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Abstract

This article describes the development and application of an integrated, generalized, and efficient Monte Carlo simulation
system for diffusion magnetic resonance imaging (dMRI), named Diffusion Microscopist Simulator (DMS). DMS comprises a
random walk Monte Carlo simulator and an MR image synthesizer. The former has the capacity to perform large-scale
simulations of Brownian dynamics in the virtual environments of neural tissues at various levels of complexity, and the latter
is flexible enough to synthesize dMRI datasets from a variety of simulated MRI pulse sequences. The aims of DMS are to give
insights into the link between the fundamental diffusion process in biological tissues and the features observed in dMRI, as
well as to provide appropriate ground-truth information for the development, optimization, and validation of dMRI
acquisition schemes for different applications. The validity, efficiency, and potential applications of DMS are evaluated
through four benchmark experiments, including the simulated dMRI of white matter fibers, the multiple scattering diffusion
imaging, the biophysical modeling of polar cell membranes, and the high angular resolution diffusion imaging and fiber
tractography of complex fiber configurations. We expect that this novel software tool would be substantially advantageous
to clarify the interrelationship between dMRI and the microscopic characteristics of brain tissues, and to advance the
biophysical modeling and the dMRI methodologies.
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Introduction

Diffusion magnetic resonance imaging (or dMRI) came into

existence in the mid-1980s [1,2,3], and during the past 25 years,

dMRI has been extraordinarily successful, particularly in MRI of

the central nervous system. Its major clinical domain of

application has been neurological disorders, especially for the

management of patients with acute ischemic stroke. It is also

rapidly becoming a standard for white matter (WM) disorders, as

diffusion tensor (DT) imaging can reveal abnormalities in WM

fiber structure and provide outstanding maps of brain connectivity

[4,5]. More recently, it has been shown that dMRI can also be

used to deliver direct features of tissue microstructures [6,7,8,9], as

well as to detect changes in brain regions associated with neuronal

activation [10]. The driving force of dMRI is to monitor natural

microscopic displacements of water molecules that occur in brain

tissues as part of the physical diffusion process. In other words,

water molecules are used as a probe that can reveal microscopic

details about tissue architecture, either in a normal or diseased

state.

One has to keep in mind that the overall signal observed in

dMRI images at a millimetric resolution results from the integration

(on a statistical basis) of all the microscopic displacement distributions

of the water molecules present in this voxel. The complex diffusion

processes that occur in a biological tissue on a voxel scale are often

described with a global and statistical parameter, the apparent

diffusion coefficient (ADC) [2]. This parameterization of diffusion

process by a global ADC is intended to represent those physical

processes that occur at scales smaller than the scales resolved by

the dMRI approach: The large scale is imposed by technical

limitations (e.g. MRI hardware), while the actual ‘‘theatre’’ scales

of the biophysical elementary processes are determined by physical

phenomena at a molecular level. The averaging or smoothing

effect resulting from this scaling presumes some homogeneity in

the voxel and makes a direct physical interpretation out of the

global parameter somewhat difficult, unless some assumptions can

be made. The ADC in the brain is 2 to 10 times smaller than free

water diffusion in an aqueous solution [11]. Such reduction has

been explained by the effects of high viscosity, macromolecular

crowding, and restriction in the intracellular space [12], and the

effect of tortuosity in the extracellular space [13,14]. Restricted

PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e76626



diffusion effects, for instance, may be evaluated by changing the

diffusion time [15,16]: Since the displacements of the molecules

become confined when they reach the boundaries of closed spaces,

the diffusion coefficient artificially goes down with longer diffusion

times. Likewise, in brain tissues cell membranes likely hinder the

water diffusion process (so-called ‘‘hindered’’ diffusion, as opposed

to strictly ‘‘restricted’’ diffusion), even though the membranes are

permeable to water via either passive or active transport, such as

the specific aquaporin channels that have been found abundant in

the brain [17]. Clearly water diffusion in biological tissues,

especially the brain, is not free and cannot be modeled by a single

Gaussian distribution [18]. Moreover, the ADC depends not only

on the actual diffusion coefficients of water molecular populations

presenting in an MRI voxel, but also on the experimental and

technical parameters of MRI, such as the voxel size, the diffusion

time or the degree of sensitization of MR images to diffusion (i.e. b-

value) [2].

Although the idea to infer microstructures of brain tissues from

dMRI signal alone is ill-posed, except in specific and simple

situations, the relationship between ADC and certain tissue

microscopic features is the object of intensive research. Some

groups have tried to clarify how tissue characteristics affect the

dMRI signal [19,20,21,22,23]. Theoretical models have been

proposed, for instance, based on a combination of extra-axonal

water undergoing hindered diffusion and intra-axonal water

undergoing restricted diffusion [24]. Several groups have also

underlined the important roles of dynamic parameters, such as

membrane permeability and water exchange [25,26,27], as well as

geometrical features, such as cell size distribution or axons/

dendrite directional distribution [20,26,28,29]. However, it is

noticeable that all of those distinct models require strong

assumptions to be made about the tissue structure or property,

which may not always match known or unknown biological

reality.

