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Abstract

Scaling relationships between skeletal dimensions and body mass in extant birds are often used to estimate body
mass in fossil crown-group birds, as well as in stem-group avialans. However, useful statistical measurements for
constraining the precision and accuracy of fossil mass estimates are rarely provided, which prevents the
quantification of robust upper and lower bound body mass estimates for fossils. Here, we generate thirteen body
mass correlations and associated measures of statistical robustness using a sample of 863 extant flying birds. By
providing robust body mass regressions with upper- and lower-bound prediction intervals for individual skeletal
elements, we address the longstanding problem of body mass estimation for highly fragmentary fossil birds. We
demonstrate that the most precise proxy for estimating body mass in the overall dataset, measured both as
coefficient determination of ordinary least squares regression and percent prediction error, is the maximum diameter
of the coracoid’s humeral articulation facet (the glenoid). We further demonstrate that this result is consistent among
the majority of investigated avian orders (10 out of 18). As a result, we suggest that, in the majority of cases, this
proxy may provide the most accurate estimates of body mass for volant fossil birds. Additionally, by presenting
statistical measurements of body mass prediction error for thirteen different body mass regressions, this study
provides a much-needed quantitative framework for the accurate estimation of body mass and associated ecological
correlates in fossil birds. The application of these regressions will enhance the precision and robustness of many
mass-based inferences in future paleornithological studies.
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Introduction

In vertebrates, body mass is known to influence many
important biological parameters, ranging from physiological
[1,2], to biomechanical [3-6], to ecological [7,8]. As such,
accurate predictions of body mass are crucial to understanding
how ancient organisms lived, and for understanding how body
mass and its attendant biological correlates have evolved over
time. Accurate, repeatable estimators of body mass for fossil
taxa are particularly important to the study of bird evolution,
given the large number of recently discovered crownward stem
birds--these Mesozoic fossils have greatly informed our
understanding of the character transitions within Maniraptora
that ultimately gave rise to extant birds [9]. Examples of body
mass-dependent character transitions on the bird stem include
the evolution of increased avian encephalization quotients
[10-12], homeothermy [13], body size [14-16], and flight
[17-19].
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Given the broad paleobiological significance of estimating
body mass from extant bird skeletons, several studies have
presented scaling relationships between avian body mass and
various skeletal dimensions (e.g. 20-26). These studies have
been widely cited, and form the basis of many influential mass-
based paleornithological studies (e.g. 27-29). However,
although the variation in allometric datasets can be used to
quantify statistically justified upper and lower prediction bounds
(e.g. 30,31), many studies have not taken the uncertainty of
allometry-based mass predictions into account, instead basing
conclusions solely upon a single mean mass estimate (e.g.
18,19,32). This approach is problematic as our inference of
mass-dependent biological traits, such as flying ability, can be
severely impacted by the variability of body mass estimates
(contrast [18,33]). Without constraints on the mass of a
putatively flying organism, important aerodynamic parameters
such as wing loading cannot be determined [5].

With rare exceptions (e.g. 31), ornithological studies
presenting scaling relationships between body mass and
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skeletal dimensions have not reported prediction intervals
associated with their regressions. Prediction intervals depict
the standard error of predicted sample means, based on the
samples measured in an analysis; this yields a broad,
conservative result [34]. In contrast, it is common practice to
report confidence intervals for body mass allometries, which
only depict the standard error of a regression equation, thereby
speciously narrowing the predicted range of body mass
estimates [35]. For studies seeking to estimate the live body
mass of a fossil organism based on its skeletal dimensions,
calculating and applying a prediction interval is therefore crucial
to generating robust upper and lower bounds on the mass
estimate [36].

Here, we present thirteen scaling relationships between body
mass and skeletal measurements for extant, flying birds. The
analysis covers a wide breadth of extant volant bird diversity,
and is among the first extant avian body mass scaling
investigations to report prediction intervals for commonly
applied allometries (such as femur length and femur
circumference). In addition, we compare the precision of these
thirteen allometries using both coefficient of determination (R?)
and percent prediction error (PPE), and assess clade-specific
variability in regression parameters in order to assess the
relative precision of different correlates, for future use in
estimating the body masses of fossil taxa. The 95% prediction
intervals associated with the allometries presented here will
facilitate the estimation of robust upper and lower bounds on
fossil mass estimates, which will be valuable for any future
study of mass-dependent characteristics in fossil avialans,
such as flight, homeothermy, and encephalization quotients.

