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Abstract

A smaller length ratio for the second relative to the fourth finger (2D:4D) is repeatedly associated with fetal male-typical
testosterone (T) and is implicated as a biomarker for a variety of traits and susceptibility to a number of diseases, but no
experimental human studies have been performed. The present study utilizes the rhesus monkey, a close relative of
humans, and employs discrete gestational exposure of female monkeys to fetal male-typical T levels for 15–35 days during
early-to-mid (40–76 days; n = 7) or late (94–139 days; n = 7) gestation (term: 165 days) by daily subcutaneous injection of
their dams with 10 mg T propionate. Such gestational exposures are known to enhance male-typical behavior. In this study,
compared to control females (n = 19), only early-to-mid gestation T exposure virilizes female external genitalia while
increasing 2D:4D ratio in the right hand (RH) by male-like elongation of RH2D. RH2D length and 2D:4D positively correlate
with androgen-dependent anogenital distance (AG), and RH2D and AG positively correlate with duration of early-to-mid
gestation T exposure. Male monkeys (n = 9) exhibit a sexually dimorphic 2D:4D in the right foot, but this trait is not
emulated by early-to-mid or late gestation T exposed females. X-ray determined phalanx measurements indicate elongated
finger and toe phalanx length in males, but no other phalanx-related differences. Discrete T exposure during early-to-mid
gestation in female rhesus monkeys thus appears to increase RH2D:4D through right-side biased, non-skeletal tissue
growth. As variation in timing and duration of gestational T exposure alter male-like dimensions of RH2D independently of
RH4D, postnatal RH2D:4D provides a complex biomarker for fetal T exposure.
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Introduction

The sexually dimorphic digit ratio between the length of the

second (index) finger and the length of the fourth (ring) finger

(2D:4D) has long been established as smaller in men compared to

women [1]. Fetal testosterone (T) exposure spanning early-to-mid

gestation [2] has been repeatedly implicated in the development of

sexual dimorphism in 2D:4D [3–6]. This finger length ratio has

achieved prominence because of its association with a variety of

human diseases in men and women: men, prostate, testicular and

oral cancer [7–9], infertility [8], autism [10], attention deficit

disorder [11] and eating disorders [12]; women, breast and

cervical cancer [13,14], autism [15,16], congenital adrenal

hyperplasia (CAH) [5], and polycystic ovary syndrome (PCOS)

[17]. Due to the apparent influence of fetal T exposure on 2D:4D

and the latter’s association with human disease, 2D:4D has been

proposed as a faithful postnatal biomarker for gestational exposure

to T and its associated risk of pathophysiology [3,18,19].

Supporting evidence for fetal testosterone differentiation of

2D:4D in humans is provided by genetically-determined andro-

genic abnormalities, including classical CAH – a hypocortisolemic

condition commonly caused by 21-hydroxylase deficiency, that

exposes fetuses to abnormally high levels of adrenal androgens

[20,21]. Women with classic (early gestation onset [22]) CAH

exhibit masculinized physical and behavioral characteristics as well

as lower, more male-like 2D:4D [5]. Buck and colleagues [23],

however, using only left hand measures that show a less

pronounced differential in 2D:4D [3,24,25], fail to show a smaller

2D:4D in women with CAH. In contrast to 46,XX CAH

individuals, 46,XY individuals suffering from complete androgen

insensitivity syndrome (CAIS) present with a female-like 2D:4D

[19] when T action is absent lifelong.

Thus, while associative findings from human studies are mostly

supportive of the hypothesis that fetal male-typical T levels

determine male-like 2D:4D, a controlled, experimental study

confirming fetal T action on 2D:4D has not been performed. In
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this regard, the experimentally-controlled exposure of female

rhesus monkeys (Macaca mulatta) to fetal male levels of T provides a

nonhuman primate model in which to determine the 2D:4D

consequence of fetal exposure to a known duration of fetal male-

typical T exposure [26]. Such T-exposed, prenatally androgenized

(PA) female monkeys display more male-typical behavior [27–29],

regardless of whether female fetuses are exposed to T during either

early-to-mid or late gestation [28,30,31]. PA monkeys also show

varying degrees of masculinized genitalia, including a male-like

anogenital distance [30,32], but only when fetal exposure to T is

initiated during early gestation [28,29,33].

PA female rhesus monkeys exposed to T during either early-to-

mid or late gestation also demonstrate signs and symptoms of

PCOS, a common syndrome of T excess in women [34–37].

PCOS-like traits are most prominent in female monkeys exposed

to fetal male-typical T levels during early-to-mid gestation and

include ovarian and adrenal androgen excess, intermittent or

absent menstrual cycles, polycystic ovaries, increased adiposity,

hyperlipidemia, insulin resistance and impaired insulin secretion,

as well as increased incidence of type 2 diabetes mellitus [34–40].

Such comprehensive reproductive, endocrine and metabolic

sequelae of female fetal T exposure suggest pathophysiological

developmental impact on multiple organ systems, potentially by

means of epigenetic programming [41].

