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Abstract

Purpose

In ultrasound-guided High Intensity Focused Ultrasound (HIFU) therapy, the target tissue

(such as a tumor) often moves and/or deforms in response to an external force. This prob-

lem creates difficulties in treating patients and can lead to the destruction of normal tissue.

In order to solve this problem, we present a novel method to model and predict the move-

ment and deformation of the target tissue during ultrasound-guided HIFU therapy.

Methods

Our method computationally predicts the position of the target tissue under external force.

This prediction allows appropriate adjustments in the focal region during the application of

HIFU so that the treatment head is kept aligned with the diseased tissue through the course

of therapy. To accomplish this goal, we utilize the cow tissue as the experimental target tis-

sue to collect spatial sequences of ultrasound images using the HIFU equipment. A Geode-

sic Localized Chan-Vese (GLCV) model is developed to segment the target tissue images.

A 3D target tissue model is built based on the segmented results. A versatile particle frame-

work is constructed based on Smoothed Particle Hydrodynamics (SPH) to model the

movement and deformation of the target tissue. Further, an iterative parameter estimation

algorithm is utilized to determine the essential parameters of the versatile particle frame-

work. Finally, the versatile particle framework with the determined parameters is used to es-

timate the movement and deformation of the target tissue.

Results

To validate our method, we compare the predicted contours with the ground truth contours.

We found that the lowest, highest and average Dice Similarity Coefficient (DSC) values be-

tween predicted and ground truth contours were, respectively, 0.9615, 0.9770 and 0.9697.
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Conclusion

Our experimental result indicates that the proposed method can effectively predict the dy-

namic contours of the moving and deforming tissue during ultrasound-guided HIFU therapy.

Introduction
High Intensity Focused Ultrasound (HIFU)[1–3] therapy capitalizes on two properties of ultra-
sound, tissue penetration and deposition, by externally focusing an ultrasound beam on diseased
or damaged tissue (the therapeutic target). Thus, through mechanical, thermal and cavitation ef-
fects, HIFU performs treatment by heat-ablating the target tissue using precisely localized high-
intensity energy. Because of the safety and efficacy [4–9], HIFU has been increasingly applied to
the treatment of cancerous growths, such as uterine fibroids, breast fibroadenoma, hepatocellular
carcinoma (HCC), osteosarcoma, and prostate cancer [10–15]. Recently, Tatiana D et al. demon-
strated the feasibility of boiling histotripsy to HIFU-induced ultrasound-guided tissue fraction-
ation in an in vivo pig model, allowing treatment of tissue immediately adjacent to major blood
vessels and other connective tissue structures [16]. However, the target tissue such as a tumor
often moves and/or deforms during ultrasound-guided HIFU therapy because of the existence of
an external force. As a result, HIFUmay appear to be targeting diseased tissue when in fact it is
impinging on healthy tissue, leading to serious complications [17]. To avoid this problem, the
general practice during surgery is that experienced doctors manually target the HIFU treatment
head to a safe area (not 100% of the disease tissue) by simply observing the movement and defor-
mation characteristics of the target tissue. However, this practice causes a portion of the lesion to
survive from the treatment, potentially leading to tumor recurrence after surgery. Furthermore,
the need to continuously relocate the target tissue as it moves and deforms can substantially in-
crease the time of surgery, which causes additional pain for the patient and increase in treatment
cost. If we can dynamically and accurately predict the motion and deformation of the target tis-
sue and make timely adjustments to the positioning of the HIFU target, the risk of surgery (in-
cluding both surgical and recurrent risks) can be reduced substantially. Despite the importance,
there has been a lack of research on this important problem. This work aims to find an effective
solution that improves both safety and outcome of the ultrasound-guided HIFU surgery.

We propose the use of computational dynamic modeling and prediction of tissue motion/de-
formation during HIFU therapy. By predicting the position of target tissue under an external
force, we can adjust the focal region during HIFU therapy accordingly so that the HIFU treat-
ment head remains aligned with the target tissue. To accomplish this goal, we first collect a
spatial sequence of scanned ultrasound images of the target tissue. A method based in the Geo-
desic Localized Chan-Vese (GLCV) modes developed to segment the target tissue. We then con-
struct a 3D model based on our segmentation results, apply the external force to it, and propose
a versatile particle framework to model the experimental environment. Our method allows us to
compute the movement and deformation of the target tissue as it responds to the external force.

