree. The social capital of an individual increases the number of acquain-
tances.While the nature of the connections and the specific structure of the network in which
an individual is embedded play a role in determining the influence of an individual, an individ-
ual’s node degree is a good first degree approximation to an individual’s “influence” on his
acquaintances. We first discuss the heuristic and present some useful variants.

5.2.1.1 Naïve.We rank the nodes according to their degree, pick top k nodes, and assign
them different behaviors. This is a naïve extension of the high degree heuristic for the LT
model [1]. We test three variants of this heuristic. The first variant is naïve degree with ran-
dom tie breaking and no top up (see Algorithm 3). Here no top upmeans that a seed node is
never assigned a behavior that it cannot adopt with its own resource, i.e. a seed node is
assigned a behavior only if it has sufficient resource to adopt it. Random tie breaking means
that we assign a high degree node a behavior that is chosen uniformly at random from the set
of behaviors that the node can adopt with its available resource. So each seed node is assigned
at most one behavior (if a seed node does not have enough resource to adopt any behavior, no
behavior is assigned to it). In Algorithm 3 the loop (lines 2-9) continues until we have no
more nodes to identify as seeds. In the second variant naïve degree with random tie breaking
and top up each seed node is always assigned one randomly chosen behavior irrespective of its
resource level. If its resource is not sufficient for adoption of the behavior we top up its
resource so that it can bear the cost of adoption of the assigned behavior. In the third variant
naïve degree with knapsack tie breaking, each seed node is assigned all the behaviors that will
maximize its utility subject to its resource constraint—to determine which behaviors to assign
we solve a knapsack problem. Notice that degree based heuristics are optimistic—it is possible
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that neighbors of a seed do not have resources to adopt the behavior of the seed, thus prevent-
ing diffusion of behavior.

Algorithm 3:Naïve Degree Basedwith Random Tie breaking and No Top Up

Input:G≔ (V, E)—thesocialnetwork,b—a vectorof size k containingnumber
of requiredseeds for each of the behaviors

Output:S—a vectorof size k containingseed sets for each of the k behaviors
1 Let V0≔ V and S≔ �

2 repeat
3 Selectv≔ arg max u {|N (u)|: u 2 V 0};
4 V0≔ V0 \ {v};
5 Selectj uniformlyat randomfrom the set of behaviorsi that still need

seeds to be assigned:{i: b[i] 6¼ 0};
6 if r(v)� cj then
7 Set S[j]≔ S[j] [ {v} and b[j]≔ b[j] − 1;
8 Designatev as an early adopterfor behaviorj;
9 end
10 until b = 0;

5.2.1.2 NeighborsWith Sufficient Resource.This heuristic takes into account both the
degree and available resource of the neighbors when selecting the seed nodes. For each behav-
ior i we calculate di(v)—the number of neighbors of a node v with sufficient resource for adop-
tion of behavior i with cost ci (i.e. the number of neighbors u of seed node v with r(u)� ci).
Clearly di(v) is a better indicator of the suitability of selecting v as a seed for the ith behavior
than just the node degree. In the degree and resource ranked heuristic (see Algorithm 4) we
compute di(v) for all the nodes (lines 2-10), rank them according to the value of this metric and
select the required number of seeds for the ith behavior from the top of the ranking. If a node is
selected as a candidate seed for more than one behaviors, we break the tie randomly and top up
its resource so that it can adopt the randomly assigned behavior (lines 19-22). Then we add
one more candidate for the behaviors that were not assigned.We repeat the process until the
required number of seeds are selected for all the behaviors. For example if we need to identify 3
seeds for behavior 1, 4 for behavior 2, and 3 for behavior 3. Assume that the second ranked
node on the list for behavior 1 appears in all the other lists. Suppose when we break the tie the
node is assigned behavior 3. Then we pick the one additional node for each behavior 1 and 2
with the next highest value of di(v).
One weakness of the degree based and degree-resource based heuristics is that they provide

no estimate of the effectiveness of the seed in terms of adoptions. We address this issue next.

Algorithm 4:Degree and Resource RankedHeuristic

Input:G≔ (V, E)—thesocialnetwork,b—a vectorof size k containingnumber
of requiredseeds for each of the behaviors

Output:S—a vectorof size k containingseed sets of requiredsize for all the
behaviors

1 Let di(v)≔ 0 for all v 2 V and i 2 {1, . . ., k};
2 for each v 2 V do
3 for each behaviori do
4 for each neighboru of v do
5 if r(u)� ci then
6 di(v)≔ di(v) + 1;
7 end
8 end
9 end
10 end
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11 Let V0≔ V and S ≔ �;
12 repeat
13 for each behaviori do
14 Let Ti be the set of top b[i] nodes from V0 in the decreasingsortedorder

of di(v);
15 end
16 Let T :¼ [ki¼1

Ti;
17 Set V0≔ V0 \ T;
18 for each node v in T do
19 Selectj uniformlyat randomfrom the set of behaviors{i|v 2 Ti };
20 if r(v)� cj then
21 Set r(v)≔ cj
22 end
23 Set S[j]≔ S[j] [ {v} and b[j]≔ b[j] − 1;
24 Designatev as an early adopterfor behaviorj;
25 end
26 until b = 0;