Another approach is to rely on Monte Carlo (MC) simulations,

which have been shown to be a powerful and flexible tool to mimic

diffusion processes for a wide class of systems, especially when

analytical solutions cannot be obtained due to the complexity of

the systems. Analytical approaches predicting the dMRI signal

using the Bloch-Torrey equation, for example, must rely on

simplified biological tissue model and MRI pulse sequence (e.g.

rectangular gradient waveform) [30]. In realistic situation,

however, the biological microstructures are too complicated to

solve analytically; meanwhile, the difficulty in deriving solutions

may be further increased following the complexity of the design of

MRI pulse sequence and gradient profile. The advantage of the

MC approach is its ability to track dynamic events over space and

time for a system with many coupled degrees of freedom. It

provides opportunities to investigate the Brownian motion in an

arbitrary environment as well as any model of interaction between

spins and membranes. Hence, synthetic dMRI data generated

using the MC method can be applied to study biological properties

(e.g. cell size, density, and membrane permeability) and basic

diffusion mechanisms in different compartments (e.g. presence of

attractors, local viscosity, and membrane interactions). On the one

hand, it can be adapted to examine mechanistic hypotheses for

various dynamic scenarios and tissue models, such as acute

ischemia or neuronal activation and cell swelling, cancer and cell

proliferation, ADC and axonal fiber anisotropy in complex fiber

bundles or cortex. On the other hand, it has the potential to build

a ground-truth database to support the development and

application of dMRI studies (see below).

One of the most outstanding contributions and applications of

dMRI is its ability to visualize anatomical connections between

different brain areas, non-invasively and on an individual basis,

which has emerged as a major breakthrough for neurosciences

[31,32,33,34]. There are two essential procedures to create a

reliable map of brain connectivity using so-called fiber tracto-

graphy: The first step is to accurately estimate fiber orientations

using an adequate diffusion reconstruction method, and the

second step is to implement a robust fiber-tracking algorithm.

Obviously, it is necessary to have an appropriate model to serve as

a ‘‘gold standard’’ for assessment and validation of these processes.

Several evaluation models have been proposed and can be

categorized into three main groups: (i) An animal model, such as

Figure 1. The general overview of DMS simulation procedure
and module parameters.
doi:10.1371/journal.pone.0076626.g001

Figure 2. An illustration of the octree structure implemented in
DMS. In this simple example, we created groups of fiber bundles and
star-shaped cells inside a simulation space which was partitioned using
Nx6Ny6Nz of 46461 (left) and 86861 (right). For a water molecule
(represented by the blue sphere) diffusing from r to r’, the need to
check for the possible interactions along the path of diffusion can be
reduced to the local subvolumes, as shown by the regions colored in
green. The number of potential interacting objects to be processed, i.e.
the cells indicated by the red arrows, can be decreased systematically.
doi:10.1371/journal.pone.0076626.g002

Diffusion Microscopist Simulator
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using manganese ion as a tract tracer [35,36], enables MRI

experiments in real biological tissues, however, it lacks the

plasticity to tune structural or geometric parameters (e.g. fiber

curvature). Furthermore, the WM structures of animal models

cannot capture all of the fiber configurations that exist in human

brains, and thus it may not be sufficient to evaluate the inherent

limitations of diffusion models and fiber-tracking algorithms. (ii) A

physical phantom is able to provide experimental datasets

acquired using practical dMRI setting and is more flexible than

an animal model in terms of the geometric designs. The physical

phantoms can be broadly classified into two types according to

material: the hollow capillary [37,38,39,40,41] and the synthetic

fiber [42,43,44,45]. The advantage of the former is that it has a

diameter closed to the scale of axonal fibers (,10 mm) and is able

to capture the nature of intra- and extra-axonal diffusion.

However, it is not feasible to build complex configurations (e.g.

bending fibers). On the contrary, the latter is highly flexible to

construct curving structures similar to WM fibers, whereas it is

limited to simulate the extra-axonal compartment. Note that both

of the above materials lose the properties of biological tissues, such

as membrane permeability and local viscosity. (iii) Numerical

simulations have been widely chosen to generate synthetic dMRI

datasets [46,47,48,49], however, most of the numerical simulations

usually rely on a number of assumptions on tissue models and

pulse sequences. The Gaussian mixture model, for example, is

commonly used to generate diffusion-weighted (DW) signal.

Although the tensor model provides a good approximation, the

Gaussian assumption is not sufficient to model diffusion anisotropy

observed in living tissues, which is generally acknowledged to the

results of restrictions and hindrances to the movements of water

molecules [24]. Furthermore, the underpinning mechanism of

water diffusion in neural tissues is actually more complicated if the

cell membrane properties were considered [50]. By contrast,

simulations based-on MC method has the potential to remove

most of the assumptions inherently required by the numerical

simulations described above. In addition, it is capable of

simulating biological characteristics and configurations at different

levels of complexity (e.g. mixture fiber radii or cell membrane

permeability). Note that, importantly, the intrinsic challenge of

MC approach is that it requires an adequate sample size (i.e. the

number of random walkers and steps) in order to ensure the

stability and reliability of the simulation results. Hence, in terms of

software practicability, it is necessary to optimize MC simulation

programs to achieve reasonable computation efficiency for a

commonly available computing power.

Computing Performance
The flexibility and plasticity of MC method strongly motivated

us to develop a novel MC simulation system for dMRI, named

Diffusion Microscopist Simulator (DMS), which has the ability to

generate 3D tissue models of various shapes and properties, as well

as to synthesize DW images using a variety of MRI methods and

pulse sequence designs. Additionally, DMS is implemented with

parallel processing structure that allows distribution of computa-

tions on a grid of computers for high performance computing.

DMS aims at (i) bridging the gap between elementary diffusion

processes occurring at a micrometer scale and the resulting

diffusion signal measured at millimeter scale, providing better

insights into the features observed in dMRI (e.g. variation of ADC

and diffusion anisotropy with cell size distribution), and (ii) offering

ground-truth information for optimization and validation of dMRI

acquisition schemes for different applications (e.g. fiber-tracking

Table 1. The list of available NMR sequences in DMS.