To reconstruct a 3Dmodel of the target tissue, we must obtain a static contour of the target
tissue. Traditionally, during ultrasound-guided HIFU therapy, doctors manually mark the target
tissue’s contour; however, manual identification of the contour is time-consuming and greatly
affects the surgical process [18]. Therefore, a significant need exists to develop faster methods
for defining target tissue’s contour in multiple sections. The method most commonly used for
this task is contour segmentation, which partitions an image into multiple segments and extracts
the interested target. Contour segmentation is typically used to locate objects and boundaries in
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images. As HIFU ultrasound images usually have a low Signal-to-Noise Ratio (SNR), weak bor-
ders and uneven grey level distribution, A precise segmentation of these images has proven to be
difficult. Caselles et al.[19] proposed a Geodesic Active Contour (GAC) model based on curve
evolution theory and the level set method. This model uses gradient information as an image-
based “force” to push the curve towards the target edge and produces good segmentation results
for targets that have clearly defined edges. However, as the gradient represents highly localized
information within a given image, this method is sensitive to noise and may lead to apparent
edge leakage in low contrast images. Chan and Vese [20] proposed the Chan-Vese (CV) model,
which can effectively segment noisy and low contrast images as it does not rely on the gradient
information. However, this method can lead to an incorrect interpretation of non-evenly distrib-
uted images, as the model assumes that regions within the image are evenly distributed and uses
global statistical information. To segment uneven images, Li et al.[21] introduced a kernel func-
tion to define the local binary fitting energy in a variational level set framework, embedding local
grey level information into the model. Lankton et al.[22] proposed a localized CV (LCV) model
that allows a region-based energy formula to be rewritten into a localized form. Li et al.[23] pro-
posed a Region-Scalable Fitting (RSF) model where a kernel function in the data fitting term was
provided to define local binary fitting energy, but it causes fragmentation in segmentation when
images have severe intensity inhomogeneity. The primary shortcoming of the localized region-
based active contour models discussed above is that they are sensitive to initial contours. Recent-
ly, Liao et al.[24] presented a multi-scale and shape constrained localized CVmodel (MSLCV)
to segment uterine fibroid ultrasound images in HIFU therapy and achieved good segmentation
results. It adopts a multi-scale segmentation method to improve segmentation efficiency. How-
ever, the final segmentation largely depends on segmentation of images in coarse-scales and this
model is specially designed for uterine fibroid ultrasound images. Combining GAC and LCV, we
provide a geodesic LCV (GLCV) model to overcome the above shortcomings. Through the anal-
ysis of the uniformity of grey level distribution around each point on the evolution curve, our
model weighs the contributions of each model during image processing. Therefore, our method
not only segments the target tissue accurately and effectively, but also increases the efficiency of
ultrasound-guided HIFU therapy by eliminating the procedure of manual segmentation.

There are various types of material that makes up the surgical environment during the ultra-
sound-guided HIFU therapy, including elastic tissue, rigid body and intermediates such as flu-
ids. The target tissue moves and deforms because of the existence of external forces. Thus,
predicting the movement and deformation of the target tissue is actually a multiphase coupling
process among elastic tissues, rigid body and fluids intermediates. In recent years, numerous
methods have been proposed to physically model the properties of fluids and solids. These
methods generally can be classified generally as either mesh-based methods, such as Finite Ele-
ment Method (FEM) or meshless methods. The Smoothed Particle Hydrodynamics (SPH) has
become a widely used meshless method to model fluids [25]. Its particle properties make it also
suitable for modeling deformable objects and fluids [26, 27]. Many state-of-the-art methods
are proposed to calculate the fluid-solid coupling such as rigid bodies and deformable solids
[28–30]. Although excellent results have been achieved in modeling rigid bodies, fluids and de-
formable solids, the coupling of different materials involves a high computational cost. For ex-
ample, when coupling two different materials, such as SPH fluid and FEM solid, addressing
data exchange becomes a difficult task. As the complexity of simulation scenarios increases,
there is a strong need for the development of a flexible, accurate and versatile multiphase cou-
pling method applicable to complex models and various virtual simulation scenarios. In this
work, we propose a novel, versatile particle framework that can accurately simulate the multi-
phase coupling of elastic tissue, rigid body and fluids.
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To quantitatively verify our method, we utilized a sample of cow tissue as an experimental
target tissue, which is suitable for simulating tumors such as uterine fibroids. We first placed
the target tissue in a water pool of ultrasound-guided HIFU equipment and then used a rigid
body (metal bar) to applied forces, leading to its movement and deformation. Using the ultra-
sound-guided HIFU equipment, we first obtained the spatial sequence of scanned ultrasound
images of the target tissue. Then, we recorded both mechanical movement and deformation of
one cross-section of the target tissue under the external force. Our experimental data verifies
that our method can effectively predict the movement and deformation of the target tissue.
The main contributions of this paper include:

• The demonstration that HIFU ultrasound image segmentation is capable of obtaining the
contours of the target tissue accurately and effectively, which may replace the current manual
operation and increase the efficiency of the ultrasound-guided HIFU therapy.