Methods

Database construction and taxon sampling

863 skeletons of extant, volant birds, with masses spanning
three orders of magnitude, were sampled from the Vertebrate
Zoology collection of the Yale Peabody Museum (Table S1). To
account for sexual dimorphism in body mass estimates, only
specimens preserving sex identification data were used. For
paired bones, the right side element was measured, unless
absent. The following measurements were taken for each
specimen: maximum femur length (FL), least femur shaft
diameter in anterior view (FD), least femur shaft circumference
(FC), maximum humerus length (HL), least humerus shaft
circumference (HC), least humerus shaft diameter in anterior
view (HD), maximum tibiotarsus length (TiL), maximum
tarsometatarsus length (TalL), least tarsometatarsus diameter
in anterior view (TaD), least tarsometatarsus shaft
circumference (TaC), maximum coracoid lateral length (CLL),
least coracoid shaft width (CSW), and maximum diameter of
the coracoid’s humeral articulation facet (HAF) (Figure 1).
Although tibiotarsus circumference has been demonstrated to
scale closely with body mass in birds [23], we found that
tibiotarsi were often broken, making any measurement other
than maximum length difficult to make precisely. Therefore, this
study does not recreate the tibiotarsus regressions presented
in [23]. Digital calipers sensitive to 0.01 mm were used for
measurements of bone length and diameter, and nylon string
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was used to measure bone circumference at the point of
minimum shaft circumference. For the smallest specimens,
circumference was calculated from orthogonal width and depth
measurements, after [23].

The majority of these measurements have been used as
body mass correlates by previous authors (e.g. 20-24,31). In
contrast, coracoid HAF dimensions have only been
investigated as a potential body mass correlate in one previous
study [37], using a relatively small and taxonomically limited
dataset. The HAF-bearing portion of the coracoid is amongst
the most commonly preserved avian fossil elements in many
fossil localities [37-40], underscoring the potential utility of a
robust HAF-body mass relationship. Here, we formalized the
measurement of avian HAF dimensions by measuring the
maximum diameter of the glenoid (Figure 1). Only the main,
sub-ovular portion of the glenoid was measured; in instances
where a depression extended omal to the main portion of the
glenoid onto the acrocoracoid crest (Fig. 1ii d, g), or
sternomedial to the main portion of the glenoid as a narrow
flange around the scapular cotyla (Figure 1ii a, b, e, j), these
extensions were not included in the measurement. A visual
depiction of how the measurement was taken for taxa with
varying HAF geometries is provided in Figure 1.

Many previous attempts to estimate the original body
masses of fossil taxa suffer due to limited taxonomic sampling
of extant taxa, or by ignoring the existence of sexual
dimorphism (e.g. 41). To avoid these pitfalls, this study only
draws measurements from individuals identified to sex, and
samples a greater number of individuals than any previously
published avian body mass dataset (see Table S1).

Statistical Analyses

The strength of correlation between measured skeletal
dimensions and body mass was determined using coefficient of
determination (R?) values from ordinary least squares
regression. Mean body mass estimates and corresponding sex
information for each of the bird species were obtained from
[42]. In order to investigate the differences between
regressions for mean body mass and actual body mass, we
compared regressions between the maximum diameter of the
coracoid HAF, and both mean and recorded individual body
mass for a subset of our total dataset. This subset, comprising
the only specimens associated with recorded body mass in our
dataset, represented 115 individuals, from 31 genera in 9 avian
orders. Scaling relationships and strength of correlation were
compared using standardized major axis (SMA) regression
using the package Smatr in R [43]. For all analyses, we used
the natural log (In) of these data to mitigate the effects of
extreme outliers on regression coefficients [30,34].