NMR Sequence Gradient waveform Parameters

Single PGSE [69] rectangle; trapezoid G; SR; d; D; TE

STE [70] rectangle; trapezoid G; SR; d; D; TE

Bipolar STE [71] rectangle; trapezoid G; SR; d; D; TE

Twice-refocused spin
echo [72]

rectangle; trapezoid G; SR; d; D; TE

Multiple PGSE [73,74] rectangle; trapezoid G; SR; d; D; TM; NGP; TE

Multiple STE [75] rectangle; trapezoid G; SR; d; D; TM; NGP; TE

Bipolar double STE [63] rectangle; trapezoid G; SR; d; D; TM; TE

OGSE [76,77] sine; double-sine; cosine G; T (f); NGO; TE

Abbreviations: PGSE, pulsed gradient spin echo; STE, stimulated echo; OGSE,
oscillating gradient spin echo; G, gradient magnitude; SR, gradient slew rate; d,
DW gradient duration; D, DW gradient separation; TE, echo time; TM, mixing
time; NGP, number of DW gradient pairs; T, period; f ( = 1/T), frequency of
oscillation; NGO, number of gradient oscillations.
doi:10.1371/journal.pone.0076626.t001

Figure 3. The 3D renderings of the bending (left) and beading
(right) axon models.
doi:10.1371/journal.pone.0076626.g003

Figure 4. Modeling the neural medium using DMS. The image at
the center shows the immunostaining of neural tissues, and the others
are the 3D renderings of simulated glial cells (colored in red) at different
time points. The cell gradually expanded due to the effect of dynamic
morphological evolution function. Dark blue spheres and light blue
curves represented the diffusing particles and their motion trajectories.
doi:10.1371/journal.pone.0076626.g004
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algorithm, diffusion reconstruction model, and microscopic

dMRI). In the following sections, we describe the design and the

key modules of DMS, and then demonstrate the potential

applications of DMS via four benchmark experiments.

Methods

General Overview of DMS
DMS is developed in C++ using an object-oriented design, and

it supports multi-threading technique for large-scale simulations

on water diffusion in complex environment simultaneously using

high spatial and temporal resolution. Fig. 1 illustrates the global

workflow of DMS which is composed of two main stages: (i) a

random walk Monte Carlo simulator capable of simulating the

diffusion of water molecules in an arbitrary simulation environ-

ment; and (ii) an MR image synthesizer dedicated to create DW

images among various designs of MRI pulse sequences. The

concepts for the principle components shown in Fig. 1 are

described in the following sections.

Monte Carlo Simulator
Scene modeler. This module contains the essential param-

eter settings for MC simulations, including the spatial dimensions,

the spatial subvolumes (see below), the temporal resolution (i.e. the

simulation time step, ts), the number of iterations (NI), and the

global diffusion model. The scene modeler acts as an interface

between the users and the DMS system. It enables users to

construct a virtual tissue environment by adding cell membranes

and diffusing particles (i.e. water molecules), and to control the

start-up of MC simulations. It also contains the functions to save

the results of particle diffusion data (e.g. the trajectory and

probabilistic density function of water molecules) as well as to

animate and visualize the dynamic events of MC simulations.

Cell membrane. The cell-membrane module comprises

multiple features in order to capture the characteristics of neuronal

cells. To mimic various cell types with heterogeneous shapes and

sizes, we developed a mesh factory that utilizes triangles as surface

elements to form a mesh. The mesh factory can produce mixed

networks of geometries such as ellipsoidal, star-shaped, and

cylindrical meshes to mimic neural architecture including neurons,

Table 2. The elapsed times (mean6 standard deviation) for the MC simulations using different dimensions of spatial subvolumes.

Nx6Ny6Nz 10610610 20620620 30630630 40640640 50650650

Elapsed time (s) 973.1560.19 252.9160.12 121.2160.08 114.0160.04 110.6160.07

doi:10.1371/journal.pone.0076626.t002

Figure 5. The DMS simulation of MSDI. (a) The transverse view of the hexagonal network of mesh-based cylindrical fibers, which had a diameter
of 19 mm. (b) A snapshot of the MC simulation scene illustrating the zoomed area within the green square in (a), where the dark blue spheres and
light blue curves are the diffusing particles and their corresponding diffusion trajectories, respectively. (c) Plots of the diffusion diffraction patterns
obtained from single and double PGSE pulse sequences. (d) Plots of dMRI signal attenuation under different Np.
doi:10.1371/journal.pone.0076626.g005

Diffusion Microscopist Simulator
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Figure 6. The DMS simulation of water diffusion in virtual neuronal cells. (a) A transverse section of the simulation scene which contains a
hexagonal network of cells modeled by spheres (R= 2.58 mm). (b) A global view of the simulation space illustrating the arrangement of the cells. (c) A
zoomed region of (a) showing the 3D rendering of cells (colored in red), diffusing particles (the spheres in deep blue) and their motion trajectories
(the curves in light blue). (d) The ADCs estimated using the DT model for the case of constant diffusivity (red circle) and biphasic water diffusion
model (blue cross).
doi:10.1371/journal.pone.0076626.g006

Table 3. Biexponential fitting parameters (mean 6 standard
deviation) for the case of constant diffusivity
(D= 1.261023 mm2/s).

R Ff Df Fs Ds

2.40 0.519660.0017 0.933360.0194 0.481060.0017 0.008360.0005

2.42 0.505460.0009 0.930460.0237 0.495260.0009 0.008960.0003

2.44 0.492960.0021 0.919560.0240 0.507660.0021 0.009060.0009

2.46 0.480560.0012 0.909760.0294 0.520160.0013 0.009260.0004

2.48 0.465360.0004 0.905360.0299 0.535360.0003 0.010060.0001

2.50 0.453760.0016 0.893360.0306 0.546860.0016 0.009660.0003

2.52 0.438360.0014 0.890160.0322 0.562360.0014 0.010260.0004

2.54 0.424360.0024 0.880960.0337 0.576360.0024 0.010560.0005

2.56 0.409460.0011 0.869760.0383 0.591360.0011 0.010960.0003

2.58 0.396060.0014 0.859460.0442 0.604760.0014 0.010960.0003

Unit: R, mm; diffusivity, 1023 mm2/s.
doi:10.1371/journal.pone.0076626.t003

Table 4. Biexponential fitting parameters (mean 6 standard
deviation) for the case of biphasic water diffusion model
(Dfast= 1.261023 & Dslow= 0.461023 mm2/s).