• The development of a versatile particle framework and an iterative parameter estimation
method, which allows multi-phase coupling among target tissue, rigid body and fluids.

• The creation of a new method to predict the movement and deformation of target tissue dur-
ing ultrasound-guided HIFU therapy.

Materials and Methods

2.1 HIFU Ultrasound Images Segmentation
We utilized a sample of cow tissue as our experimental target tissue, which was purchased at
Carrefour near Chongqing Medical University, Yuzhong District, Chongqing, China. All HIFU
ultrasound images of the target tissue were acquired by using the HIFU equipment of the
Model JC200 Focused Ultrasound Tumor Therapeutic System [31]. In the following, we will
first describe the localized CV (LCV) model and then propose our geodesic LCV (GLCV)
model to segment the HIFU ultrasound images.

2.1.1 LCV model. To overcome the difficulties in processing images with non-evenly dis-
tributed intensity levels, Lankton et al.[22] proposed the LCV model which allows any global
region-based energy formula to be rewritten into localized form. To define a localized region
for each point on the curve, a characteristic function is defined as:

Bðx; yÞ ¼ 1; kx � yk < r

0; otherwise:
ð1Þ

(

where x, y 2 O represents each point and r represents the radius parameter.
The average intensities, cx1 and cx2, inside and outside of the local region of point x on the

contour are defined by the characteristic function B(x, y) [22]:

cx1 ¼

ð
Oy

Bðx; yÞ � Hð�ðyÞÞ � IðyÞdyð
Oy

Bðx; yÞ � Hð�ðyÞÞdy
ð2Þ

cx2 ¼

ð
Oy

Bðx; yÞ � ð1� Hð�ðyÞÞÞ � IðyÞdyð
Oy

Bðx; yÞ � ð1� Hð�ðyÞÞÞdy
ð3Þ
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where ϕ(y) and H(ϕ) represent, respectively, the level set function and the Heaviside function,
Oy is the local region defined by B(x, y), and I(y) is the intensity of point y. The energy function
of LCV model is given by:

ELCVðcx1; cx2; �Þ ¼
ð
Ox

dð�ðxÞÞ
ð
Oy

Bðx; yÞ � FregionðIðyÞ; �ðyÞÞdydx þ m
ð
Ox

dð�ðxÞÞkr�ðxÞkdx ð4Þ

Where Ox and Oy are the integration domain, Fregion =H(ϕ(y)) (I(y)-cx1)
2+(1-H(ϕ(y))) (I(y)-

cx2)
2 represents the region-based force, δ(ϕ) represents the Dirac function, x is a global point

within the image, and y is a local point within the local region of the circle centered at x. The
curvature flow for point x is defined as:

@�

@t
ðxÞ ¼ dð�ðxÞÞ

ð
Oy

Bðx; yÞdð�ðyÞÞ � ððIðyÞ � cx1Þ2 � ðIðyÞ � cx2Þ2Þdy þ mdivð r�ðxÞ
jr�ðxÞjÞ

" #
ð5Þ

In the localized version, the energy becomes minimized when every point on the curve has
moved such that the localized inside and outside become the best estimates of the averages of
cx1 and cx2 in local region.

2.1.2 GLCVmodel. The LCV model is effective in segmenting images with non-evenly
distributed intensity. However, due to its localized characteristics, the LCV model is sensitive
in defining an initial contour. On the other hand, the Geodesic Active Contour (GAC)[19]
model can easily capture image edge information and has the advantage of fast convergence.
An effective strategy would thus be the development of a new model with desirable features of
both LCV and GAC models. We call the new model the geodesic LCV (GLCV) model.

In regions with low contrast or nearly uniform distribution in ultrasound images, the force
values generated by LCV model are small, resulting in a slow curve evolution. Therefore, we
aim to increase the force based on the edge gradient information in these regions to accelerate
curve evolution. To accomplish this, we evaluate the uniformity of grey level distribution
around each image point on the evolution curve to decide how much weight to give the GAC
model when combining it with the LCV model. A characteristic function t(x) is designed to
measure the grey level uniformity around each point.

tðxÞ ¼ 1; jcx1 � cx2j < k1

0; otherwise:
ð6Þ

(

where cx1 and cx2 were defined in (2) and (3). When the absolute value of the difference be-
tween cx1 and cx2 is less than a threshold κ1, we consider the region surrounding point x to be
of low contrast and approximately uniform, and introduce the force based on GAC model’s
edge gradient information to accelerate curve evolution. The level set evolution equation of
GLCV model can be defined as:

@�

@t
ðxÞ ¼ dð�ðxÞÞ

ð
Oy

Bðx; yÞdð�ðyÞÞ � ððIðyÞ � cx1Þ2 � ðIðyÞ � cx2Þ2Þdy þ mdivð r�ðxÞ
jr�ðxÞjÞ

" #

þ tðxÞdð�ðxÞÞ gjr�ðxÞjdivð r�ðxÞ
jr�ðxÞjÞ þ rg � r�þ agjr�ðxÞj

� � ð7Þ

where the first and second items represent, respectively, local region fitting and geodesic flow
of edge detection, α is a constant, and g represents the edge detection function defined as: g = 1/
(1+|rGσ(x) I(x)|

2) with Gσ being the Gaussian kernel function with standard deviation σ.
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The GLCV model simultaneously makes use of both local regional information and edge in-
formation in regions with low contrast or nearly uniform distribution. Thus, this model helps
accelerate curve evolution and prevents boundary leakage. However, when the curve is near
the target edge, the value of t(x) is 0 and the LCV model dominates which segments the target
accurately.

2.2 Dynamic Modeling and Prediction
To model and predict the movement and deformation of the target tissue, a 3D tissue model is
developed. We first segment the spatial sequence of scanned ultrasound images of the target
tissue using the GLCV model. Then, we adopt a 3D regional growth reconstruction algorithm
[32] to reconstruct a 3D model of the target tissue.

In our study, the target tissue was placed in a water pool of the ultrasound-guided HIFU
equipment. We then applied a force to the target tissue using a rigid body while the ultra-
sound-guided HIFU equipment recorded time series of ultrasound images of the target tissue’s
one cross section under the external force. To model this process, a versatile particle framework
was created for the 3D model of the target tissue and its experimental environment to calculate
and predict its movement and deformation. Part of the ultrasound images of time series were
utilized to estimate the necessary parameters of the versatile particle framework, while another
part of ultrasound images of time series were used for the validation of the predicted contours
of the target tissue. The process of our method is illustrated in Fig 1.

Fig 1. Process of dynamicmodeling and prediction of target tissuemovement and deformation: The target tissue is placed in the water pool of the
ultrasound-guided HIFU equipment. First, we scan ultrasound images of spatial sequence of the target tissue and use the GLCVmodel to obtain the
segmentation results, and then reconstruct a 3Dmodel of the target tissue. Second, we apply the external force to the target tissue using a rigid body while
the ultrasound-guided HIFU equipment records time series of ultrasound images of the target tissue’s one cross section. The segmentation results are
manually segmented by an experienced doctor and as the ground truth which is divided into two parts: training set and validation set. Third, we propose a
versatile particle framework to model the movement and deformation of target tissue. Combined with the versatile particle framework, the external force and
other essential parameters are acquired through the iterative parameter estimation algorithm. By applying these parameters to the versatile particle
framework, we predict the target tissue’s subsequent movement and deformation, which is used to compare with the validation set to verify the effectiveness
of our method.

doi:10.1371/journal.pone.0127873.g001

Modeling and Predicting Tissue Movement and Deformation

PLOS ONE | DOI:10.1371/journal.pone.0127873 May 20, 2015 6 / 16



2.2.1 versatile particle framework. In this section, the versatile particle framework is de-
scribed for target tissue modeling, rigid body modeling, and fluid modeling and coupling.

SPH fluids: The Navier-Stokes equations [33] are used to describe fluidic motions where
the momentum equation used in the equations can be written in the form of Newton's second
law as follows:

r
dv
dt

¼ �rpþ mr2vþ f ð8Þ

where ρ is the fluid density, v is velocity, p is pressure, and μ is the viscosity coefficient. The
terms on the right side represent pressure, viscous force and external force.

We adopted the SPH [28] method to solve Navier-Stokes equations. The basic idea of the
SPH method is to describe a continuum for fluids or solids by using interactive particle groups.
According to SPH, a scalar quantity A(r) is interpolated at location r by a weighted sum of con-
tributions from all particles:

AðrÞ ¼
X

j

Aj

mj

rj

Wðr� rj; hÞ ð9Þ

whereW is smooth kernel function which can be the cubic spine polynomial, rj is the particles
within distance h from particle r, Aj represents the quantity of particle rj, andmj and ρj are, re-
spectively, mass and density. By replacing Aj with density, the density can be obtained as:

rðriÞ ¼
X

j

rj

mj

rj

Wðri � rj; hÞ ¼
X

j

mjWðri � rj; hÞ ð10Þ

Similarly, we can calculate the pressure of each particle by replacing Aj with pressure inten-
sity. To obtain a homogeneous symmetric pressure, we adopt the arithmetic mean of the pres-
sure intensities of particles r and rj as the particle’s pressure intensity:

f pressure
i

¼
X

j

mjðpi þ pjÞ
2rj

rWðri � rj; hÞ ð11Þ

where pi = K(ρi-ρ0), ρ0 represents the initial fluid density, and K is a constant related to the
fluid. The viscosity force is defined as:

f viscosityi ¼
X

j

mðvj � viÞ
mj

rj

r2Wðri � rj; hÞ ð12Þ

The initial external force for a single particle is the gravity. We can calculate the above force
using Newton’s second law to determine the acceleration and new position for each particle
within our system.

Elastic tissue: The elastic force generated by particle i is fi-elastic = -ruiU, where ui is parti-
cle’s displacement. Here the strain energy is U = ε�σ/2. We utilize stress-strain relationship: σ =
Cε, where C is a four-order tensor computed by the Young’s modulus E and Poisson’s ratio η.
The position is initialized to x, and the new position becomes x+u after the displacement of u.

The Jacobian of this mapping is given by J ¼ IþruT ¼ ½JT
1 JT

2 JT
3
�T. We compute strain

ε based on the quadratic Green-Saint-Venant strain tensor [34]:

ε ¼ JTJ� I ¼ ruþruT þruruT ð13Þ
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We compute derivativesru using a moving least squares approximation [34]. The elastic
force exerted on particle i is computed by the formula:

f i�elastic ¼ �2viJisið
X

j

xijx
T
ijwijÞ�1 �

X
j

xijwij

 !
ð14Þ

where vi represents the volume of particle i, vi =mi/ρi, and wij =W(kxj-xik, hi)is a
kernel function.

The volume inverting displacement field can also contribute to elastic deformation. Hence,
we present the volume conservation energy Uv = kv(kJk-1)2/2. The volume conservation force
is the negative gradient of the volume conservation energy:

f i�volume ¼ �ruiUv ¼ �kvðkJk � 1ÞruikJk ð15Þ

After discretizing by SPH, the volume conservation force [26] becomes:

f i�volume ¼ �vikvðkJk�1Þ
X

j

xijx
T
ijwij

 !�1

�
X

j

xijwij

 ! ðJ2 � J3ÞT

ðJ3 � J1ÞT

ðJ1 � J2ÞT

2
664

3
775 ð16Þ

Elastic tissue has the rheological properties such as stress relaxation, creep, hysteresis, etc.
Therefore, we introduce viscosity forces as described in the Navier-Stokes equations when
generating a particle-based elastic tissue model to describe its rheological properties. The

viscosity forces between elastic tissue particles are computed by Eq (12). Here mj$i ¼
b1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�cos2y

p kvi � vjk=kri � rjkÞb2 defines the viscosity coefficient [35], where β1 and β2 are
variables associated with the rheological body, and θ is the angle between vi-vj and ri-rj.

Rigid body: The types of motion that a rigid body can adopt include translation and rota-
tion. The external forces of rigid body particles include gravity and the coupling forces between

fluids and solids. The resultant force of a rigid body is Ftotal
rigid ¼

Xnr

i¼1
f i, where nr represents the

number of rigid body particles and fi is the external force of rigid body particle i. The rigid
body rotates according to

ttotalrigid ¼
Xnr
i¼1

ðxi � xrÞ � f i: ð17Þ

Multiphase coupling: During the coupling process, particles of fluid, elastic tissue, and
rigid body interact with each other. Particles are influenced by a coupling force, which impedes
their movement. Taking elastic tissue particle models and fluid particle models as examples
[26], we can calculate the coupling force ff$e by

f f$e ¼ �KcmfmerW ð18Þ

where Kc is the coupling coefficient,mf andme are, respectively, the masses of bodily fluid par-
ticles and elastic tissue particles, andW is the kernel which can be the cubic spine polynomial.
We adopt the principle of momentum conservation to calculate the collision response

mfvf�next ¼ mfvf � f f$e � Dt ð19Þ

meve�next ¼ meve � f f$e � Dt ð20Þ

where vf-next and ve-next are, respectively, the velocities of fluid particles and soft tissue particles.
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2.2.2 Iterative parameter estimation. To model the movement and deformation of target
tissue, it is necessary to acquire the essential parameters of the versatile particle framework (ex-
ternal force, Young modulus, Poisson’s ratio, etc.) of the versatile particle framework. The ex-
ternal force as well as the other essential parameters is scarcely measurable in the experiment.
Obviously, it is inapplicable to use the traditional method to predict the target tissue’s motion,
which requires all priori essential parameters.