We subsequently used regression equations for each
measured skeletal correlate to predict body mass, and
calculated percent prediction error (PPE) by comparing
predicted with observed body mass in the style of [30].
Because clade- and ecology-specific variations in gait and limb
posture may subject the vertebrate skeleton to different stress
regimes (e.g. 23,30), the strength of various skeletal
measurements as body mass correlates might be expected to
vary among taxonomic groups. We therefore repeated our
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Figure 1. Avian coracoid disparity, and measuring the maximum diameter of the humeral articulation facet. i: Right
coracoids in dorsolateral view shown to scale for ten avian taxa with different glenoid geometries. Figured coracoids are a) Cygnus
olor (Anseriformes: Anatidae), b) Ardeotis kori (Gruiformes: Otididae), c) Balearica regulorum (Gruiformes: Gruidae), d) Buteo
regalis (Accipitriformes: Accipitridae), e) Bubo scandiacus (Strigiformes: Strigidae), f) Amazona aestiva (Psittaciformes: Psittacidae),
g) Puffinus griseus (Procellariiformes: Procellariidae), h) Leucophaeus atricilla (Charadriiformes: Laridae), i) Podiceps nigricollis
(Podicipediformes: Podicipedidae), and j) Nucifraga columbiana (Passeriformes: Corvidae). ii: Close-up of omal coracoid extremities
for the taxa listed above (not to scale). Gray lines illustrate the maximum diameter of the HAF. ‘fI' denotes an extended flange
sternolateral to the main portion of the glenoid facet (present in some taxa such as certain anseriforms and gruiforms), which was
not included in the HAF measurement. Similarly, ‘ac’ denotes an extended concavity along the acrocoracoid crest (present in some
taxa such as certain accipitriforms and procellariiforms), which was not included in the HAF measurement.

doi: 10.1371/journal.pone.0082000.g001
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analyses for the entire dataset broken down into individual
avian orders. All analyses were performed using the statistical
software R version 2.15.2 [43].

Results

Within the combined dataset, all of the studied skeletal
dimensions show moderate- to high correlation and linear fit
with body mass; all R? values fall between 0.6459 and 0.9881,
and only one (tarsus length) falls below 0.85 (Figure 2; Table
1). The length of the coracoid HAF represents the most precise
overall scaling relationship in our analysis (R? = 0.9881). The
mean percent prediction error (PPE) for these regressions
typically falls in the range of 10-60% (Figure 3; Table 1), with
the least precise correlate being tarsus length (mean PPE =
128.11%), and the most precise again being the coracoid’s
HAF (mean PPE = 12.95%). Sex, age, and life history can all
have a significant impact on the body mass of individual birds
[23], such that the body mass of individuals may differ
significantly from recorded mean masses for avian species. We
therefore tested the robustness of our result for coracoid HAF
length comparing the strength of correlation between HAF
length and mean species body mass, and HAF length and
recorded individual body mass, for a subsample of our total
dataset (n=115) using standardized major axis (SMA)
regression. This subsampled dataset comprises 44 species,
representing 9 avian orders (see Table 1). The results of SMA
regression reveal extremely similar slopes, intercepts, and
coefficients of determination for regressions using mean body
mass for species, and actual body mass of individuals (Figure
4); 95% confidence intervals calculated around slopes and
intercepts between these two regressions overlap (Table 2).
This suggests that both mean species body mass and recorded
individual body masses are indistinguishable in terms of their
strength and utility as body mass correlates in this large,
taxonomically diverse dataset.

Broken down by avian order, results of ordinary least
squares regression and PPE demonstrate significant
differences among taxonomic groups, both in terms of the
overall strength of correlation between the measured skeletal
elements and body mass, and in terms of the relative strength
of correlation among different skeletal elements. Coefficients of
determination between our skeletal correlates and body mass,
partitioned by avian order, are summarized in Table 3; the
slopes, intercepts, corresponding p-values, and prediction
intervals for these regressions are given as supplementary
information (Tables S2, S3, S4, S5, S6, S7). PPE plots for
treated avian orders are given in Figure S1.