5.2.2 InfluenceWeight BasedHeuristics. We compute an influence weight measure to
estimate the influence of a potential seed set on its neighbors.We can compute the influence
weight measure for a set of seeds by summing over the influence weight of individual seeds. Let
u be a neighbor of v. v exerts a social influence of weight 1=jNðuÞj on u. The InfluenceWeight
exerted by v on its neighbors is

P
u2NðvÞ

1

jNðuÞj. Notice that while social capital of a node v is given
by N(v) the number of neighbors of v, its net social influence depends on the number of neigh-
bors of its immediate neighbors. That is social influence of a node v is/

P
u2NðvÞ

1

jNðuÞj.
We will restrict the summation over those neighbors u that have enough resource to adopt

behavior i. Hence we call this metricConstrained Social Influence Weight (CIW) of v for the
behavior i and denote it by ei(v). The justification of this heuristic comes from [8], where it is
argued that large cascades are driven by a critical mass of easily influenced individuals. How-
ever, we note that Watts and Dodds [8] did not consider resource bounded individuals in their
framework. Intuitively, higher ei(v) includes the possibility that v is connected to individuals
who can be easily influenced by v to adopt behavior i which can potentially lead to a large cas-
cade of behavior i. Next we describe two heuristics based on the CIW.

5.2.2.1 Rank Based.We rank all the nodes (see Algorithm 5) based on the value of ei(v)
(lines 2–10) and choose the required number of seeds for behavior i starting from the highest
ranked nodes.We perform the same evaluation for all behaviors. If a node is selected as a can-
didate seed for more than one behaviors, then we pick one of the behaviors at random and
assign it to the node (line 19). And similar to Algorithm 4, for all behaviors not selectedwe
pick from the remaining nodes (i.e. v 2 V0) with the next highest value of ei(v) and add it to the
corresponding list (i.e. Ti for a behavior not selected). If the node does not have sufficient
resource to adopt that behavior then its resource is topped up. The process continues until the
required number of seeds are allocated to all the behaviors.

Algorithm 5: CIWRank Based

Input:G≔ (V, E)—thesocialnetwork,b—a vectorof size k containingnumber
of requiredseeds for each of the behaviors

Output:S—a vectorof size k containingseed sets of requiredsize for all the
behaviors

1 Let ei(v)≔ 1 for all v 2 V and i 2 {1, . . ., k};
2 for each v 2 V do
3 for each behaviori do
4 for each neighboru of v do
5 if r(u)� ci then
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6 eiðvÞ :¼ eiðvÞ þ 1

jNðuÞj;

7 end
8 end
9 end
10 end
11 Let V0≔ V and S ≔ �

12 repeat
13 for each behaviori do
14 Let Ti be the set of top b[i] nodes from V0 in the decreasingsortedorder

of ei(v);
15 end
16 Let T :¼ [ki¼1

Ti;
17 Set V0≔ V0 \ T;
18 for each node v in T do
19 Selectj uniformlyat randomfrom the set of behaviors{i|v 2 Ti };
20 if r(v)� cj; then
21 Set r(v)≔ cj;
22 end
23 Set S[j]≔ S[j] [ {v} and b[j]≔ b[j] − 1;
24 Designatev as an early adopterfor behaviorj;
25 end
26 until b = 0;

5.2.2.2 Max Margin. The hill climbing heuristic builds the seed set incrementally, each time
selecting a new seed node that maximizes the marginal increase of influence weight until the
required number of seeds is obtained. So in this case while computing the influenceweight of a
potential seed node for a behavior we exclude those neighbors of the node who are already
selected as seeds for that behavior. As with the previous heuristic, if the node does not have suf-
ficient resource then it is topped up so that it can adopt the assigned behavior.

Algorithm 6: CIW basedMax Margin Heuristic

Input:G≔ (V, E)—thesocialnetwork,b—a vectorof size k containingnumber
of requiredseeds for each of the behaviors

Output:S—a vectorof size k containingseed sets of requiredsize for all the
behaviors

1 Let V0≔ V and S ≔ �;
2 repeat
3 for each behaviori do
4 Let Ti≔ Core-Hill-Climbing(i,b[i], S[i], V0);
5 end
6 Let T :¼ [ki¼1

Ti;
7 Set V0≔ V0 \ T;
8 for each node v in T do
9 Selectj uniformlyat randomfrom the set of behaviors{i|v 2 Ti };
10 if r(v)� cj; then
11 Set r(v)≔ cj;
12 end
13 Set S[j]≔ S[j] [ {v} and b[j]≔ b[j] − 1;
14 Designatev as an early adopterfor behaviorj;
15 end
16 until b = 0;