R Ff Df Fs Ds

2.40 0.518360.0008 0.915160.0209 0.482360.0008 0.008960.0003

2.42 0.506360.0010 0.905660.0227 0.494360.0009 0.009160.0004

2.44 0.491960.0022 0.900560.0242 0.508760.0021 0.009660.0008

2.46 0.481260.0011 0.889960.0285 0.519460.0011 0.009360.0003

2.48 0.466060.0013 0.883560.0261 0.534660.0013 0.010160.0003

2.50 0.452660.0005 0.874360.0314 0.548160.0006 0.010060.0002

2.52 0.438860.0024 0.867660.0313 0.561860.0023 0.010360.0005

2.54 0.424660.0022 0.855860.0321 0.576160.0022 0.010760.0005

2.56 0.409560.0009 0.846560.0391 0.591260.0009 0.011060.0004

2.58 0.396260.0019 0.833360.0427 0.604560.0018 0.011060.0005

Unit: R, mm; diffusivity, 1023 mm2/s.
doi:10.1371/journal.pone.0076626.t004
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glial cells, and axons. The cross sections of axons can be arbitrary

shapes and the axonal projections can be any 3D curves.

Therefore, DMS has the capability of simulating complex axonal

configurations at various states (e.g. bending, beading [51], or

degeneration [52]). Moreover, since we incorporated each cell-

membrane mesh with a dynamic morphological evolution

function, DMS is able to simulate the sequential changes of tissue

shapes including expansion, shrinkage, and deformation for

modeling different tissue status. The basic properties of cell-

membrane layers including the permeability and the type of

particle-to-membrane interaction are fully adjustable. Further-

more, the model describing specific diffusion behavior can be

designed to the cell-membrane layers. The characteristic of polar

membrane layer [50], for instance, has been customized to

evaluate the biphasic water diffusion model in this article. For the

current DMS, the particle-to-membrane interaction is modeled by

total internal reflection rule, which means that the angle of

incidence and reflection is identical, and the membrane perme-

ability is modeled using the transmission probability [52,53,54].

Diffusing particle. We modeled diffusing particles as ran-

dom walkers. DMS allows users to determine the number (Np) and

initial distributions of particles, which can be (i) regulated by the

intra- (fi) and extracellular (fe=12fi) fractions, (ii) randomly

allocated in the simulation scene (i.e. fi is proportional to the

global cellular volume), or (iii) located at a specific region or

location defined by users. The root-mean-squared (RMS)

displacement (r) of the particle is scaled to the diffusion coefficient

(D) of the associated tissue compartment and ts based on the

Einstein equation:

r~
ffiffiffiffiffiffiffiffiffiffi
6Dts

p
ð1Þ

The direction of diffusion is randomly chosen from a pre-

allocated lookup table which included uniform and symmetric

orientations obtained using electrostatic repulsion algorithm [55].

The default orientation scheme has a total number of 8,000

directions, where 4,000 orientations are independent. The

average/minimum/maximum/standard deviation angles between

the neighboring directions are 2.51/1.52/3.97/0.07 degrees,

respectively. For each simulation step, a particle updates its spatial

position following a series of potential interactions with cell

membranes: (i) It may penetrate through the interacting mem-

brane respecting the permeability. (ii) It may move according to

the models of particle-to-membrane interactions. (iii) D may be

altered if an individual membrane model is introduced. For the

case of polar membrane layer model, D is modified during the

transition between the biphasic diffusion pools [50].

Spatial subvolume. DMS employs an octree encoding

technique by which the global MC simulation space is partitioned

into Nx6Ny6Nz subvolumes using a 3D grid. Each subvolume

contains a subset of cell-membrane meshes and diffusing particles.

Therefore, knowing a particle’s position (~RR), the time required

searching and processing any potential interactions can be

dramatically decreased via the direct assess to the objective cell

membranes simply in the local spatial subvolume rather than the

entire simulation space. Fig. 2 illustrates the concept of octree

structure of DMS.

Figure 7. We used DMS to combine two networks of fibers (colored in green and orange) for mimicking crossing (left), kissing
(middle), and branching (right) WM fibers of human brains. Dark blue spheres and light blue curves illustrated a subset of diffusing particles
and their motion trajectories.
doi:10.1371/journal.pone.0076626.g007

Figure 8. Fiber tractography of the simulated crossing (left)
and kissing (right) fibers. The fiber tracts were represented by
cylinders colored in blue, and the SDT-fODFs were color-coded
depending on orientations (red: left-right, green: top-down, blue:
inferior-superior).
doi:10.1371/journal.pone.0076626.g008

Diffusion Microscopist Simulator
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MR Image Synthesizer
Spin. The outputs of the Monte Carlo simulator are particle

diffusion data, which are imported to the MR image synthesizer

and endowed with spins. Each spin stores its phase calculated

using the following equation:

w~c
XNTE

i~0

({1)NpRF (ti )G
!
(ti):R

!
(ti)ts ð2Þ

In Eq. (2), w denotes the spin phase; c is the gyromagnetic ratio;

NTE is the iteration count at TE (i.e. NTE=TE/ts). For a given time

point ti, where ti= i6ts, NpRF(ti) denotes the accumulated counts of

refocusing radiofrequency (RF) pulses, ~GG(ti) is the gradient vector

derived from an NMR pulse sequence (see below), and ~RR(ti) is

obtained from particle’s diffusion trajectory. Particle diffusion data

also provide additional statistics relating to cell membranes. For

the biphasic diffusion model [50], we can segregate the global

particles into fast and slow diffusing particles according to their

fractions of residence time within the polar membrane layer.