We have acquired the ultrasound images of time series of the mechanical movement and de-
formation of the target tissue at one cross section under the external force. We utilize part of the
time series of ultrasound images and adopt their ground truth contours as the training set and
propose an iterative parameter estimation method to acquire the essential parameters of the ver-
satile particle framework, making our method applicable without the priori essential parameters.

As the target tissue’s motion is relatively small and slow and the deformation time is rela-
tively short, we assume the external forces as the average external force. Assuming that the esti-
mated parameter set is K. For the training data, the particles’movement and deformation set
(measured as displacement) around the force bearing particle is Dt at time t, t = 1, 2, . . ., n. As-
suming that the set of contour points utilized to estimate K at time t is A, and A = (a1, a2,. . .,
at). We set the following rules:

1. At time t, calculating D̂t based on the estimated parameter K̂ t�1. Assuming that St is the
sum of the absolute value of the difference between D̂t and Dt for all elements in A. T is defined
as the threshold. Accepting K̂ t�1 if Si�T at time i(i = 1,2,. . .,t), that means K̂ t ¼ K̂ t�1.

2. If there exists Si>T for ai(ai2A), making adjustments to K̂ t�1 until there exists Si�T for all
the elements ai in A.

The iterative parameter estimation algorithm is described in Table 1.
The advantages of the iterative parameter estimation algorithm are:

1. At time t = 1, adjustment to K1 subject to S1�T/2 helps reduce the time of adjustments of

K̂ t�1 for t>1.
2. The algorithm estimates parameter set K by using the step iterative method. It is easy to

make adjustments to K̂ t�1 if the number of elements in A is small.
3. The amount of calculation is relatively small.

Results
The experimental platform includes: (1) hardware: Intel Xeon E3-1230 CPU, 3.30GHz, 2GB
memory, Geforce GTX 650Ti; (2) software: Visual Studio 2010, Matlab R2011a, Visual Studio
2012, OpenGL.

3.1 HIFU Ultrasound Image Segmentation Results
We tested the proposed GLCV model on HIFU ultrasound images of the target tissue and com-
pared our GLCV based method with other well-known methods in segmenting HIFU

Table 1. Iterative Parameter Estimation Algorithm.

Step 1: At time t = 1, initializing K̂ 1 which makes S1�T/2.

Step 2: At time t = t+1, calculating the movement and deformation based on parameter set K̂ t�1. Assign
K̂ t ¼ K̂ t�1 if it conforms to the rule (1). Otherwise, making adjustments according to rule (2) and obtaining
K̂ t.

Step 3: Repeating step 2 until K̂ n satisfies St�T, t = 1,2,. . ., n. Then K̂ n is the parameter set.

doi:10.1371/journal.pone.0127873.t001
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ultrasound images of the target tissue, including GAC [19], CV [20], LCV [22], RSF [23] and
MSLCV [24]. Fig 2 presents the experimental results.

To quantitatively compare the segmentation results of the six methods, we computed the
Dice Similarity Coefficient (DSC)[36], Mean Sum of Square Distance (MSSD) [37] and Haus-
dorff distance [37] with respect to the ground truth. The closer the value of the DSC is to 1, the
better the segmentation result. Likewise, the closer the values of the MSSD and Hausdorff dis-
tance are to 0, the better the segmentation result. Table 2 shows the values of DSC, MSSD and
Hausdorff distance of the six methods depicted in Fig 2. The bold numbers in each row of
Table 2 label the best results. It can be observed that the GLCV gains 8 best results, more than
gained by GAC, CV, LCV, RSF or MSLCV. Moreover, except for GLCV’s 8 best results, the re-
maining results of GLCV are almost the second best. The result in Table 2 implies that the
GLCV model obtains more accurate and more stable performance than other five methods.
Fig 3 shows the comparison of values of DSC, MSSD and Hausdroff distance. Again, the per-
formance of the GLCV over other methods can be observed clearly.

3.2 Modeling, Prediction and Validation Results
Based on the versatile particle framework, we established particle models representing target
tissue, fluids, and rigid body and adopted the multiphase coupling method to compute the cou-
pling between them. To experimentally validate our method, we applied it to the target tissue,

Fig 2. Comparison of the GLCV and five other methods by applying them to segment six HIFU ultrasound images. The first column shows the original
images and the initial contours. For images A and B, the initial contour is an ellipse, and for images C, D, E and F, the initial contours are defined by 5–7
connecting points. Columns 2 to 7 show, respectively, the segmentation results for GAC [19], CV [20], LCV [22], RSF [23], MSLCV [24] and GLCV. The green
curves are manual segmentation results by an experienced doctor as the ground truth, and the red curves are the final segmentation contours from
these methods.

doi:10.1371/journal.pone.0127873.g002
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which allowed us to both train our parameters and verify our experimental results based on
both contour and DSC values.