Algorithm 7: Core-Hill-Climbing

Input:i—the behavior,b[i]—numberof seeds requiredfor the ith behavior,
S[i]—theset of alreadyselectedseeds for the ith behavior,V0—the
remainingpopulationof nodes to choosenew seeds from
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Output:Ti—the set of b[i] newly selectedseeds
1 Let ei(v)≔ 1 for all v 2 V \ S[i] and i 2 {1, . . ., k};
2 for each v 2 V \ S[i] do
3 for each neighboru of v s.t. u 2 V \ S[i] do
4 if r(u)� ci then
5 eiðvÞ :¼ eiðvÞ þ 1

jNðuÞj;

6 end
7 end
8 end
9 Let Ti≔ �;
10 for j = 1 to b[i] do
11 Selectu≔ arg maxv {ei(v)|v2V0 \ Ti};
12 Ti≔ Ti [ {u};
13 for each neighborv of u in V0 \ Ti do
14 eiðvÞ :¼ eiðvÞ � 1

jNðuÞj;

15 end
16 end

5.2.3 ExpectedImmediate Adoption. Notice that the randomized behavior adoption pro-
cess at a node in the network does not depend on any other node once the behaviors adopted
by its neighbors are known. So for a seed set S we can compute the expected number of nodes
with behavior i in the next time step in the followingmanner—for any node v that is a neighbor
of a seed node u with behavior i, we compute the probability that in the next time step it will
adopt behavior i, and then we sum up the probabilities for all such nodes v in the network.
Appendix A in S1 Appendix explains how to compute this probability with a detailed example.
For a given seed set S and a behavior i, we define Expected Immediate Adoption(EIA), IAi(S), as
this expected number of nodes with behavior i after one time step. Although the exact compu-
tation of total number of adoptions at the completion of the behavior diffusion process is #P-
hard for the LT model [33], the exact computation of adoptions after exactly one time step is a
tractable problem (Appendix A in S1 Appendix). If we assume that higher values of IAi(S)
would result in higher values of expected number of adoptions of behavior i at the completion
of the diffusion process, then we can use IAi(S) as a metric for determining the initial seed set.
Instead of one step expected adoption numbers, one can use expected number of adoptions
after two or more steps to better predict the final adoption. However, finding closed form
expression is hard, and one would need to use a two-stage simulation to make the calculation.
We build up S incrementally adding one seed at a time based on the EIA value. At each iter-

ation we choose the node that maximizes the marginal increase in the EIA value to add to the
seed set. See Algorithm 8 for detailed description.

Algorithm 8: Incremental Expected Immediate Adoption BasedHeuristic

Input:G≔ (V, E)—thesocialnetwork,b—a vectorof size k containingnumber
of requiredseeds for each of the behaviors

Output:S—a vectorof size k containingseed sets of requiredsize for all the
behaviors

1 Let V0≔ V and S ≔ �;
2 repeat
3 for each behaviori do
4 Let (ui, si)≔ Find-Next-Seed-IA(i,b[i], S, V0);
5 end
6 Let imax≔ arg maxi2{1, . . ., k} si;
7 Let v ≔ uimax;
8 Set V0≔ V0\{v};
9 Set S[imax]≔ S[imax] [ {v} and b[imax]≔ b[imax] − 1;
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10 if r(v)� cimax then
11 Set r(v)≔ cimax;
12 end
13 until b = 0;

Algorithm 9: Find-Next-Seed-IA heuristic; selects the node that gives maximummarginal
increase of the Immediate Adoption value

Input:i—the behavior,b[i]—numberof seeds requiredfor the ith behavior,S
—the set of alreadyselectedseeds for all the behaviors,V0—the
remainingpopulationof nodes to choosenew seeds from

Output:(u, s)—if b[i] is not zero then a tuple consistingof the best choice
of next seed from the populationV0 for the ith behavior,given the
alreadyselectedseedsetS and its correspondingExpectedImmediate
Adoptionvalue

1 if b[i] = 0 then
2 Return(‘nobody’,0)
3 end
4 Let s be a vectorindexedby the set V0, and s = 0;
5 for v 2 V0 do
6 Let S

0

≔ S;
7 Set S

0

[i]≔ S
0

[i] [ {v};
8 Set s[v]≔ Compute-IA(S

0

);
9 end
10 Selectu≔ arg max v{s[v]|v2 V0};
11 Return(u, s[u]);

5.2.4 GreedyApproximation (KKT). Kempe et al. [1] presents a greedy approximation
algorithmwith approximation guarantee of 63% for the LT model and single behavior case. In
section 4.2 we have shown that a modified version of this algorithm provides us with the same
approximation guarantee for the simplified Sticky Model. In particular, we showed that our
algorithm under the total participation diffusionmetric was sub-modular and hence we shall
use this algorithm to select seeds. However, since we did not show that behavior diffusion to be
sub-modular and hence prove the approximation guarantee under the the more general case of
total adoption or under the resource utilization metric, using our algorithmmay be less than
optimal. Hence we denote our algorithm as a heuristic—we call it the KKT heuristic after the
authors of [1]. Note that due to the high computational cost involved in simulation this algo-
rithm is not scalable to large size networks.

