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Abstract

Background: Pulmonary arterial hypertension (PAH) is a rare and progressive vascular disorder characterized by increased
pulmonary vascular resistance and right heart failure. The aim of this study was to analyze the Bone Morphogenetic Protein
Receptor 2 (BMPR2), Activin A type II receptor like kinase 1 (ALK1/ACVRL1) and potassium voltage-gated channel,
shakerrelated subfamily, member 5 (KCNA5) genes in patients with idiopathic and associated PAH. Correlation among
pathogenic mutations and clinical and functional parameters was further analyzed.

Methods and Results: Forty one patients and fifty controls were included in this study. Analysis of BMPR2, ACVRL1 and
KCNA5 genes was performed by polymerase chain reaction (PCR) and direct sequencing. Fifty one nucleotide changes were
detected in these genes in 40 of the 41 patients; only 22 of these changes, which were classified as pathogenic, have been
detected in 21 patients (51.2%). Ten patients (62.5%) with idiopathic PAH and 10 (40%) with associated PAH showed
pathogenic mutations in some of the three genes. Several clinical and hemodynamics parameters showed significant
differences between carriers and non-carriers of mutations, being more severe in carriers: mean pulmonary artery pressure
(p = 0.043), pulmonary vascular resistence (p = 0.043), cardiac index (p = 0.04) and 6 minute walking test (p = 0.02). This
differences remained unchanged after adjusting for PAH type (idiopathic vs non idiopathic).

Conclusions: Pathogenic mutations in BMPR2 gene are frequent in patients with idiopathic and associated PAH group I.
Mutations in ACVRL1 and KCNA5 are less frequent. The presence of these mutations seems to increase the severity of the
disease.
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Introduction

Pulmonary arterial hypertension (PAH; OMIM #178600) is a

rare and progressive disorder characterized by obstruction of pre-

capillary pulmonary arteries [1]. It is defined by a sustained

increase in mean pulmonary artery pressure (mPaP) $25 mmHg

at rest with normal wedge pressure [2]. Symptoms of PAH include

dyspnea, syncope and chest pain, and eventually leads to right-

sided heart failure and death [1]. Structural and functional

changes in the vascular wall and thrombus formation are the main

factors responsible for the increased pulmonary vascular resistance

in these patients [3].

PAH can be inherited (FPAH), idiopathic (IPAH), or associated

with other diseases, drug or toxin exposures (APAH) [4]. The

disease is more frequent in women, with a ratio of at least 1.7:1

women to men [2]. Much of what is known about the genetic basis

of PAH is related to mutations in bone morphogenetic protein

receptor type 2 (BMPR2). This gene is located on chromosome

2q33 and mutations have been identified in over 80% of patients

with FPAH, but are likely to be responsible for over 90% of the

cases. However, only 20% of carriers developed the disease [5,6].

The frequency of mutations in BMPR2 gene is not well defined in

IPAH, but it has been reported a value of 9–26% in small cohorts

of patients [6,7,8].

Some other genes have been implicated in the pathogenesis of

the disease, including Activin A type II receptor like kinase 1

(ALK1/ACVRL1) and potassium voltage-gated channel, shakerre-

lated subfamily, member 5 (KCNA5). Mutations in ACVRL1 gene,

located in chromosome 12q13, are directly related to some cases of

PAH associated with hereditary hemorrhagic telangiectasia (HHT)

[9]. This receptor is also a member of the transforming growth

factor beta (TGF-b) superfamily and plays a role in different tissues

producing different responses, including proliferation, differentia-

tion, migration, increase of cell survival and angiogenesis. ACVRL1

is expressed mainly in the developing vascular system and plays a

critical role in arteriogenesis and developing arterial endothelial
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cells [10,11]. KCNA5 protein is situated in the cellular intermem-

brane space and is composed by four subunits. The KCNA5 gene is

located on chromosome 12p13 and is formed by a single exon of

2865 bp and 613 residues. Indeed, mutations in the exon or in the

promoter region of KCNA5 gene have been reported to be

associated with IPAH and may underline the altered function and

expression of voltage-gated K+ channel 1.5 (Kv1.5) observed in

pulmonary arteriolar smooth muscle cells (PASMC) from these

patients [12,13].