The ultrasound-guided HIFU equipment was used in our experiment to record time series
of ultrasound images with mechanical movement and deformation. A single cross section of
the target tissue was recorded while an external force was applied. Starting from the 20th frame,
18 HIFU ultrasound images of the selected cross section in every other 10 frames were used as
the ground truth images, which were segmented manually by an experienced physician to

Table 2. Comparison of DSC [36], MSSD [37] and Hausdroff distance [37] by utilizing GAC [19], CV [20], LCV [22], RSF [23], MSLCV [24] and GLCV
methods for HIFU ultrasound images segmentation.

Images Standard GAC CV LCV RSF MSLCV GLCV

A DSC 0.898 0.936 0.944 0.899 0.962 0.954

MSSD 243.63 116.00 78.01 1844.01 32.94 46.89

Hausdorff 39.21 36.07 28.16 95.53 19.65 18.00

B DSC 0.944 0.953 0.958 0.926 0.972 0.958

MSSD 72.56 58.71 48.59 1336.96 19.11 46.71

Hausdorff 19.80 24.52 25.96 99.30 12.81 25.00

C DSC 0.948 0.894 0.925 0.879 0.902 0.946

MSSD 58.91 277.26 170.15 1435.74 316.91 64.27

Hausdorff 16.12 41.00 33.54 109.57 42.00 16.03

D DSC 0.943 0.883 0.926 0.892 0.887 0.947

MSSD 77.09 343.19 199.63 1731.64 365.05 70.09

Hausdorff 25.55 50.00 44.00 107.33 48.00 18.39

E DSC 0.956 0.878 0.919 0.892 0.885 0.959

MSSD 33.75 322.24 130.28 1018.78 395.61 33.77

Hausdorff 14.14 51.09 31.62 80.28 58.73 15.23

F DSC 0.944 0.902 0.924 0.904 0.928 0.948

MSSD 72.56 174.67 113.09 1225.40 96.82 58.75

Hausdorff 25.94 42.01 25.94 96.38 22.09 24.04

The bold numbers in each row label the best results. It can be observed that GLCV has gained 8 best results, which is more than GAC, CV, LCV, RSF

and MSLCV. Moreover, except for GLCV’s 8 best results, the remaining results of GLCV are almost the second best results. The results imply that GLCV

model obtains more accurate and more stable performance than other five methods.

doi:10.1371/journal.pone.0127873.t002

Fig 3. Comparisons of computed DSC [36], MSSD [37] and Hausdroff distance [37] utilizing GAC [19], CV [20], LCV [22], RSF [23], MSLCV [24] and
GLCVmethods for segmentation of HIFU ultrasound images. The red lines are the performance line of GLCV, indicating the GLCVmethod achieves the
best segmentation performance.

doi:10.1371/journal.pone.0127873.g003
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obtain ground truth contours. We utilized 1st~9th ground truth contours as the training set,
and the 10th~18th ground truth contours as the validation set. Using the versatile particle
framework, we modeled the environment surrounding the target tissue. Starting from the 20th

time steps, we output the calculation contours every other 10 time steps. We adopted the itera-
tive parameter estimation algorithm in Table 1 to estimate the essential parameters of the ver-
satile particle framework by fitting our 1st~9th output contours within the deviation compared
with that of the 1st~9th ground truth contours. In the experiment, the particle number of target
tissue, fluids and rigid body were, respectively 4399, 3344 and 120. The acquired essential pa-
rameters of the versatile particle framework are shown in Table 3. We adopted the DSC values
as the comparison standard to evaluate the calculation accuracy. The DSC was selected because
it is a relative value indicating the closeness of prediction between 0 (worst) and 1 (best). The
DSC values of the training set and validation set are shown in Table 4. It can be seen that the
acquired essential parameters can well fit the training set and the prediction results are very
close to the validation set.

The ground truth contours (green) and predicted contour (red) are shown in Fig 4, which il-
lustrates the predicted contours are very close to the ground truth contours. Meanwhile, the
lowest, highest and average DSC values of predicted contours and the ground truth contours
are respectively 0.9615, 0.9770 and 0.9697, which suggests that our method can effectively pre-
dict the dynamic contours of the target tissue as it moves and deforms during ultrasound-guid-
ed HIFU therapy.