Then, the spin phases for two groups of particles can be calculated

individually using Eq. (2). This may decouple the dMRI signal into

its fast and slow diffusion pools, and thus may help to investigate

the impact of the polar membrane layer.

NMR sequence. DMS has modeled a variety of MRI pulse

sequences by regulating the timings of RF and gradient pulses.

Table 1 summarizes the pulse sequences and adjustable param-

eters available in DMS. Gradient shapes including rectangles,

trapezoids, and oscillating waves have been implemented, and can

be extended to fit any designs. The imaging gradients, e.g. slice

selection, phase encoding, and readout gradients, are optional to

be included in an NMR sequence. The echo time is automatically

calculated according to the user-specified pulse sequence and

related parameters. The diffusion-sensitizing factor, i.e. b-value, is

determined by the following equations:

bn~ts
XNTE

i~0

kn(ti):k
T
n (ti) and ð3Þ

kn(ti)~c
Xt~ti

t~0

G
!
(t)ts ð4Þ

In Eq. (3), bn represents the b-value for the nth DW gradient

orientation.

MR image. This module is created to integrate the spin

phases and to synthesize DW images. The noise model, e.g.

complex Gaussian noise, can be added to the synthesis data at

both real and imaginary channels. The DW signal of an MRI

voxel, S(v), is calculated by numerical integration using the

following equation:

S(v)~S0(v)D
XNp,p5v

Vp,p5v

exp (jwp)zgD ð5Þ

In Eq. (5), S0(v) is the signal intensity without diffusion-weighting

for the voxel v; wp is the accumulated phase of the pth particle

calculated using Eq. (2), and Np,p,v is the amount of particles

located inside v at TE; g denotes the complex noise term.

Benchmark Experiments
We performed four benchmark simulation experiments using

DMS as follows:

A. Evaluation of computing performance. (a) We ran MC

simulations using different sizes of spatial subvolumes to study the

impact on the computing time. We placed a network of cells

containing 15615615 mesh-based spheres with a radius of 5 mm
in the simulation space (15061506150 mm) and varied Nx6Ny6Nz

from 10610610 to 50650650. For each case, MC simulations

were repeated ten times using Np=104, NI=103, ts=10 ms, and
D=1023 mm2/s. Diffusing particles were all initialized inside the

confined spheres to produce an adequate amount of particle-to-

membrane interactions. (b) We evaluated the computing efficiency

of DMS using basic simulation experiments on dMRI of WM

fibers. We constructed a hexagonal array of 400 impermeable

fibers with diameter, center spacing, and length of 10, 10.1, and

250 mm, respectively. Each fiber was formed with a cylindrical

mesh using 40 triangles. The MC simulation parameters were:

Np=104, NI=7,000, ts=10 ms, D=261023 mm2/s, and

Nx6Ny6Nz=50650650. Diffusing particles were randomly dis-

tributed in the simulation scene. For the dMRI signal synthesis, we

applied a PGSE sequence using G=40 mT/m, SR=200 T/m/s,

d/D/TE=31.7/37.7/70 ms, b-value = 2,600 s/mm2, and a uni-

form DW gradient scheme of 100 orientations. The experiments

were repeated for ten times. For both (a) and (b), the computer was

equipped with a 2.66 GHz Intel Core 2 Duo processor and a

4 GB 1067 MHz DDR3 memory. For simplicity, the simulations

were run using a single thread.

B. Multiple scattering diffusion imaging. We used DMS

to simulate the conventional dMRI experiments using a single

PGSE sequence as well as the multiple scattering diffusion imaging

(MSDI) experiments using a double PGSE sequence. The purpose

was to demonstrate that DMS could reproduce the simulation

results shown in the literature [39]. Accordingly, we created a

Figure 9. Fiber tractography of the simulated branching fibers.
(a) The DT-FA map and the regions of interests defined for clustering
the fiber tracts. (b) Fiber tracking using the deterministic method. (c)
Fiber tracking using the probabilistic method. The SDT-fODFs were
colored in yellow.
doi:10.1371/journal.pone.0076626.g009
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simulation space (460640061,000 mm3) where a bundle of

parallel impermeable fibers with a diameter and length of 19

and 1,000 mm respectively were placed on a 24624 hexagonal

lattice using a center spacing of 19.1 mm. Each of the fibers was

modeled using a cylindrical mesh built by 40 triangles. We

performed random walk MC simulations using Np=56105,

NI=105, ts=5 ms, and Nx6Ny6Nz=1606160620. D

( = 261023 mm2/s) was assumed to be equal in the intra and

extracellular spaces. Synthetic dMRI datasets were then collected

using both single and double PGSE sequences with d/D/TM=2/

200/0 ms. A range of G (SR=5,000 T/m/s) from 0 to 1,200 mT/

m with a 10 mT/m increment were applied for the single PGSE,

and from 0 to 600 mT/m with a 5 mT/m increment were used

for the double PGSE. Note that the simulations reflected the case

of a preclinical MRI system. The DW gradients were applied

along the direction perpendicular to the fiber axis. In addition, to

investigate the influence of Np on the simulated DW signal, we

varied Np from 105 to 56105 for the case of single PGSE sequence.