The relative ordering of measured skeletal elements in terms
of their strength as body mass correlates varies widely among
taxonomic groups: correlation coefficients are highest between
body mass and coracoid HAF length in 10 of the 18 treated
avian orders (Accipitriformes, Anseriformes, Apodiformes,
Ciconiiformes, Columbiformes, Coraciiformes, Falconiformes,
Gruiformes,  Passeriformes, and  Trogoniformes). In
Charadriiformes, Galliformes, and Pelecaniformes, maximum
coracoid lateral length provides the strongest correlation with
body mass. Femur length is the strongest body mass correlate
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in Procellariformes and Strigiformes, humerus length exhibited
the highest correlation coefficient in Psittaciformes and
Caprimulgiformes, and coracoid shaft width was the most
precise body mass correlate for Podicipediformes. In order to
quantify the relative utility of our measured skeletal elements
across different avian clades, we calculated the variance in
regression slopes and intercepts for each element among all
avian orders (illustrated as barplots in Figure 5); high variance
indicates that the strength of a specific skeletal element as a
potential body mass correlate is highly taxon-specific, and
should therefore be treated with caution. Alternatively, low
variance indicates that the strength of correlation is largely
independent of taxonomic affinity, as well as potentially
confounding ecological variables such as flight style and
habitat preference. Our data demonstrate that variance in both
regression slope and intercept among avian orders is lowest for
coracoid HAF length, and highest for tarsus length. Femur
length, humerus length, and tibia length also show elevated
variance in slopes and/or intercepts among orders, and
therefore may constitute relatively unreliable indicators of
original body mass for fossil birds.

Discussion

Ecology and clade-dependence of body mass
regressions

Our data illustrate several important aspects of allometric
scaling relationships among 18 orders of extant, volant birds:
the strength of our 13 measured body mass correlates differ
significantly overall, and the relative precision of different
elements as body mass predictors sometimes varies
significantly among broad taxonomic groups, likely reflecting
adaptive ecological overprinting in clades exhibiting widely
disparate ecologies [44]. However, the high precision of many
of the correlations presented here indicates that, regardless of
potentially confounding factors such as phylogenetic position,
ecology, and flight style, these regressions can be used to infer
relatively narrow upper and lower bound prediction intervals on
body mass estimates across Aves, as well as for fossil flying
birds (Figure 2). These findings are consistent with several
previous studies that have investigated the dimensions of avian
skeletal elements as potential body mass correlates [20-24].
However, we demonstrate that among the skeletal elements
examined here, the maximum diameter of the coracoid HAF is
generally the most accurate predictor of avian body mass, and
that the slopes and intercepts of this regression among all
studied avian orders show the least variance. These findings
suggest low ecological overprinting of HAF dimensions in
extant flying birds, and illustrate this measurement’s potential
utility for the accurate estimation of body mass in fossil flying
birds. In addition, these analyses show that the coracoid HAF
serves as an equally good predictor of body mass when either
mean species body mass, or recorded individual body mass is
considered. We therefore suggest that in instances where
close correspondence between mean species and true body
masses can be demonstrated (Figure 4), using mean species
body masses in allometric studies will enable more specimens,
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doi: 10.1371/journal.pone.0082000.g002
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Table 1. Coefficient of determination, slopes, intercepts, upper and lower 95% prediction intervals, and mean PPE values for
all regressions (combined dataset) between body mass and 13 skeletal dimensions.

FC FD FL HC HD HL TaC TaD TaL TiL HAF csSw CLL
Slope 24 25 2.82 2.51 2.56 2.07 2.34 2.38 2.23 2.68 2.44 2.27 3.06
y-Intercept -0.11 2.63 -4.74 -0.81 1.9 -2.77 0.4 3.12 -2.87 -5.71 2 3.02 -5.11
R2 0.95 0.93 0.9 0.95 0.93 0.94 0.91 0.93 0.65 0.86 0.99 0.93 0.94
Upper 95% Prediction Interval 0.76 0.92 1.1 0.75 0.95 0.89 1.03 0.95 2.1 1.34 0.38 0.94 0.9
Lower 95% Prediction Interval -0.76 -0.92 -1.11 -0.75 -0.95 -0.89 -1.03 -0.95 -2.11 -1.34 -0.38 -0.94 -0.9
Mean PPE 32.79 41.04 51.01 28.38 36.83 40.81 45.72 40.04 128.11 61.38 12.95 33.51 40.72
PPE 95% CI 2.1 3.13 3.2 23 3.05 2.96 2.77 242 9.98 3.77 1.07 2.19 22

Body mass is taken as sex-specific means for individual species (from Dunning, 2007).

doi: 10.1371/journal.pone.0082000.t001

and a correspondingly broader taxonomic sample to be
investigated.