5.3 Simulation Experiments

In this sectionwe describe different simulation experiments and compare the effectiveness of
our proposed heuristics for the seed selection problem.We have implemented the multiple
behavior diffusionmodel described in Section 3.1 and the heuristics discussed in Section 5 in
the NetLogo Programming environment [34]. In the following experiments we have assumed
that we want to spread three behaviors b1, b2, b3 with costs c1 = 0.2, c2 = 0.5 and c3 = 0.7. We
have assumed that behavior utility is proportional to cost. Hence our nominal utility values for
the corresponding behaviors are u1 = 0.2, u2 = 0.5 and u3 = 0.7. Finally, we assume that individ-
uals’ resources are independent and identically distributed i.e the resource r(v) is uniformly dis-
tributed random variableU(0, 1) for all v 2 V.

5.3.1 Network Topologies. We have used synthetic networks as well as a large real-world
network for our experiments.We synthesize network topologies through three social network
generation models: preferential attachment [35]; Small-world [36] and spatially clustered [37].
All the synthetic networks have 500 nodes. In the preferential attachment network each new
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coming node adds one link to one of the existing nodes according to the in-degree distribution.
The small world network formation starts with a regular ring lattice where each node is con-
nected to two adjacent nodes in the circular order. In the rewiring stage each edge is rewired
with probability p = 0.2. In the spatially clustered network average node degree is set to 10. All
the important properties—low effective diameter, power law degree distribution and high clus-
tering—found in real world social networks are exhibited by at least one of the above synthetic
networks. The real world data set is the ca-GrQc collaboration network form the SNAP net-
work database [38]. It is a collaboration network amongst authors who submitted their papers
to the General Relativity and Quantum Cosmology category of e-print arXiv.org database. This
network has 5242 nodes and 28980 edges.
The network types are abbreviated in the tables with experimental results as follows: PA

(Preferential Attachment); SW (Small World); SC (Spatially Clustered); QC (the ca-GrQc
quantum cosmology collaboration network form the SNAP network database).

5.3.2 Empirical Evaluation. In this sectionwe compare the seven seed selection heuristics
described in Section 5.2 for different network topologies. For the seed selection experiments,
we fix the behavior distribution over the seeds: the behaviors are assumed to be uniformly dis-
tributed over the seeds.We use a specific fraction α of the population as seeds. In this experi-
ment, we have used α = 0.1 in line with prior work [8]. This means that for synthetic networks,
we use b = 51 seeds, and b = 501 for the real-world network. The number of seeds is chosen in
such a way that it is a multiple of 3, since we have 3 test behaviors. All the results discussed in
this section are for the S-T variant of the algorithm. As a reminder the S-T variant is the case
when each seed node adopts a single behavior with top-up. Full description of the notations
can be found in Section 5.1. In Appendix B in S1 Appendix we present the result of comparison
among the different variants.
There are two sources of randomness in the synthetic network generationmodels: behavior

adoption thresholds at each individual for each behavior and network topology. Since each
aspect is independent of the other, we have conducted two different types of simulations. In the
first, we pick an arbitrary topology and vary individual thresholds over the different simulation
runs.We term this as threshold average. In the second type of simulation, we fix the individual
thresholds, obtained from the uniform distribution, and vary the topologies over the simula-
tions. We term this as network average. Notice that the real-world dataset—ca-GrQcnetwork—
has a fixed topology and hence only one type of randomness: variation of the individual thresh-
olds. We use 5000 independent runs of the diffusion process to obtain stable estimates for both
threshold and network types of simulations.
Interestingly, simulation under both network and threshold average yield identical results

(see Table 2). While the reader can find a formal proof of equivalence between the network
average and threshold average simulations in Appendix C in S1 Appendix, we present an infor-
mal argument here. The case for k − regular graphs is easy to see. No matter the topology,
every node will experience the same distribution of thresholds as any other node as the number
of simulations tends to infinity. In the more general case, consider the network thresholds case
when topologies are varied under fixed (but randomly assigned) thresholds. Since every topol-
ogy is the output of a random graph generation process (e.g. small world), every topology fol-
lows a characteristic degree distribution (depending on the graph generation parameters).
Thus any node with a fixed threshold has a finite probability of having all the possible different
degrees. Since the thresholds are chosen uniformly at random, across all nodes, every threshold
value will “experience” different node degrees (i.e. number of neighbors) over the course of the
entire simulation. A similar argument follows for the threshold average case when the topology
is random but fixed and when the thresholds are chosen randomly for every simulation run. In
the remainder of the paper, we shall only show threshold averages for the sake of definiteness.
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Since seed selection sub-problems P1 and P2 are NP-complete (ref. Section 5), determining
the maximum possible utilization or total participation in the network for the given value of b
under uniform behavior distribution is computationally intractable. However, we can estimate
the value of maximum possible utilization in the network if we assume that b = N, the case
when each network node is a seed. First the nodes in the network adopt the subset of behaviors
that maximizes their payoffs subject to the resource constraint. Then we let the diffusion pro-
cess run till the network reaches equilibrium. The expected value of the resource utilization at
this point will upper bound of resource utilization in that network and enables comparison
with our heuristics. Table 2 provides the value of this maximum possible utilization for differ-
ent networks. Notice that for three behaviors with costs c1 = 0.2, c2 = 0.5 and c3 = 0.7, it is
straightforward to show that the maximum utilization will be bounded by the value 0.78,
assuming that the thresholds are obtained fromU(0, 1). The fact that the simulation results are
slightly lower that 0.78 is because nodes will “align” with their neighbors over time due to the
social influence.
Let us examine the resource utilization for our cost distribution c = (0.2, 0.5, 0.7) in a little