The aim of this study was to analyze BMPR2, ACVRL1 and

KCNA5 genes in patients with idiopathic and associated PAH,

characterize the changes found and correlate them with clinical

and hemodynamic variables.

Materials and Methods

Patients and samples
Patients with idiopathic or associated PAH (group 1 of Dana

Point) followed in our clinic of PAH were included in this study.

Cardiac catheterization was performed using the latest consensus

diagnostic criteria of the ERS-ESC (European Respiratory

Society-European Society of Cardiology) (mean resting pulmonary

pressure $25 mmHg, capillary pressure ,15 mmHg) in all cases,

[14]. PAH was considered idiopathic after exclusion of any of the

possible causes associated with the disease. Clinical history

included use of drugs, especially appetite suppressants, and

screening for connective tissue diseases and hepatic disease. The

study included serology for HIV, autoimmunity, thoracic CT scan

and echocardiography. Patients with PAH that could be related to

chronic lung disease were excluded. Fifty healthy individuals were

used as controls. All patients and controls signed an informed

consent. The Autonomic Ethics Committee approved the study

(Comité Autonómico de Ética da Investigación de Galicia - CAEI de Galicia).

Genomic DNA was extracted from leukocytes isolated from

venous blood using the FlexiGene DNA Kit (Qiagen, Germany)

according to the manufacturer’s protocol.

Genomic study
Amplification of the exons and intronic junctions of the genes

was performed with 50 ng of genomic DNA from each individual.

Changes in other regions were not analyzed. The primers used for

the BMPR2 gene were as described by Deng et al [15]. The

amplification conditions were as follows: 95uC for 5 min, 35 cycles

of 95uC for 30 s, 55uC for 30 s (for the exons 1, 3, 5, 6, 7, 8, 9, 10,

11 and 13) and 60uC for 30 s (for the exons 2 and 12), 72uC for

30 s and, finally, 72uC for 7 min. The PCR mix contained

1.5 mM Cl2 Mg, with 0.2 U of Taq Polymerase (Biotaq, Bioline,

UK).

The exons and intronic junctions of the ACVRL1 gene were

amplified using the conditions of 95uC for 1 min followed by 35

cycles of 95uC for 30 s, 55uC for 30 s (for the exons 5, 7, 8, 9 and

10), 56uC for 30 s (for the exon 4), 60uC for 30 s (for the exon 6),

62uC for 30 s (for the exon 2) and 64uC for the exon 3), 72uC for

30 s and, finally, 72uC for 7 min. The primers used to amplify this

gene were described by Berg et al [16].

The single exon and intronic junctions of the KCNA5 gene was

amplified for the 4 validated amplicons spanning the coding

sequence of KCNA5 gene. The primers used were described by

Tao Yang et al [17]. The amplification conditions were 95uC for

30 s, followed by 35 cycles of 95uC for 30 s, 66uC for 30 s, 72uC
for 30 s and, finally, 72uC for 7 min.

PCR products were confirmed by electrophoresis on a 2%

agarose gel containing ethidium bromide. PCR fragments were

purified using the Nucleic Acid and Protein Purification kit

(NucleoSpin Extract II; Macherey-Nagel, Germany) and se-

quenced with the BigDye Terminator version 1.1 Cycle Sequenc-

ing Kit (Applied Biosystems, California, USA). The reactions were

performed on a GeneAmp PCR System 2700 (Applied Biosys-

tems). The sequencing reactions were precipitated and finally

analyzed on an ABI PRISM 3100 genetic analyzer (Applied

Biosystems).

Sequence data was aligned to reference Ensembl cDNA

sequence ENST00000374580 for BMPR2 gene,

ENST00000388922 for ACVRL1 gene and ENST00000252321

for the KCNA5 gene and examined for sequence variations.

Detected mutations were confirmed by a second independent

PCR reaction and were identified in both forward and reverse

strands. To predict whether a rare missense variant was

deleterious, we used the combined results of three different

computer algorithms:

– The polymorphism phenotyping program, PolyPhen-2 (avail-

able at http://genetics.bwh.harvard.edu/pph/) uses sequence

conservation, structure and SWISS-PROT annotation to

characterize an amino acid substitution as benign, possibly

damaging or probably damaging [18].