We also acknowledge two additional factors affecting our
data and analyses that may have an effect on the final
regression parameters: 1) these data are not strictly
independent, as the 863 studied specimens exhibit varying
degrees of common ancestry, which may spuriously increase
or decrease the strength of allometric scaling relationships. In
addition, 2) our use of multiple individuals belonging the same
species in the dataset may also skew our calculated regression
parameters. Although 1) can be addressed by employing
generalized least squares models (e.g. 45), the low interordinal
variance exhibited by many of the regressions presented here
(Figure 5, Table 4) indicates relatively little phylogenetic
dependence in this dataset. Previous allometric studies have
demonstrated largely insignificant phylogenetic dependence of
limb scaling patterns in terrestrial quadrupeds [30], and
inappropriate application of phylogenetic regression can result
in poor statistical performance [46]. Further, our broad
taxonomic sampling across Aves complicates the acquisition of
a robust phylogeny with a specified set of branch lengths
incorporating every taxon in this analysis, which would be
beyond the scope of this study. For these reasons, and for
ease of comparison with previously published avian allometric
studies [30], we have elected to present OLS results instead of
phylogenetic regressions. Future work may delve into the
question of phylogenetic correlation in avian allometric data.

We attempted to address 2) by re-running analyses on two
restricted datasets where multiple specimens of any single
species were omitted by random deletion. We then compared
the relative ordering of skeletal measurements as body mass
correlates, both as coefficient of determination and PPE, with
those of our original analyses. Sample sizes for these single-
individual analyses were 317 (the number of individual species
in our dataset). Regression parameters and coefficients of
determination resulting from analysis of these restricted
datasets were extremely similar to those of the total dataset
(Table S8), and the re-analysis resulted in minimal re-ordering
of skeletal measurements in terms of their strength as body
mass predictors (Figure S2).

The varying strengths of our skeletal measurements as body
mass correlates, both within the entire dataset, and among
different avian orders, probably reflect the influence of

PLOS ONE | www.plosone.org

ecological and biomechanical constraints on element
dimensions. Although the ecological and phylogenetic
importance of many of these data will be discussed elsewhere,
we highlight some of the broader patterns concerning the
strength of the coracoid HAF as a morphological correlate for
body mass, in a comparative context with other frequently
applied skeletal measurements. In particular, the strength of
the observed correlation between coracoid HAF dimensions
and body mass likely has its basis in flight biomechanics;
failure of the shoulder joint in a wild flying bird would probably
be fatal, and larger birds appear to exhibit larger shoulder
articulations to provide adequate safety factors for stress
dissipation during the active flight stroke. Additionally, the
circumferences of hindlimb elements scale closely with body
mass, as these bones are subject to numerous biomechanical
and energetic trade-offs, and as such have narrow tolerance
limits (see 21,23,47-50).

Conversely, the dimensions of some avian skeletal elements
can be more heavily influenced by ecological, as opposed to
biomechanical factors, such as wading and prey handling [51].
Such elements are consequently expected to make poor body
mass correlates. We suggest that the relatively weak
correlation found between tarsus length and body mass reflects
one such example of ecological overprinting; certain ecological
groups (i.e., waders) exhibit disproportionately long
tarsometatarsi, while others (i.e., raptors and owls) tend to
have disproportionately short tarsometatarsi—a specialization
related to prey handling efficiency [51,52]. In support of this,
the variance in regression parameters for tarsometatarsus
length among the 18 avian orders sampled here vastly exceeds
that of any other regression parameter (Figure 4; Table 4).
These analyses demonstrate that skeletal measurements
exhibiting high interordinal variance would likely comprise poor
predictors of body mass in fossil birds, unless the fossil in
question could be confidently diagnosed to the crown-group of
an order represented in our sample.