more detail. We assume that an individual’s resources are drawn from a uniform distribution
U(0, 1). If we assume that every individual can adopt any subset of available behaviors provided
they have the resources, independent of the behavior adoption by their neighbors, we can thus
estimate the upper bound for resource utilization in the social network. Given the distribution
of costs, not all individuals can fully utilize their resources. However, it is easy to see that indi-
viduals with resources exactly equal to one of the numbers from the set {0.2, 0.5, 0.7, 0.9} are
able to fully utilize their available resources.We call this the set of full utilization points. Now,
an individual with resource say 0.4 can only adopt behavior with cost 0.2 and so on. Thus the
expected resource utilization is:

R 0:5

0:2
0:2dr þ

R 0:7

0:5
0:5dr þ

R 0:9

0:7
0:7dr þ

R 1:0

0:9
0:9dr

R 1:0

0:0
rdr

¼ 0:78

The denominator of the equation is the value of resource utilization when an individual has
behaviors that exactly match available resources. The costs of the different behaviors
completely specifies the set of full utilization points. It is straightforward to prove the following
lemma.
Lemma 5.1 Let there be n utilization points μ1, μ2, . . ., μn with 0< μ1< μ2< . . .,<μn� 1.0.

Then the maximum resource utilization is 2ðm1m2 þ . . .þ mn� 1mn þ mnÞ � 2ðm2
1
þ . . .þ m2

nÞ.

Table 2. Maximum Possible Resource Utilization of different network types. Each node solves the

knapsack problem and selects optimal behaviors. Then, we diffuse the behaviors. We are reporting the equi-

librium values under two conditions: we fix the thresholds and vary topology (Network Average); we fix a ran-

dom topology and vary thresholds (Threshold Average). Notice that the the quantum physics collaborative

dataset, we cannot report a network average since the topology is fixed. Maximum resource utilization occurs

when the number of seeds is equal to N—each node is a seed. In this case, it is easy to show that resource

utilization is 0.78 for the three behavior case with specific costs. Notice below that resource utilization is less

than this number, since each node will adjust to its social signal.

Network Threshold Average Network Average

(PA) Preferential Attachment 0.71 0.71

(SW) Small World 0.72 0.72

(SC) Spatially Clustered 0.73 0.73

(QC) Quantum Cosmology 0.73 N/A

doi:10.1371/journal.pone.0162014.t002
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Proof. The expected value of the resource utilization is:
R m2

m1
m1dr þ

R m3

m2
m2dr þ � � � þ

R 1:0

mn
mndr

R 1:0

0:0
rdr

¼ 2ðm1ðm2 � m1Þ þ � � � þ mn� 1ðmn � mn� 1Þ þ þmnð1:0 � mnÞÞ

¼ 2ðm1m2 þ � � � þ mn� 1mn þ mnÞ � 2ðm2
1
þ m2

2
þ � � � þ m2

nÞ:

By setting partial derivatives with respect to the utilization points of the maximum resource
utilization function to 0, it is straightforward to show that the utilization points must be uni-
formly distributed. That is, μi = i/(n + 1) and the correspondingmaximum resource utilization
value is 2=ðnþ 1Þ �

Pn
i¼1

mi ¼ n=ðnþ 1Þ. Since μ1 always represents the lowest cost behavior,
by simply introducing a new lower cost behavior with cost μ1/2, we increase the number of uti-
lization points from n! 2n + 1, and increasing the relative utilization by 1/2n. As a specific
example with three utilization points, μ = (0.25, 0.5, 075) the costs for the corresponding two
behaviors are c = (0.25, 0.5), with maximum resource utilization of 3/4. When we introduce a
new behavior with cost equal to half the cost of the lowest cost behavior (i.e. 0.125), the number
of utilization points jumps to 7, thereby increasing the utilization to 7/8 and increasing relative
utilization by 1/6 or 16.7%.
Table 3 shows the estimated resource utilization of different networks for threshold and net-

work average simulations for each of the eight seed selection heuristics. The two Constrained
Social InfluenceWeight heuristics (Ranked and Max Margin) show the highest expected utili-
zation. The differences between the influenceweight heuristics and the other heuristics are sta-
tistically significant (p< 0.01).
Table 4 presents the Total Participation and Total Adoption under threshold average condi-

tion for all the eight heuristics. The Expected Immediate Adoption based heuristic (EIA) shows
the best result. The results remain qualitatively unchanged in the network average case.
We compare the performance of the two InfluenceWeight based heuristics—Constrained