– Pmut (available at http://mmb2.pcb.ub.es:8080/PMut/) pro-

vides prediction by neural networks, which use internal

databases, secondary structure prediction and sequence

conservation. This program provides a binary prediction of

‘‘neutral’’ or ‘‘pathologic’’ [19].

– Sort Intolerant from Tolerant (SIFT) (available at http://sift.

jcvi.org) uses sequence homology to predict whether a change

is tolerated or damaging [20].

Intronic, isocoding and missense changes were analyzed using

the programs NNSplice (http://fruitfly.org:9005/seq_tools/splice.

html), NetGene2 (http://www.cbs.dtu.dk/services/NetGene2/),

Splice View (http://zeus2.itb.cnr.it/,webgene/wwwspliceview_ex.

html) and HSF Human (http://www.umd.be/HSF/) in order to

predict whether those changes could be affecting, creating or

eliminating donor/acceptor splice sites.

Statistical analysis
Values are expressed as mean6SD (standard deviation). A non-

parametric test was used for comparisons between patients and

controls. Chi-square test was used to compare genotype with

clinical and hemodynamic variables. These correlations were

analyzed by the Spearman test. Values ,0.05 were considered

statistically significant. Analysis was carried out using the statistical

package SPSS v19.

Results

Description of the cohort
Forty one unrelated PAH patients (16 idiopathic, 17 associated

to connective tissue disease, 4 related to HIV and 4 porto-

pulmonary) and fifty healthy controls without familial history of

PAH were included. At the time of diagnosis 3 patients were in

functional class (FC) I, 14 patients in FC II, 21 patients in FC III

and 3 in FC IV. The clinical features of patients are showed in

Table 1.

Mutations in BMPR2, ACVRL1 and KCNA5 genes
A total of 53 nucleotide changes in the BMPR2, ACVRL1 and

KCNA5 genes were identified in 40 out of 41 patients. We found 30

changes in 33 patients in BMPR2 gene, 11 variations in 24 patients

Mutations in Related Genes in PAH
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in ACVRL1 gene, and 12 changes in 15 patients in the case of

KCNA5 gene.

Thirty-one variations (60.8%) were located in coding regions.

Missense variations accounted for 39.6% of total changes found in

coding regions; nonsense variations only represented 5.7% and

synonymous changes a 13%. The 26.4% of changes were located

in intronic regions (two of them were heterozygous deletions) and a

9.4% in UTR regions of these genes. (Figure 1).

The three different computer algorithms used to classify the

nucleotide changes showed different results. A missense mutation

was considered pathogenic when at least two of the three programs

(PolyPhen-2, Pmut and SIFT) classified it as pathogenic. These

changes are summarized in Table 2. None of these mutations were

detected in a panel of 100 chromosomes from controls.

Furthermore, we used four programs to predict whether these

changes could affect donor/acceptor splice sites. We consider a

mutation as potentially pathogenic when the pathogenic score was

equal or greater than 2 (Tables 3, 4, 5).

After the combination of all software, we found 22 pathological

mutations in 21 patients, with a frequency of 51%. Most of the

mutations were found in BMPR2 gene (41.5%), followed by

KCNA5 (7.3%) and, finally, ACVRL1 (4.9%). These results are

shown in Figure 2. IPAH patients were carriers of BMPR2

mutations in 8 cases (50%), two cases for KCNA5 gene (12.5%) and

2 cases for ACVRL1 gene (12.5%) (Figure 2). The 62.5% of patients

(10patients) with IPAH had at least one pathogenic mutation in

some of these genes. On the other hand, 44% (11 patients) of

APAH patients showed pathogenic mutations (36% in BMPR2

gene, 4% in ACVRL1 gene and 4% in KCNA5 gene).

In our cohort of patients we found 5 patients with more than

one pathogenic mutation in BMPR2 or in combination with

KCNA5 or ACVRL1 genes (Table 6). All of these mutations are

described for first time in this study, except c.529+37C.G.