C. Biphasic water diffusion model. We used DMS to

study the variations of ADC caused by cell swelling and polar

membrane layer [50]. We prepared ten simulation spaces with the

same dimension of 10061006100 mm3, where each contained a

hexagonal network of spherical cells with a specific radius (R)

increased from 2.40 to 2.58 mm in 0.02 mm increments. Each of

the simulation was filled with 9,200 cells using a fixed center

spacing of 5.2 mm. Thus, the simulation settings produced ten

intracellular volume fractions (i.e. fi) ranging from 53.27% to

66.18%. For each case, two separate MC simulations were

performed (i.e. 20 MC simulations in total): In the first part, we

assumed that D ( = 1.261023 mm2/s) was a constant for the entire

simulation space. In the second part, we applied the biphasic

diffusion model to characterize cell membranes by polar

membrane layers. The inner and outer region of the membrane-

bound layer represented the slow (Dslow=0.461023 mm2/s) and

fast (Dfast=1.261023 mm2/s) diffusion pool, respectively. Here,

we assumed that the cells were impermeable and the thickness of

the membrane-bound layer was 40 nm on each side of the

membrane. The selection of D, Dslow, Dfast, and layer thickness was

based on the inferences proposed by Le Bihan [50]. The global

MC simulation parameters were Np=106, NI=15,500, ts=5 ms,
and Nx6Ny6Nz=10061006100. The RMS distances were 0.19

and 0.11 mm for Dfast and Dslow, respectively.

For each of the MC simulations, two noise-free synthetic dMRI

datasets were collected using single PGSE sequences: Firstly, the

DT datasets were synthesized using a single shell q-space sampling

scheme of 80 gradient orientations at a b-value of 1,000 s/mm2,

where d/D=21/27 ms, G=40 mT/m, and SR=200 T/m/s. We

performed DT reconstruction to estimate the ADC [4]. Secondly,

the DW signal along x-, y-, and z-axis were synthesized at 51 b-

values linearly increased from 0 to 5,000 s/mm2, which were

achieved by fixing d/D=2/70.5 ms and varying G (SR=5,000 T/

m/s). The normalized diffusion signal attenuation along each axis

was then fitted using a biexponential function given as follows:

S(b)=S0~Ff exp ({bDf )zFs exp ({bDs) ð6Þ

In Eq. (6), F and D were the volume fractions and diffusion

coefficients associated with the fast and slow diffusion phases. The

mean and standard deviation were calculated for the model

parameters derived from the three axes.

D. HARDI and fiber-tracking applications. We applied

DMS to simulate high angular resolution diffusion imaging

(HARDI) of different WM fiber configurations for evaluation of

fiber-tracking algorithms. Here, we created crossing, kissing, and

branching fibers in the separated simulation spaces with sizes of

11061906150, 11061906150, and 20062106185 mm3, respec-

tively. Each fiber had a diameter of 5 mm and no permeability.

The parameters for the MC simulations were: Np=106,

NI=8,000, ts=10 ms, D=261023 mm2/s, and

Nx6Ny6Nz=1506150650. We synthesized DW images using a

conventional PGSE sequence with G=40 mT/m, SR=200 T/m/

s, d/D/TE=34.75/40.75/80 ms, and b-value = 4,000 s/mm2.

The uniform HARDI sampling scheme consisted of 200 unique

orientations [56]. These parameters were chosen to conform to the

clinical MRI system. Simulated DW images were generated using

a grid volume that produced a single slice with an in-plane

resolution of 565 mm2. For each fiber configuration, we recon-

structed the fiber orientation distribution function (fODF) using

the sharpening deconvolution transform (SDT) with a spherical

harmonic order of 6 and a regularization factor of 0.006 [46]. DT

analyses were also performed to obtain the fractional anisotropy

(FA) maps, which were used to create mask images for fiber

tracking. Both deterministic and probabilistic fiber tractography

were obtained via the streamline fiber-tracking algorithm, with a

forward step increment of 1.25 mm (i.e. one-fourth of the in-plane

resolution), an aperture angle of 30u, and 10 seeds per voxel

[33,34,57].

Results

Modeling Neural Microstructures
Figs. 3–4 are two examples of cell membrane models showing

the potential of DMS to simulate different architecture and

conditions of neural tissues. Fig. 3(a) shows a bundle of bending

axons, and Fig. 3(b) illustrates the compact beading axons modeled

using two networks of axons. Fig. 4 shows a virtual neural substrate

simulated via DMS. The image in the center of Fig. 4 was a

fluorescence micrograph obtained from immunostaining of a

healthy mouse brain, where the glial cells were dyed using anti-

GFAP [58]. We used DMS to mimic the micrograph of the neural

tissue in 3D. Moreover, since we incorporated each cell with a

dynamic morphological evolution function to simulate cell

swelling, the cells were expanding from the smallest sizes at the

beginning (t = 0 ms) to the largest sizes at the end (t = 100 ms) of

the simulation. The movie animation of the dynamic cell swelling

can be found in the online version (Video S1).

Table 2 summarizes the results of elapsed times for the MC

simulations using different numbers of spatial volumes. The results

revealed that using a large octree structure (Nx6Ny6Nz) could

significantly improve the computing efficiency. For a complete

DMS simulation on dMRI of WM fibers, the average times

required by MC simulations and MR image syntheses were

396.765.5 and 108.862.2 seconds, respectively. Note that the

results for the two experiments above were obtained without the

application of the multithreading feature that is supported by

DMS.

Multiple Scattering Diffusion Imaging
Fig. 5(a) shows the transverse view of the hexagonal network of

mesh-based cylindrical fibers, and Fig. 5(b) shows a snapshot of the

MC simulation scene. Fig. 5(c) shows the results of diffusion signal

attenuation obtained from the single and double PGSE measure-

ments. For comparison, the signal decay was plotted against 2q for

the double PGSE. The first diffusion diffraction trough was

observed at the q-value of 655.7 cm21 for both sequences,

corresponding to an estimated fiber diameter of 18.6

( = 1.226104/655.7) mm based on Callaghan theory [59]. The
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results were closed to the actual diameter of 19 mm defined in the

MC simulations. Fig. 5(d) shows the dependency of dMRI signal

synthesis on Np. The diffraction trough became less obvious while

Np decreased.