Social InfluenceWeight-Ranked and Constrained Social InfluenceWeight-Max Margin—and
the Expected Immediate Adoption based heuristic against the greedy approximation algorithm.
Due to a large computational cost it is infeasible to run the greedy algorithm on the large net-
works used in experiments thus far. So we create synthetic networks of size 100 nodes with
number of seeds b = 9 with 3 seeds allocated to each behavior, for the purpose of comparison
via Preferential Attachment, Small World and Spatially Clustered network generators. Our
estimates are obtained by running the model 5000 times on each network. Table 5 presents the
results of the comparison for the total participationmetric. Notice that for the Preferential

Table 3. Resource Utilization under Threshold Average. Both heuristic variants of the Influence Weight

give excellent results. The differences between the heuristics for the same type of average are statistically

significant. * result is obtained with 50 independent runs.

Seed Selection Heuristics PA SW SC QC

Random 0.12 0.15 0.16 0.14

Naïve Degree—No Top-up 0.22 0.16 0.16 0.18

Naïve Degree—Knapsack 0.28 0.17 0.16 0.18

Naïve Degree—Top-up 0.32 0.17 0.17 0.19

Degree and Resource Ranked 0.35 0.21 0.18 0.20

Constrained Social Influence Weight—Ranked 0.37 0.21 0.20 0.28

Constrained Social Influence Weight—Max Margin 0.37 0.22 0.21 0.29

Expected Immediate Adoption 0.34 0.22 0.21 0.27*

doi:10.1371/journal.pone.0162014.t003
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Attachment network heuristics Constrained Social InfluenceWeight-Ranked and the Expected
Immediate Adoption perform even better than the greedy approximation algorithm. This is
not surprising since the greedy algorithmmay fail to obtain the optimal solution in isolated
cases. In the next section, we discuss how to distribute behaviors over the seeds.

6 Assigning Seeds Optimal Behaviors

In this sectionwe discuss the behavior distribution problem—what set of behaviors should
each seed node adopt? We will first formally introduce the problem as an optimization prob-
lem. Next we will discuss different strategies for distributing the behaviors over the seed set.
Then we will compare these different strategies through simulation experiments and identify
the pros and the cons of each strategy.
The behaviors adopted by the set of seed nodes have different implications on the metrics—

total participation, total adoption and resource utilization (see Section 3.2 for a definition of
these measures). If all nodes adopted the least costly behavior, for example, we would expect
total participation to increase, but low resource utilization. The converse would be true in the
case when seed nodes are chosen in such a way that all adopt the most expensive behavior.
However, if we want to strike a balance between different behaviors such that all the behaviors
are represented in the population, then we will have to distribute all the behaviors over the seed
set according to some ratio. Here we formalize this scenario as an optimization problem.

P3: OptimumBehaviorDistribution over the Seed Set:Given that we are to pick b seeds and
there is a lower bound on the number of adoptions of the lowest cost behavior smin, identify

Table 4. Total Participation / Total Adoption under Threshold average as a percentage of the network

size for four different types of networks—Preferential Attachment (PA); Small World (SW); Spatially

Clustered (SC); Quantum Cosmology (QC). Both versions of the Constrained Social Influence Weight

heuristics and the Expected Immediate Adoption heuristic give excellent results. The differences between

the heuristics for the same type of average are statistically significant. * result is obtained with 50 indepen-

dent runs.

Seed Selection Heuristics PA SW SC QC

Random 14.0 / 14.1 17.7 / 18.0 20.1 / 20.6 17.3 / 17.6

Naïve Degree—No Top-up 27.2 / 28.3 19.7 / 20.3 20.3 / 20.6 20.2 / 22.4

Naïve Degree—Knapsack 31.6 / 35.7 19.1 / 21.3 18.6 / 20.7 22.2 / 23.4

Naïve Degree—Top-up 37.5 / 38.0 21.3 / 21.9 21.1 / 21.8 22.6 / 23.8

Degree and Resource Ranked 41.3 / 41.6 24.7 / 25.4 22.9 / 23.4 22.5 / 23.3

Constrained Social Influence Weight-Ranked 45.0 / 45.2 25.0 / 25.3 25.8 / 26.3 34.8 / 35.9

Constrained Social Influence Weight-Max Margin 44.0 / 44.4 25.9 / 26.4 25.7 / 26.3 35.5 / 36.6

Expected Immediate Adoption 51.3 / 52.1 26.9 / 27.5 27.6 / 28.4 37.4 / 38.8*

doi:10.1371/journal.pone.0162014.t004

Table 5. Total Participation / Total Adoption under different networks as a percentage of the network

size for three different types of networks—Preferential Attachment (PA); Small World (SW); Spatially

Clustered (SC). The heuristics Constrained Social Influence Weight-Ranked, Constrained Social Influence

Weight-Max Margin and the Expected Immediate Adoption give results quite close to the greedy approxima-

tion algorithm.