Association with clinical features and hemodynamic
parameters

We analyzed clinical features and hemodynamic parameters

comparing the group of patients harboring a pathogenic mutation

with those patients with no mutation. The parameters included

were: gender, age at diagnosis, mPaP (mean pulmonary pressure),

Table 1. Clinical features and hemodynamic parameters of patients.

Carriers of mutations Non-carriers of mutations p-value Idiopathic PAH Associated PAH p-value

Number 20 21 16 25

Gender 10 F/10 M 10 F/11 M 0.216 8 F/8 M 13 F/12 M 0.552

Age at diagnosis (years) 53615 51616 0.437 52621 53612 0.552

mPaP (mmHg) 57615 45614 0.043 52616 47613 0.510

sPaP (mmHg) 69622 73619 0.448 74620 70621 0.490

PVR (mmHg.l21.m21) 11.9263.18 8.5364.46 0.043 9.9664.68 7.2162.8 0.222

CI (l.m21.m22) 2.0560.68 3.7560.44 0.040 2.660.74 2.5460.45 0.346

6MWT (m) 3146130 4286103 0.020 3706136 3746127 0.308

PAH types 10 IPAH/10 APAH 6 IPAH/15 APAH 0,222 16 patients 25 patients 0,222

Values are expressed as mean 6 standard deviation; F: female, M: male; mPaP: mean pulmonary artery pressure; sPaP: systolic pulmonary artery pressure; PVR:
pulmonary vascular resistence; CI: cardiac index; 6MWT: 6 minute walking test; IPAH: idiopathic pulmonary arterial hypertension; APAH: associated pulmonary arterial
hypertension.
doi:10.1371/journal.pone.0100261.t001

Figure 1. Total percentage of nucleotide changes found in this study for the analyzed genes. The variations that appear in greater
proportion are missense, followed by those located in the intronic region.
doi:10.1371/journal.pone.0100261.g001
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Table 3. Results from four different bioinformatic programs used to predict the effect on the splicing process in BMPR2 gene
(NNSplice, NetGene2, Splice View and HSF Human).

Sequence variants NNSplice NetGene2 Splice View HSF Human Score

c.1-301G.A The WT consensus
sequence
is not recognized

Score for the aceptor site
increases from 25 to 26

The WT consensus
sequence
is not recognized

Neutral 1

c.190A.C (p.(S64G)) Neutral The WT consensus sequence
is not recognized

A new donor site
is created

Score for donor and
acceptor site decreases

2

c.229A.T (p.(I77L)) The WT consensus
sequence
is not recognized

Score for the main donor site
increases from 31 to 34

Neutral A new acceptor site
is created

2

c.251G.T (p.(C84F)) Score for the aceptor site
increases from 87 to 89

Score for the main acceptor site
decreases from 33 to 27

Neutral The main donor site
is not recognized

3

c.259C.T (p.(H87Y)) Score for the aceptor site
decreases from 87 to 86

Score for the main acceptor site
decreases from 33 to 30

Neutral The main donor site is not
recognized and the
acceptor increase

3

c.275A.T (p.(Q92L)) Neutral Score for the main acceptor site
decreases from 33 to 25

Neutral Score for donor and acceptor
site increases

2

c.327G.C (p.(Q109Q)) Neutral Score for the main donor site
decreases from 79 to 76

Neutral The main donor site is
not recognized

2

c.419-43delT Neutral Neutral Neutral Neutral 0

c.484G.C (p.(A162P)) Score for the aceptor site
decreases from 80 to 66

Neutral Neutral The main donor site is not
recognized

2

c.529+37C.G A new acceptor site
is created

Neutral Neutral A new acceptor site is created 2

c.529+53A.G Neutral Neutral Neutral A new acceptor site is created 1

c.529+139A.T Neutral Neutral Neutral Score for donor site decreases
and the acceptor site increase

1

c.530-24G.T Neutral Score for the main donor site
increases from 83 to 86 and the
main acceptor site increases
from 77 to 82

Neutral The donor and acceptor sites
is not recognized

2

c.622+103C.G Neutral Neutral Neutral The main donor site is not
recognized

1

c.633A.G (p.(R211R)) Neutral Score for the main donor site
increases from 92 to 94