Biphasic Water Diffusion Model
Figs. 6(a–c) illustrate the 3D renderings of the MC simulations

considered in this section, and Fig. 6(d) is the plot of ADCs against

cell sizes. As expected, we found that the ADC decreased when the

cell size increased, and additional reduction in ADC was produced

owing to the effect of membrane-bound layer. Tables 3–4

summarize the model parameters derived from the biexponential

curve fitting to the synthetic dMRI signal. From both tables, we

observed that when the cell size increased, Ff decreased

continuously, and an opposite trend was found for Fs; meanwhile,

increasing cell size appeared to result in a decrease in Df and an

increase in Ds.

HARDI and Fiber Tracking Applications
Fig. 7 shows the geometric designs of crossing, kissing, and

branching fibers. For each case, two networks of fibers were

arranged in an interleaved fashion. Figs. 8–9 show the results of

fODFs and streamline fiber tractography superimposed onto the

FA images. In Fig. 8, we found that SDT generated different

fODF patterns in the regions of crossing and kissing fibers, and

therefore the ground-truth fiber pathways were successfully

differentiated using the probabilistic fiber-tracking algorithm.

Fig. 9 shows the comparison between the deterministic and

probabilistic methods for the case of branching fibers. As shown in

Fig. 9(a), the fiber tracts passed through the areas ‘‘i’’ & ‘‘ii’’ were

colored in red, and through ‘‘i’’ & ‘‘iii’’ were colored in blue.

Figs. 9(b–c) illustrated that the deterministic approach resulted in

ambiguous fiber pathways at the region where the ground-truth

fiber tracts tended into two distinct directions, while the

probabilistic approach presented a good agreement with the

ground-truth fiber configuration.

Discussion

In this article, we present the global architecture and the

potential applications of DMS. The spirit of DMS is to provide a

platform for users to perform various basic dMRI simulations as

well as for advanced developers to customize plug-in functions and

adapt the DMS modules to the study of interests. While being

conceptually similar to previous MC-based simulators [53,54,60],

the overall design of DMS adds values to other systems in terms of

performance, usability, integrity, and extensibility and should

therefore prove a useful addition to the field. According to our

results, we demonstrated that DMS was already applicable to

address a variety of topics (e.g. tissue modeling, diffusion

biophysics, pulse sequence optimization, diffusion reconstruction

model, fiber-tracking and post-processing techniques) and ready to

go beyond experiments to provide new scientific insights. The first

generation of DMS will be released through a dedicated

BrainVISA toolbox (http://brainvisa.info).

Modeling Neural Microstructures
The most difficult task of dMRI simulations is likely to be the

construction of a 3D simulation scene that resembles a biological

environment, as neural tissues contain various types of cells with

diverse sizes and shapes, such as glial cells, neuron bodies, axons,

dendrites. Even for the WM fibers, tissue components such as cell

nucleus, microfilament, microtubule, or myelin sheath are usually

ignored in dMRI simulations. It is not practical to model each cell

type mathematically since analytical expressions for complicated

geometries may not exist. Furthermore, in reality the spaces

between cells are extremely narrow (,tens nm), it is a great

challenge to represent tightly packed configurations all together in

3D. In our benchmark experiments, we have shown that DMS is

able to create various axon fiber configurations and complex

networks of neuronal cells extracted from the micrograph of brain

tissues; meanwhile, it is also possible to simulate the dynamic

events of tissues such as cell swelling. However, it is still

problematic to construct randomly distributed but highly compact

cells. To address this issue, we are currently in the process of

programming an automatic algorithm to generate meshes without

overlapping so as to mimic complex neural media (e.g. brain gray

matter).

Computing Performance and System Stability
We have shown that increasing the octree resolution can

substantially decrease the computation time in our DMS

experiments. However, it is important to note that keeping

increasing the number of partitions may not necessarily gain in

computing efficiency. Actually, optimizing the size of octree

structure could be a difficult task since it depends on multiple

factors including the resolution of cell-membrane mesh, the RMS

displacement of diffusing particle, and the available computer

memory. Nevertheless, the current method can be ameliorated

using an adaptive algorithm that takes the density of mesh element

into account. It means that the regions containing more mesh

elements will be divided into finer subvolumes. Likewise, for those

containing few or no polygons will be merged with their neighbors.

We expect that it will be helpful to improve the efficiency and save

the memory consumption.

Hall and Alexander have proposed that the simulation

complexity ( =Np6NI) for a simple substrate of cylinders has to

be greater than 108 to avoid statistical errors [54]. It is obvious that

the system complexity determines the duration of the simulation.

Our results support that DMS can complete similar simulations

within 10 minutes for a system complexity of Np6NI ,108. In the

simulation of cell-membrane properties, for instance, since the

layer thickness of the polar membrane interface is on a nanometric

scale [50], the time step (i.e. ts) needs to be short enough to reach

an adequate temporal resolution and prevent from the jumping

effect of RMS distance [61]. Consequently, it may cause a great

increase in NI for simulating an actual dMRI experiment that

generally spans tens to hundreds of milliseconds. Hence, it reflects

the importance of the facility in supporting high computing system

for large-scale simulations (i.e. fine tissue architecture, high

temporal resolution, large amount of diffusing particles, and

complex particle-to-membrane interactions).