Heuristics PA SW SC

Greedy Algorithm 43.7 / 44.5 26.2 / 26.4 27.3 / 27.3

Constrained Social Influence Weight-Ranked 43.9 / 44.5 22.9 / 23.6 24.6 / 25.1

Constrained Social Influence Weight-Max Margin 33.3 / 33.4 22.9 / 23.6 23.5 / 24.1

Expected Immediate Adoption 43.9 / 44.5 23.6 / 24.5 23.6 / 24.2

doi:10.1371/journal.pone.0162014.t005
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the optimum distribution of behaviors over the seed set and the optimum set of b seeds that
will maximize the resource utilization while maintaining expected spread of smin for the low-
est cost behavior.

It should be noted that in the case of multiple behavior diffusionmetrics like resource utili-
zation, total participation and total adoption depends not only on the choice of the seeds but
also on the distribution of the different behaviors in the chosen seed set. In the results that fol-
low, we assume that each seed node is assigned a single behavior. Note that this assignment
doesn’t preclude the seeds as well other nodes from adopting more than one behavior. We test
following five different distributions of the behaviors in the seed set. In the highest cost behavior
only distribution we allocate all the seeds to the highest cost behavior and none to the other
behaviors. In the proportional to cost distribution the behaviors are distributed over the seeds
in the ratio of their costs. That is, higher cost behaviors have more seeds allocated to them. The
justification for this heuristic is that higher cost behaviors will diffuse less and hence if we
would like to see higher resource utilization, we should set more seeds to adopt the higher cost
behaviors.Uniform distribution assigns the seeds a behavior chosen uniformly at random all
the behaviors. In the Inversely proportional to cost behavior distribution behaviors are distrib-
uted over the seeds in the inverse ratio of their costs. So the highest cost behavior gets the low-
est number of seeds and the lowest cost behavior gets the highest number of seeds. Finally, in
the lowest cost behavior only distribution all the seeds are assigned to the lowest cost behavior
and no seeds are given to the other behavior. Once we have identified how many seed nodes
are needed for each behavior, using the aforementioned strategies, we identify the optimal
seeds for that behavior via the Constrained Social InfluenceWeight—Max Margin heuristic.

6.1 Experimental Evaluation

In this sectionwe investigate the effects of the different behavior distribution heuristics across
the initial seed set described in the previous section. For this simulation, we use Constrained
Social InfluenceWeight-Max Margin heuristic, since it is one of the best performing seed selec-
tion heuristics (see Table 3). Adopting the strategy inWatts and Dodds [8], we designate the
fraction of seeds designated to be early adopters to be α = 0.1. This means that we have b = 51
for the synthetic networks (N = 500) and b = 501 for the quantum physics collaboration net-
work. As before, we compute the metrics under the threshold average and the network average
simulations.
In the tables in this section, we shall use the following notation: Low (All seeds are assigned

Lowest Cost Behavior); Inv. (the seeds are allocated behavior in Inverse proportion to behavior
cost; Unif. (the behaviors are distributed Uniformly at random); Prop. (the behaviors are dis-
tributed Proportional to behavior cost); High (all seeds are allocated the Highest cost
behavior).
Table 6 shows the resource utilization in different networks for the threshold average and

the network average simulations. We see that when each seed is allocated the same lowest
(highest) cost behavior, the utilization is lowest (highest). This is unsurprising as we should
expect high utilization to occur when we have high cost behaviors in the network. In Table 7,
we show the difference between the number of unique participants and the total number of
behavior adoptions. We have omitted the simulations for the network average case, due to
space limitations. Those simulations are qualitatively similar to Table 7. Notice that when all
the seeds have either the same lowest cost or highest cost behavior assigned to all of them,
there is unsurprisingly no difference between the total number participants and the total num-
ber of unique adoptions. As Table 7 shows, change to the behavior distribution over the seeds
alters the unique number of participants as well as the total adoption. Therefore the seed
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distributions need to be chosen with care, the appropriate metric in mind. Both uniform and
proportional to cost behavior distributionmethods seem to hit a sweet spot between utilization
and behavior diversity.

7 Discussion and Open Issues

One of the main motivations of the present work was to develop a realistic model of the behav-
ior diffusion process. There are many ways in which our work can be extended. Here we dis-
cuss about a few such possible extensions.
Our present model does not consider the role of behavioral inertia in the diffusion process.