Neutral The main donor site is not
recognized and the acceptor
decrease

2

c.637C.A (p.(R213R)) Neutral Score for the main acceptor site
decreases from 20 to 18

Neutral Score for donor site increases
and a new acceptor site is created

2

c.654T.A (p.(Y218*)) Neutral Score for the main donor site
increases from 92 to 94 and
the main acceptor site
decreases from 20 to 18

Neutral Score for the main acceptor
site decrease

2

c.790G.A (p.(D264N)) Neutral Score for the main donor site
decreases from 94 to 92

Neutral The main donor site is not
recognized

2

c.835G.T (p.(V278V)) Neutral Neutral Neutral Score for donor site decreases
and the acceptor site increase

1

c.853-22T.C Neutral Score for the main donor site
decreases from 87 to 86

Neutral Neutral 1

c.968+117G.A BMPR2 Neutral Neutral Neutral The donor and acceptor sites
is not recognized

1

c.968-124_968-122delTCT Neutral Neutral Neutral Neutral 0

c.893G.A (p.(W298*)) Neutral Score for the main donor and
acceptor site decreases

The WT consensus
sequence
is not recognized

The main donor site increase and
a new acceptor site in created

2

c.981T.C (p.(P327P)) The WT consensus
sequence
is not recognized

Score for the main donor site
decreases from 100 to 99

Neutral A new donor site is created 2

c.1021G.A (p.(V341M)) Neutral Neutral The WT consensus
sequence is
not recognized

The main donor site is not
recognized

2

c.1414-84C.T Neutral Neutral Neutral Score for the main acceptor site
increases

1
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sPaP (systolic pulmonary pressure), PVR (pulmonary vascular

resistence), CI (cardiac index), 6MWT (6 minute walking test) and

type of PAH (IPAH vs APAH). Variables were categorized

according to the best cut off point by ROC curve.

The association of genotype with clinical and hemodynamics

parameters showed statistically significant differences in mPaP

(p = 0.043) and PVR (p = 0.043). Patients carrying a mutation had

a higher value for these two parameters than non-carriers. In

opposition, patients carrying a mutation had a significantly lower

CI (p = 0.04) and 6MWT (p = 0.02). These results are shown in

table 1. We did not found significant differences between gender

for the presence of mutations (p = 0.216), mean age of onset of first

symptoms (p = 0.437) and sPaP (p = 0.448). Pathological mutations

were seen in 10 patients with IPAH and 10 patients with

associated PAH without statistical differences (p = 0,222). Clinical

and hemodynamic parameters did not show any significant

difference between associated and idiopathic PAH.

The mean follow-up period was 14 months. Three patients died

during this time (2 APAH, 1 IPAH), so it was not possible to

compare groups. Two of the three deceased patients present two

pathogenic mutations in BMPR2 gene. The other patient was

carrier of a pathogenic mutation, (p.(A162P)) in BMPR2 gene and

showed several polymorphisms in ACVRL1 (c.1047+31C.A,

c.1186A.G (p.(T396A)), c.1502+7A.G) and KCNA5 (c.1842+
508A.T) genes.

Table 3. Cont.

Sequence variants NNSplice NetGene2 Splice View HSF Human Score

c.1467G.A (p.(E489E)) Neutral Score for the main donor site
increases from 89 to 93

Neutral A new acceptor site is created 2

c.2034G.A (p.(K678K)) Neutral Neutral Neutral The main donor site is not
recognized

1

c.2324G.A (p.(S775N)) Neutral Neutral Neutral The main donor site is not
recognized

1

c.2811G.A (p.(R937R)) Neutral Neutral Neutral The main donor site is not
recognized

1

These results are considered positive if the score is equal or greater than two.
doi:10.1371/journal.pone.0100261.t003

Table 4. Results from four different bioinformatic programs used to predict the effect on the splicing process in ACVRL1 gene
(NNSplice, NetGene2, Splice View and HSF Human).