Coracoid dimensions have been used to estimate body mass
for fossil birds previously (e.g. 31,37,53). In particular,
Elzanowski et al. (2012) [31] generated several highly precise
coracoid-based allometries for mass estimation of fossil
Procellariiformes. Two of these correlates (minimum coracoid
shaft width and maximum lateral length of the coracoid) are
examined in the present study. Although the correlation
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Figure 3. Comparison of the predictive power of several body mass proxies based on their mean percent prediction error
(PPE). Mean PPE for each correlate is represented by a circle, with 95% confidence intervals in black. The least precise correlate
as reckoned by PPE (tarsometatarsus length) is shown in red, while the most precise (coracoid HAF length) is shown in green.

doi: 10.1371/journal.pone.0082000.g003

coefficients reported by Elzanowski et al. (2012) [31] are higher
than those reported here, in our dataset Procellariiformes show
the highest overall body mass correlation of all studied orders
(mean correlation coefficient of all allometries, see Table 3),
indicating that a wide variety of skeletal measurements may
provide accurate body mass estimates in this clade. Although
the regressions for minimum coracoid shaft width and
maximum lateral coracoid length exhibit relatively low
interordinal variance overall (Figure 5), they are surpassed by

PLOS ONE | www.plosone.org

other correlates as preferable predictors of avian body mass
(Figure 2).

One of the most frequently used skeletal measurements for
estimating body mass in fossil crown- and stem-birds is femur
length (e.g. 13,14,54); here we show that the interordinal
variance in slope and intercepts of regression between femur
length and body mass is substantially higher than in the length
of the coracoid HAF (Figure 6). The much tighter clustering in
OLS regression lines indicates greater reliability in using
coracoid HAF rather than femur length when estimating body
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Table 3. Coefficient of determination for regressions between (mean) body mass and 13 skeletal measurements, for 18

avian orders.

FC FD FL HC HD HL TaC TaD TaL TiL HAF csw CLL
Accipitriformes 0.8306 0.8884 0.8404 0.8803 0.8431 0.9353 0.7148 0.7572 0.5272 0.7865 0.9939 0.8301 0.9106
Anseriformes 0.8253 0.7867 0.9162 0.7826 0.6729 0.8773 0.7153 0.7867 0.8116 0.8879 0.9337 0.8796 0.91
Apodiformes 0.9368 0.898 0.9561 0.6864 0.7063 0.9534 0.6434 0.8093 0.8082 0.9238 0.9878 0.7109 0.9577
Charadriiformes 0.9092 0.9105 0.9346 0.9631 0.92 0.9508 0.9063 0.8948 0.3206 0.6147 0.9744 0.9502 0.9804
Ciconiiformes 0.9171 0.8671 0.8422 0.9293 0.8937 0.9188 0.8914 0.7748 0.8471 0.8757 0.9625 0.806 0.8958
Columbiformes 0.9026 0.8929 0.8971 0.8618 0.7596 0.889 0.7324 0.725 0.7696 0.9047 0.9991 0.8837 0.9148
Coraciiformes 0.9707 0.979 0.9828 0.9814 0.9656 0.9658 0.9013 0.9149 0.5854 0.9643 0.9836 0.9786 0.9644
Falconiformes 0.9163 0.9144 0.9637 0.8051 0.6961 0.954 0.8525 0.9129 0.7886 0.9433 0.9987 0.7491 0.9323
Galliformes 0.9253 0.9472 0.9164 0.9304 0.8577 0.7491 0.7481 0.8676 0.7634 0.8317 0.9258 0.8896 0.9538
Gruiformes 0.9634 0.9369 0.8577 0.9443 0.8744 0.9181 0.9045 0.8924 0.8105 0.8761 0.9655 0.876 0.9357
Passeriformes 0.9454 0.9306 0.9462 0.9529 0.9313 0.9771 0.8824 0.8907 0.8715 0.9117 0.9864 0.9207 0.9688
Podicipediformes 0.7933 0.8966 0.8819 0.8064 0.4355 0.9634 0.7603 0.6788 0.9318 0.9465 0.967 0.9707 0.9394
Procellariiformes 0.9593 0.9515 0.9905 0.98 0.9771 0.9728 0.951 0.9582 0.7126 0.8425 0.983 0.97 0.9848
Psittaciformes 0.8746 0.9339 0.9619 0.9294 0.8495 0.983 0.8567 0.8312 0.7429 0.9447 0.9716 0.9397 0.9616
Strigiformes 0.8932 0.9183 0.9233 0.9007 0.8498 0.8901 0.8373 0.9162 0.4264 0.7783 0.9169 0.8989 0.902
Suliformes 0.8666 0.9235 0.938 0.9003 0.868 0.934 0.8882 0.8828 0.9589 0.971 0.961 0.9019 0.9735
Trogoniformes 0.7898 0.6046 0.9851 0.666 0.9191 0.9893 0.8764 0.818 0.9925 0.8997 0.994 0.9314 0.9548
Caprimulgiformes 0.3847 0.6884 0.8788 0.1423 0.7487 0.9472 0.797 0.6456 0.1005 0.3562 0.8337 0.634 0.7761