Discussion
Our method can predict the movement and deformation of the target tissue by analyzing the
recorded images of dynamic changes in response to external forces. It provides the opportunity
to adjust in a timely manner the focal region of ultrasound-guided HIFU equipment, allowing
the HIFU treatment head to remain aligned with the tumorigenic tissue throughout the course
of therapy. Compared with the Kalman filtering method [38], which also can be used as

Table 3. Essential Parameters of the Versatile Particle Framework.

Parameters Value Unit

Young modulus E 13 KPa

Poisson’s ratio η 0.47 -

Smooth length h 2×10-5 m

Elastic tissue Particle’s mass m 3×10-5 kg

External Force F 2.5×10-1 N

β1 1 -

Β2 0.5 -

doi:10.1371/journal.pone.0127873.t003

Table 4. DSC Values of Training Set and Validation Set.

Training set (frame number) 20th 30th 40th 50th 60th 70th 80th 90th 100th average

DSC 0.9654 0.9590 0.9662 0.9683 0.9725 0.9712 0.9752 0.9634 0.9711 0.9680

Validation set (frame number) 110th 120th 130th 140th 150th 160th 170th 180th 190th average

DSC 0.9752 0.9634 0.9770 0.9711 0.9752 0.9634 0.9770 0.9639 0.9615 0.9697

The experimental results indicates the acquired essential parameters can well fit the training set and the prediction results is very close to the

validation set.

doi:10.1371/journal.pone.0127873.t004
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moving object’s detection and can quickly obtain the moving object’s approximate positional
information represented by a tracking window indicating the object’s position, our method can
obtain the accurate contour (red curve in Fig 4) of the target tissue rather than an approximate
tracking window, which is essential for the adjustment of the HIFU treatment head.

However, there exist challenges and limitations. First, while the proposed GLCVmethod
can accurately segment a single target tissue, it is still difficult to segment target tissue’s HIFU
ultrasound images which are extremely non-homogeneous as the characteristic function t(x)
cannot measure the grey level uniformity around each point perfectly. Second, the GLCV
model inherits the drawback of the LCV model that the contour evolution process increases
the amount of calculation. The average time for segmenting a HIFU ultrasound image is 15.1
seconds. However, segmentation by GLCV is still faster than manually segmenting the HIFU
ultrasound images and some segmentation task can be accomplished in pre-computing process
before prediction. Third, the performance of the proposed versatile particle framework de-
pends on the number of particles. If the number is too large, the real-time capability of the
model is affected. In our experiment, we achieved a frame rate of 11.5 frames/sec which is close
to real-time computation. For more complex scenarios with a large number of particles, it
could be a challenge to obtain real-time prediction results.

Despite these limitations, this paper has proposed a new method to segment HIFU ultra-
sound images instead of manually segmenting and predicting the movement and deformation
of target tissue during ultrasound-guided HIFU therapy to make adjustment to the HIFU treat-
ment head, and the correctness of our method has been validated by the experimental results.

The implementation of our method in vivo is similar to the implementation process shown
in Fig 1. After the motion of target tissue starts, it should be monitored in real-time.

Fig 4. Comparison of ground truth contours (green contour) with the corresponding predicted contours (red contour). The figures are from the
validation set. The results illustrate that the predicted contours are very close to the ground truth contours, indicating the effectiveness of our method.

doi:10.1371/journal.pone.0127873.g004
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Meanwhile, acquiring essential parameters and predicting target tissue’s motion should be car-
ried out consecutively and repetitively. The GLCV based segmentation method can be used di-
rectly in HIFU therapy for the segmentation of tumors. However, in vivo, the motion of target
tissue is more complex than that in our experiments. To implement our tissue motion predic-
tion method in vivo, in our future work we will study more complex forms of external forces
and accelerate the computation to enhance real-time performance with a high prediction
accuracy.

Conclusions
We have presented a novel method to model and predict target tissue movement and deforma-
tion during ultrasound-guided HIFU therapy. We first proposed the GLCV model, which uti-
lizes edge information and adopts a localized active contour model to segment HIFU images
effectively. The segmentation results are then used to reconstruct a 3D model of the target tis-
sue. To predict the movement and deformation that the target tissue undergoes when exposed
to the external force, we propose a versatile particle framework to compute multiphase cou-
pling among target tissue, rigid body and fluids. After estimating essential parameters of the
versatile particle framework using the iterative parameter estimation algorithm, we utilize
these parameters in the versatile particle framework to predict the movement and deformation
of the target tissue. Our experimental results show that the lowest, highest and average DSC
values of predicted contours and the ground truth contours are 0.9615, 0.9770 and 0.9697, re-
spectively. Our experimental results also suggest that our method can predict the movement
and deformation of target tissue effectively.
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