Sequence variants NNSplice NetGene2 Splice View HSF Human Score

c.24A.T (p.(K8N)) Score for the main
acceptor site increases
from 66 to 76

Neutral Neutral The main donor and acceptor sites
are not recognized

2

c.176A.T (p.(E59V)) Neutral Neutral Neutral The main donor site is not recognized
and a new acceptor site is created

0

c.313+11C.T Neutral Neutral Neutral Score for acceptor site decreases 1

c.313+20C.A Neutral Neutral Neutral Score for acceptor site increase 1

c.476A.T (p.(E159V)) The WT consensus
sequence
is not recognized

The WT consensus
sequence
is not recognized

Neutral The main donor site is not recognized
and acceptor site increase

0

c.478delT (p.(S160Pfs*5)) Neutral Neutral Neutral The main donor site is not recognized 1

c.673A.T (p.(S225C)) Score for the main donor
site
increases from 95 to 99

Score for the main donor
site
increases from 39 to 55

The WT consensus
sequence
is not recognized

The main donor site is not recognized
and a new acceptor site is created

2

c.1047+31C.A ACVRL1 The WT consensus
sequence
is not recognized

The WT consensus
sequence
is not recognized

Neutral The main donor site is not recognized 1

c.1186A.G (p.(T396A)) The WT consensus
sequence
is not recognized

Neutral Neutral Score for the main donor site increases 0

c.1246+41G.C The WT consensus
sequence
is not recognized

Neutral Neutral The main acceptor site is not recognized 0

c.1502+7A.G Neutral Score for the main donor
site
decreases from 83 to 70

The WT consensus
sequence
is not recognized

Neutral 1

These results are considered positive if the score is equal or greater than two.
doi:10.1371/journal.pone.0100261.t004
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Discussion

This study was designed to establish the prevalence of mutations

found in certain genes potentially involved in the pathogenesis of

PAH. We detected 53 different nucleotide changes in BMPR2,

ACVRL1 and KCNA5 genes in 40 out of 41 PAH patients. Twenty

two of these mutations (found in 51% of patients) were considered

pathogenic according to the in silico analysis that was performed

with several programs to reach a high reliability [21].

The mutational frequency for BMPR2 gene in sporadic PAH

range from 10–20%, as referred in previous studies

[22,23,24].However, we found that 50% of our IPAH patients

had a pathogenic mutation in BMPR2 gene,higher than expected

and corresponding to the highest value described until now. The

percentage of mutations found in APAH was 36%, which is lower

but also significantly elevated. Consider the suggestion made by

Pfarr et al [25] that as soon a genetic defect had been identified in

PAH patients they must be classified as familial PAH, it could be

interesting to perform segregation analysis in order to confirm the

familial nature of the disease in these families.

We identified two hot spots for mutations in exon 3 and exon

6 for BMPR2 gene. These exons are located in a very important

area rich in cysteine residues and therefore any mutation here

could affect the catalytic ability of the BMPs, the ligand of BMPR2,

disrupting the Smad signaling pathway [2,23,26,27,28]. These

mutations may introduce subtle changes in the structure of the

protein and might interfere with the downstream signaling of the

BMP pathway [29]. It has been hypothesized that an imbalance of

increased TGF-b levels and decreased BMP signals induced by

BMPR2 mutations leads to PAH [30]. Exon 6 is located in the N-

terminus of a serine-threonine kinase domain which is formed by

conserved subdomains that includes exons 6 to 11 of the gene.

This region, responsible for binding adenosine triphosphate (ATP),

is characterized by distinctive patterns of conserved residues.

Mutations located here could produce heterogeneous defects for

signaling activity by binding preventing of ATP and altering the

functionality of the protein. We also detected several mutations in

the C-terminus region for this serine-threonine kinase domain,

which is involved in substrate recognition and initiation of the

phosphorylation relay. In addition, one missense mutation and one

synonymous change, which seems to alter the splicing process

Table 5. Results from four different bioinformatic programs used to predict the effect on the splicing process in KCNA5 gene
(NNSplice, NetGene2, Splice View and HSF Human).