doi: 10.1371/journal.pone.0082000.t003

mass across a variety of taxonomic groups. As such, we
suggest that a variety of other body mass correlates, including
maximum HAF diameter and maximum coracoid lateral length
be used in lieu of femur length for estimating body mass in
fossil volant birds, when these elements are preserved (Figure
2).

PLOS ONE | www.plosone.org

Scaling relationships and allometry are widely accepted as a
useful means to estimate body mass for fossil crown-group
taxa [14,30,55]. However, the applicability of such methods for
estimating body mass in more distantly related stem-group
taxa, especially those that fall outside the body size range
observed in extant clade representatives, is less well
understood ([30], references therein). As a result, we cannot
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Figure 5. Barplots illustrating variance in slopes (gray) and intercepts (black) of regressions between body mass and

our 13 skeletal measurements, among all treated avian orders.

doi: 10.1371/journal.pone.0082000.g005

Table 2. Results (coefficient of determination, slopes,
intercepts, and corresponding 95% confidence intervals) of
SMA regression comparing the correlations between
coracoid HAF vs mean body mass (from Dunning, 2007),
and coracoid HAF vs recorded individual body mass.

Slope  Slope Y-intercept Y-intercept
95% Cl  95% ClI 95% ClI 95% CI
(lower (upper Y- (lower (upper
R2 Slopebound) bound) intercept bound) bound)

Mean

Body 0.9834 242 2.36 2.48 1.93 1.87 2

Mass (g)

Actual

Body 09751 231 224 2.38 2 1.92 2.08

Mass (g)

Note that Cls of both slope and intercept overlap.
doi: 10.1371/journal.pone.0082000.t002

PLOS ONE | www.plosone.org

presently justify applying these extant avian body mass
regressions to distantly related stem taxa (for example to basal
theropods); however, crown group scaling relationships such
as the ones described here are currently the most robust
method for estimating mass in crownward stem taxa falling
within the range of body masses in the extant dataset (such as
Ichthyornis) [30]. Estimation of body mass with associated
prediction intervals in these presumably volant stem-group taxa
will provide a level of robustness to body mass-dependent
paleobiological studies that has been elusive up to this point.

Paleobiological implications

Addressing many of the fundamental biological and
ecological questions surrounding the early evolution of modern
birds requires fully articulated (and thus exceptional) fossils.
However, the lightweight, buoyant, and relatively fragile nature
of bird skeletal remains conspires against their articulated
preservation in many depositional settings [56-60]. As such,
complete bird fossils are rare, and often make up a

November 2013 | Volume 8 | Issue 11 | e82000



Avian Skeletal Allometry

Table 4. Calculated variance in slopes and intercepts of regressions between body mass and our 13 skeletal measurements,

for 18 avian orders.