In principle, the pre-experiments need to be performed for each

dMRI simulation scheme in order to ascertain the appropriate

values for the combination of Np and NI for reproducibility. It is

also clear that the system complexity should vary with the

complexity of the substrate and the pulse sequence. While this

procedure was beyond the purpose of this study, we directly used

the empirical values in our benchmark experiments by choosing

adequate combinations of Np ($106) and NI ($103) to produce a

minimum order of system complexity greater than 109.

Application on Microscopic Diffusion MRI
MSDI is a generalized PGSE technique that has the capacity to

explore compartment anisotropy, pore size and shape at micro-

scopic level via its sensitivity to small compartmental dimension

[62,63,64]. Prior to our MSDI experiments, the accuracy of DMS

had been verified via a simple comparison against an analytical
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model, and the results matched within numerical error (data not

shown). Overall, our results supported the validity of DMS and

were consistent with the theory proposed by Callaghan [59] and

with the data shown by Shemesh et al. [39]. As suggested by the

results shown in Fig. 5(d), an adequate number of particles are

required for high q- or b-value dMRI experiments, which is also

matched with the conclusion in [53,54]. Note that in our MSDI

simulations, the compact hexagonal arrangement of the imper-

meable axons approximately formed a restricted extra-axonal

space in the transverse plane (see Fig. 5(a)). Hence, the q-space

estimate of the axon diameter was potentially a mixture value of

intra- and extra-axonal sizes. It may be the reason that the real

axon size was slightly underestimated in this study.

Application on Tissue Models
For the experiments on the cell swelling and biphasic diffusion

model, overall we observed and verified that cell swelling led to a

drop of ADC, which matched with the previous findings on acute

ischemic stroke [65] and neuronal activation [10,50,66]. Based on

the results obtained from the biexponential analyses, we found that

Df and Ds did not alter significantly following cell swelling. The

results implied that the variation of volume fractions Ff and Fs
mainly drove the variations of diffusion signal attenuation. To the

best of our knowledge, this is the first time that the hypothesis of

cell-membrane-bound layer is evaluated using large-scale MC

simulations with high complexity and exquisite mesh-based

geometries. The system complexity has a major impact on the

simulation time, which again reflects the importance of computing

efficiency. Note that although we could already simulate the effect

of polar membrane layer, the RMS distances that we used (0.19

and 0.11 mm) were larger than the layer thickness of 0.04 mm
assumed in the literature [50]. This had been proved to affect the

results, especially when the diffusing particles were closed to the

cell membranes [61], and thus it will require a smaller ts to clarify

this issue. Works are undergoing to introduce more factors such as

the membrane permeability to perform more complex and

realistic simulations.

Application on HARDI and Fiber Tractography
In this section, we demonstrated that DMS could produce

ground-truth dMRI datasets of different designs of fiber distribu-

tion. Numerous conditions can be simulated for evaluation and

comparison of diffusion reconstruction models and fiber-tracking

algorithms (e.g. modifying the signal-to-noise ratio or the fiber

density). Our results shown in Figs. 8–9 revealed that the fiber

tractography based on SDT and probabilistic fiber-tracking

method could distinguish complex fiber pathways. However,

using the deterministic approach produced the false-positive

streamlines that did not match with the ground-truth fiber

configuration, as illustrated in Fig. 9(b). In addition, a part of

fibers passing through the area ‘‘i’’ (see Fig. 9(a)) were missing,

which implied that the results of the subsequent tract-based

processing such as fiber clustering or network analysis could be

affected while using the deterministic fiber-tracking algorithm. In

fact, the wiggly streamlines also appeared in the probabilistic

tractography; nevertheless, compared with the global results, the

proportion of the false streamlines was relatively low. Note that

although we performed fiber tracking on anisotropic voxels in our

experiments, there should not be any severe side effects on the

results of fiber tractography. This was because the fibers were all

aligned on the plane of isotropic resolution, the anisotropic scale

which is in the direction perpendicular to the plane should not

strongly influence the fiber-tracking propagation. In summary, our

results suggest that the selection of fiber-tracking algorithm is

crucial as it may significantly alter the fiber tractography. Also,

DMS is suitable to evaluate the intrinsic limitations as well as to

optimize the parameters for the diffusion reconstruction models

and the fiber-tracking algorithms.

Future Extension
Further extension of DMS is straightforward due to its

framework design. The directions for future developments are as

follows: (i) Similar to the idea of Panagiotaki et al. [67], we are

going to develop a new 3D rendering technique that aims to build

meshes from a series of histological images of biological samples.

(ii) DMS currently supports the multithreading technique and the

new generation will be compatible with the graphic processing unit

(i.e. GPU) for acceleration, as demonstrated by Waudby and

Christodoulou [68]. (iii) DMS will be extended to characterize the

spin system using Bloch-Torrey equation, and the tissue properties

including the spin-lattice (T1) and spin-spin (T2) relaxation times

will be considered for the MRI signal synthesis. This would be

helpful in many aspects such as developing dMRI pulse sequences

(e.g. designing RF or gradient waveform) and modeling MRI

artifacts (e.g. eddy current, cross-term interaction, or magnetic

field inhomogeneity).

Conclusion

DMS is a novel dMRI simulation platform that has a general

and flexible framework, which can be used to assess the abilities

and limitations of dMRI to image various tissue characteristics

over a large range of experimental conditions. We expect that

DMS may serve as an essential tool for the development,

validation, and optimization of dMRI schemes for different

applications as well as for giving insights into the interrelationship

between the fundamental diffusion process in biological tissues and

the features observed in dMRI.

Supporting Information

Video S1 The video shows the MC simulation of water
diffusion in a virtual neural substrate where the cells
(colored in red) are gradually expanded in order to
animate dynamic cell swelling. The diffusing particles and

their motion trajectories are depicted using deep blue spheres and

light blue curves, respectively.

(MOV)
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