Sequence variants NNSplice NetGene2 Splice View HSF Human Score

c.125T.A (p.(L42H)) The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

0

c.253C.A (p.(L85M)) The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

0

c.340A.C (p.(T114P)) The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

0

c.385C.G (p.(L119V)) The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

The WT consensus
sequence
is not recognized

Neutral 0

c.477G.C (p.(L159L)) The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

The WT consensus
sequence
is not recognized

Score for the main acceptor
site increase

1

c.509C.G (p.(P170R)) The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

0

c.551G.C (p.(R184P)) The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

0

c.622G.T (p.(E208*)) The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

The WT consensus
sequence
is not recognized

The main donor site is not
recognized and acceptor site
increase

1

c.1733G.A (p.(R577K)) The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

0

c.1842+22T.G The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

0

c.1842+52A.T The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

0

c.1842+508A.T The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

The WT consensus
sequence
is not recognized

The WT consensus sequence
is not recognized

0

These results are considered positive if the score is equal or greater than two.
doi:10.1371/journal.pone.0100261.t005
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according to in silico analysis, were identified in exon 8.Finally, we

found the synonymous mutation p.(E489E) in exon 11, which is

predicted to produce alterations at splicing level. An invariant

arginine at position 491 in the protein is located around this point,

which is essential for signaling [31], thereby making this area of

special interest.

Synonymous mutations have always been considered safe, but

they could cause serious physiological effects as they can interfere

in the splicing accuracy, translation fidelity, mRNA structure and

protein folding. Even, these mutations may decrease the half-life of

mRNA, leading to a downregulation of the protein expression

[32]. Different synonymous mutations, both new and already

described, were seen in 46% of our patients and the 62.5% of these

synonymous mutations are considered pathogenic and were not

found in controls. It could be interesting to analyze synonymous

mutations and intronic deletions [23] with a functional approach

since no studies have been performed for these changes.

Regarding to the ACVRL1 gene, several mutations have usually

been described associated with HHT. Girerd et al describe a

mutational frequency for this gene of 2.3% in IPAH patients from

the French PAH Network, lower than 12.5% found in our patients

[33]. Probably the small size of our series may explain these

differences. When we compared the data for IPAH in this paper

against our results, we found a higher mutational rate for BMPR2

and ACVRL1 genes (59% vs 16.6%), finding only one mutation

(p.(S160P)fs*5) in ACVRL1 in one APAH patient. Selva-O’Call-

aghan et al, who studied mutational load for ACVRL1 gene in

APAH to connective tissue disease patients [34], did not found any

mutation. These findings suggest that ACVRL1 gene do not have a

significant role in APAH patients.

The p.(S225C) mutation is located in exon 6 of ACVRL1 gene

and it is placed in the serine-threonine kinase domain. Mutations

in this region, a conserved serine–threonine kinase domain, have

been associated with a higher risk of PAH in childhood and could

affect the downstream SMAD signaling pathway as BMPR2

[35,36]. The novel missense mutation, p.(T396A) was detected in

8 patients and does not appear in the control group. Functional

studies from Abdalla et al [36] demonstrated that mutations

located in this highly conserved protein domain may cause protein

misfolding [36,37] and intracellular degradation, explaining the

lack of surface expression of mutant proteins [36]. Although it has

been classified as nonpathogenic, it would be interesting to

determine its functionality.

Few mutations have been described in highly conserved

aminoacid residues of the KCNA5 gene in PAH patients [38].

Several KCNA5 gene mutations have been involved in atrial

fibrillation, a common cardiac arrhythmia, in 1.95% of patients

with absence of known predisposing factors [39]. We detect

pathological mutations in this gene in 7.3% of total patients. For

IPAH patients this value raises to 12.5%, but only one mutation

was identified in one APAH patient.

Figure 2. Frequency of pathological mutations found in our patients (blue all patients, yellow IPAH, purple APAH). BMPR2 showed
the greatest number of mutations.
doi:10.1371/journal.pone.0100261.g002

Table 6. List of patients with several pathogenic mutations in the studied genes.