FC FD FL HC HD HL TaC TaD TaL TiL HAF CcsSwW CLL
Y-Intercept Variance 1 0.4 24 1.51 0.78 1.43 0.59 0.22 7.12 1.9 0.14 0.5 1.05
Slope Variance 0.17 0.14 0.17 0.36 0.18 0.08 0.15 0.15 0.65 0.11 0.06 0.17 0.09
doi: 10.1371/journal.pone.0082000.t004
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Figure 6. Scatterplots illustrating the variance in OLS regression lines for 18 avian orders, comparing (left panel) body
mass vs coracoid HAF, and (right panel) body mass vs femur length. Corresponding sample sizes and coefficients of

determination are given in plots.
doi: 10.1371/journal.pone.0082000.g006

disproportionately small percentage of vertebrate remains from
otherwise well sampled, fossiliferous localities [61]. However,
elements comprising the avian pectoral girdle, in particular the
omal extremity of the coracoid, are represented in many
assemblages  disproportionately  often,  with  humeri,
tarsometatarsi, and tibiotarsi also being commonly preserved
(e.g. 37,38,57). A scientific premium is therefore placed on
discovering new physiological and ecological correlates (such
as those afforded by the allometric scaling relationships
described here) that can extract additional information from this
largely fragmentary and depauperate fossil record.

In addition, although isolated, fragmentary fossil bird bones
are often of limited taxonomic use, several recent studies have
revealed that the omal extremity of the coracoid can be
phylogenetically informative. In fact, the avian coracoid is
amongst the richest sources of characters for cladistic analyses
of fossil birds [37,62]. The phylogenetic utility of omal coracoid
extremities was illustrated by Longrich et al. (2011) [37], who
discovered definitive evidence for avian mass extinction at the
K-Pg boundary solely on the basis of coracoid morphotypes
present above and below the boundary. As such, establishing
coracoid measurements as robust body mass proxies holds

PLOS ONE | www.plosone.org
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valuable paleobiological implications: a single, isolated omal
coracoid fragment can theoretically be used to diagnose
taxonomic affinity, body mass, and by extension, estimates of a
host of additional macroecological and biomechanical attributes
such as a species’ energetic demands, maximum population
density, and aspects of locomotory mechanics [5,7,8,63].

Conclusions

In summary, the most broadly useful body mass correlates
for fossil taxa are those that are simple to quantify, statistically
robust, and commonly preserved in the fossil record. These
correlates will also be those where the vagaries of phylogenetic
history, gait, and limb posture do not substantively influence
the body mass regression [30]. Here, we have quantified the
statistical precision of several regressions that appear to meet
these criteria for volant birds, and present several correlates
that scale more precisely with body mass than does femur
length (a commonly applied body mass correlate). The results
of both least squares regression and PPE demonstrate that the
maximum diameter of the coracoid HAF is the most precise
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predictor of volant avian body mass in this dataset. Although all
measured elements (with the exception of tarsus length, which
emerges as a significant outlier) perform surprisingly well, and
have been used in previous studies to estimate the body mass
of extinct avian taxa, the HAF measurement performs
significantly better in these analyses (Figures 2-3), and should
be considered as a potential body mass estimator when it is
preserved. We also provide a measure of taxonomic group-
and ecology-dependence in skeletal body mass correlates, by
analyzing the variance in slope and intercept of ordinary least
squares regression across 18 avian orders, and demonstrate
that coracoid HAF length shows the least variance of any
measured skeletal element in this dataset. The maximum
diameter of the coracoid HAF therefore appears to constitute
the most precise correlate for estimating body mass in this
dataset, and exhibits the least variance amongst different avian
orders. As such, we suggest that, for volant birds, the
relationship between maximum coracoid HAF dimensions and
body mass is largely independent of phylogenetic relationships
and potential ecological overprinting.

All of the regressions presented here will prove useful for the
robust estimation of body mass in extinct volant avialans, by
facilitating the estimation of statistically justified upper and
lower bounds on fossil body mass estimates. These data stand
to become a valuable resource for a variety of paleobiological
investigations on topics ranging from the origin of avian flight
[64], to meta-analyses of avian body mass evolution.
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Figure S1. Mean PPE plots with 95% confidence intervals
for 18 avian orders and 13 skeletal measurements.
(PDF)

Figure S2. Mean PPE plots with 95% prediction intervals
for 317 species (one specimen per species). The total
dataset (317 species, 863 specimens) was pruned to 317
specimens using two random partitions. The relative ordering
of body mass correlates is virtually unchanged in both cases
from the total dataset.

(PDF)

Table S1. Limb measurements and body mass data.
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Table S2. Slopes (m) for regressions between (mean)
body mass and 13 skeletal measurements, for all avian
orders.
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