It is well known that such behavioral inertia plays an important role in many collective social
behavior problems. For a discussion of the role of inertia in voting behavior and how to model
it with the help of a freezing period see [39]. However, in our case often people are hesitant of
adopting new behaviors because they cannot free their resources from practicing an old behav-
ior which possibly has less value. This can be modeled in our framework by introducing an
additional benefit for the already adopted behaviors. Another technique would be to introduce
epidemic models such as SIRS to better model long-term behavioral adoption.
In a network, we receive social signals from our friends, but there is noise because we miss

messages and or we check them late. In modeling the behavior adoption problem, we have
ignored the role of constraints in how they affect the production and consumption of messages
from peers. Explicit consideration of the cost of social signaling would not only make the
model more realistic and provide better bounds on the maximal resource utilization of the net-
works resources.
For the seed selection heuristics we have considered relatively simple nodemeasures for the

sake of computational efficiency and performance. It would be interesting to see if more com-
plex measures, such as betweenness centrality, cross clustering coefficient, and clustering coef-
ficient entropy [40] would result in improved quality of seeds at the expense of more
computation.

Table 6. Resource Utilization under Threshold Average. Among the behavior distribution heuristics,

assigning every seed the lowest (highest) cost behavior results in the lowest (highest) utilization. Assigning

seeds proportional to cost, works as well as the assigning everyone the highest cost behavior.

Heuristics PA SW SC QC

Lowest cost 0.23 0.14 0.15 0.18

Inversely proportional 0.33 0.20 0.20 0.27

Uniform distribution 0.37 0.22 0.21 0.29

Proportional to Cost 0.38 0.24 0.22 0.31

Highest Cost 0.38 0.24 0.24 0.31

doi:10.1371/journal.pone.0162014.t006

Table 7. Total Participation / Total adoption under Threshold for different behavior distributions over

seeds. Seeds are chosen under Constrained Social Influence Weight—Max Margin heuristic. Notice that

when all the seeds are the same behavior (Low, High), the number of unique participants and adoptions are

identical.

Heuristics PA SW SC

Lowest cost 291.12 / 291.12 166.26 / 166.26 178.78 / 178.78

Inversely proportional 250.91 / 254.52 146.36 / 150.09 149.61 / 154.58

Uniform distribution 234.00 / 236.46 133.38 / 136.04 132.27 / 135.77

Proportional to Cost 209.66 / 210.98 118.65 / 119.98 113.29 / 114.91

Highest Cost 144.49 / 144.49 93.79 / 93.79 86.01 / 86.01

doi:10.1371/journal.pone.0162014.t007
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The study of social diffusion and information contagion has met with its fair share of criti-
cism. Aral et al. [41] argues that in their observational study more than 50% of the perceived
behavior contagion can be attributed to homophily instead of social influence. However Shalizi
and Thomas [42] have shown that homophily and social influence are generically confounded
in social diffusion processes and it in general not easy to distinguish between the two effects.
We have tried to take this observation into account while developing our model (see Section
3.1). In our model, the diffusion process is not exclusively driven by the social influence effects
but an individual’s intrinsic characteristics including interest in the behavior as well as resource
constraints.
Goel et al. [43] has provided an important critique of research that focuses on modeling

large-scale adoption through contagion like models. Their research shows that much of the
empirically observed cascades on a variety of networks is small—inmost cases, the cascade
stops within one degree of the initial adopting seed. However, we note that large cascades do
occur but are rare—the “Spanish Flu” of 1918-19 infected 500M people, a third of the world’s
population at the time [44, 45]. The main difference betweenGoel et al. [43] and our own work
is that while there is less empirical evidence for large cascades, we are interested in engineering
large cascades through careful seed selection.We conjecture that large cascades are less likely
to occur in “natural” cascades because the chance that all the influentials adopt the behavior
nearly simultaneously to cause a large cascade would be rare.

8 Conclusions

In this paper we have considered the problem of seed selection to maximize resource utilization
for multiple behavior diffusion processes. This problem has implications in a varied set scenar-
ios, ranging from viral marketing campaign to mass adoption of sustainable behaviors and
public health. We have considered a social network where individuals are constrained by avail-
able resources for adoption of new behaviors. Our work is the first of its kind, to the best of our
knowledge to study the influence of individual resource constraints on multiple, costly behav-
ior adoption. Mindful of the confound between homophily and structural effects, individuals
in our model respond to the social influence as well as the intrinsic utility of a spreading behav-
ior. We have shown that the core optimization problems are NP-complete and provided novel
heuristics for solving them.We have tested our heuristics against the random and naïve meth-
ods and have shown that our heuristics perform very well. We have also shown that depending
on the objective of the campaign, there are different strategies for distributing the behaviors
over the initial seed set that result in qualitatively different outcomes. Some of the open issues
include the use of epidemic models for modeling long-term behavior adoption and incorporat-
ing the idea of noisy social signals in modeling behavior adoption.
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