Patient BMPR2 ACVRL1 KCNA5 PAH Type

14.09 c.251G.T (p.(C84F)), c.259C.T (p.(H87Y))a, c.981T.C (p.(P327P)) a – – Associated

14.17 c.530+37C.G a – c.551G.C (p.(R184P)) Idiopathic

17.01 c.893G.A (p.(W298*)) c.24A.T (p.(K8N)) a – Idiopathic

PO.15 c.229A.T (p.(I77L))a, c.633A.G (p.(R211R)) a – – Idiopathic

PO.16 c.327G.C (p.(Q109Q)) a, c.1021G.A (p.(V341M)) – – Associated

aThese mutationsare considered pathogenic because they could produce alterations in the splicing process, according to in silico analysis.
doi:10.1371/journal.pone.0100261.t006
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The p.(P170R), p.(R184P) and p.(E208*) mutations in KCNA5

gene are located within the T1 domain, which is highly conserved.

The T1 domain is largely responsible for tetramerization and

governs channel interaction by cytoplasmic regulatory subunits

KVa and KVb. Mutations located in this region have been shown

to disrupt both KVa-KVb with deleterious consequences on

channel gating, protein expression [40] or cause both hyperpo-

larizing and depolarizing shifts on the activation relationship

[41,42]. T1 domain has also been associated with other aspects of

channel function as the interaction with S1 domain or the

influence in gating properties and voltage sensitivity of KV

channels. Furthermore, the p.(E208*) mutation is close to S1

domain and potentially can disrupt the creating side portals

between the T1 domain and the pore. Even mutations that have

been identify as no harmful for the protein and did not appear in

controls, as p.(L42H), p.(T114P) and p.(R577K) could introduce

subtle changes in the structure of the protein and might interfere

with the proper operation of the Kv1.5 channels, since they are

located between the 59UTR region of the gene and heteromeriza-

tion domain, where the association between different proteins

occurs [38].

We found statistical differences for mPaP, PVR, CI and 6MWT

when compared hemodynamics and clinical parameters between

patients with and without pathogenic mutations. Patients who

harbor mutations show higher values for mPaP and PVR.

Conversely, values for CI and 6MWT were significantly smaller.

These results seem to show that patients with mutations have a

more severe disease and perhaps worse prognosis. Otherwise,Pfarr

et al found significant differences only for a low PVR value [25].

On the other hand, no differences in these parameters were seen

according to PAH type. Liu D et al have described that gender

influences the phenotype in PAH patients with BMPR2 mutations,

being more severe in males, but we did not confirm this fact in our

results [43]. Previous studies indicate that PAH patients carrying a

mutation have an onset approximately 10 years earlier than non-

carriers [31], but our results did not confirm this finding. The vast

majority of these variations are private, so it makes very difficult to

establish a correlation between the phenotype and one particular

mutation. For this reason, genotype-phenotype correlation is made

according to all mutations found in a group of patients.

We described for the first time 5 patients with multiple

mutations, three of them with two or more mutations in BMPR2

gene. Two patients, both with IPAH, were carriers of mutations in

two genes, BMPR2 and KCNA5 genes in one case and BMPR2 and

ACVRL1 genes in the other one. This genetic heterogeneity

reinforces the complex pathogenicity of this disease, with several

ways of actuation. The molecular mechanisms of PAH are not

clearly understood but multiple factors are involved in the

development of this disease and several genes could be mutated,

so it is not surprising that one patient may require mutations in

several genes to develop PAH. The small number of patients with

various mutations does not allow comparisons, but 3 of these 5

patients had a younger age at diagnosis and 2 of them died during

follow-up which may suggest a worse prognosis.

Obviously, the main limitation of our study is the small number

of patients, although the low incidence of PAH and some cases

that did not consent the inclusion in this study, did not allow us to

have a larger series. The comprehensive study carried out and

complete follow-up of all cases add value to our results.

In summary, we present a series of patients with idiopathic and

associated PAH with a high percentage of mutations in BMPR2

and lower in ACVRL1 and KCNA5 genes, some of them not

previously described, showing some clinical and hemodynamic

differences which suggest that the presence of these mutations may

be associated with more severe disease. There is no doubt that

other genes are involved in the pathogenesis of PAH and will be

important to know the role they play in the development of this

disease. Perhaps the presence of more than one mutation increases

the risk of develop it. As in other pathologies with genetic basis,

PAH may be caused by a total mutational load of the genes

involved in. This genetic heterogeneity, when known, may allow

us to establish a correlation with the severity and course of the

disease. The more we known about the pathways involved the best

we can design the treatment.
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