The objective of this pilot study is to determine whether fetal

male-typical T exposure induces a smaller 2D:4D ratio in a female

monkey model for PCOS. Identifying fetal origins for such a lower

ratio in a nonhuman primate could re-affirm 2D:4D as a

biomarker for both fetal T exposure and PCOS. Rhesus monkeys

have a mildly smaller, sexually dimorphic 2D:4D finger length

ratio [24], and we hypothesize that developing females exposed in-

utero to male-typical T at the end of the 1st to mid-2nd trimester

(early-to-mid gestation) demonstrate a more masculinized 2D:4D

[2].

Results

Selected somatic, reproductive and endocrine
characteristics of monkey groups

Aspects of adult phenotypic features related to fetal T exposure

are summarized in Table 1. While none of the female groups

differed with respect to age, body weight and BMI, males were

slightly older than control (p,0.016, partial eta squared

(g2
p) = 0.29; effect size [42–44]) and LPA (p,0.006, g2

p = 0.29)

females. Compared to all three female groups, however, and

typical of rhesus monkey sexual dimorphism, males were heavier

(p,2.661024, g2
p = 0.53), exhibited greater crown-rump length

(p,0.033, g2
p = 0.35), longer anogenital distance (p,1.861024,

g2
p = 0.95), and had greater BMI (p,0.05, g2

p = 0.26). Anogenital

distance, a measure of early gestation T exposure, indicated that

EPA females exhibited more male-typical dimensions than control

or LPA females. EPA females, nevertheless, did not display the

same extension of anogenital distance as manifest by males

(p,1.861024).

Adult female monkey traits relevant to a PCOS-like condition

include high basal T levels, intermittent or absent menstrual cycles

Table 1. Somatometric and PCOS-like traits, right hand 2nd digit length and 2D:4D finger length ratio, in control (n = 19), early
(EPA, n = 7) and late (LPA, n = 7) prenatally androgenized female and control male (n = 9) rhesus monkeys.

Control female EPA LPA Male

Age (Years) 20.360.6a 21.560.9 19.060.9m 23.460.8

Body Weight (kg) 8.860.4b 8.660.6e 8.860.6n 12.660.5

BMI (kg/m2) 38.461.6a 36.562.6c 37.662.6l 47.362.4

CR Length (cm) 48.060.5b 48.760.8c 48.360.8l 51.860.7

AG Distance (mm) 18.465.0b 94.666.3e,h,j 15.067.0n 151.765.3

Basal T (ng/mL) 0.2160.05 0.3460.04 0.2760.05 n.a.

Hyperandrogenic ($0.32 ng/mL) 0% 57% $43% n.a.

Polyfollicular Ovaries n.a. 71% $29% n.a.

Menstrual Cycle (Days) 28 (27, 34) 52 (35, 70)g 39 (31, 62)o n.a.

Intermittent/Anovulatory (%) $10% 86% $57% n.a.

RH 2D Length (cm) 3.21560.046b 3.44360.067f 3.27860.067l 3.56960.055

RH 2D:4D 0.81760.012 0.88460.014d,i,k 0.81560.015 0.79960.011

CR: Crown-Rump, AG: Anogenital, Data are shown as mean 6 SEM or median (range).
aControl Female,Male, 0.01,p,0.05.
bControl Female,Male, p,0.001.
cEPA,Male, 0.01,p,0.05.
dEPA,Male, 0.001,p,0.01.
eEPA,Male, p,0.001.
fEPA.Control Female, 0.01,p,0.05.
gEPA.Control Female, 0.001,p,0.01.
hEPA.Control Female, p,0.001.
iEPA.LPA, 0.01,p,0.05.
jEPA.LPA, p,0.001.
kEPA.Male, p,0.001.
lLPA,Male, 0.01,p,0.05.
mLPA,Male, 0.001,p,0.01.
nLPA,Male, p,0.001.
oLPA.Control Female, 0.01,p,0.05.
doi:10.1371/journal.pone.0042372.t001

2D:4D Ratio in Androgenized Female Monkeys
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and the presence of polyfollicular ovaries. In this study, basal T

levels from adult females during the early follicular phase of the

menstrual cycle or anovulatory period, while similar between

groups (p,0.18), averaged ,50% higher in EPA compared to

control females (Table 1). Four of seven EPA and three of seven

LPA female basal testosterone levels met the previously established

criteria for rhesus monkey hyperandrogenism (.1 SD above

normal control population mean [41]), demonstrating the

presence of adult female hyperandrogenism in 50% of PA

monkeys. Intermittent or absent menstrual cycles were found in

both PA female groups as evidenced by increased intervals

(Table 1) between ovulatory menstrual cycles. Polyfollicular

ovaries, identified by trans-abdominal illumination of individual

ovaries during the early follicular phase or anovulatory period,

showed 71% and $29% incidence in EPA and LPA groups

respectively (.10, ,1–3 mm follicles in one or both ovaries).

Criteria for defining polyfollicular ovarian morphology were based

on those for women [45] as monkey ovarian assessments were

made prior to Rotterdam criteria ($12 follicles in any one ovary

[46]).

Lengths and ratios of digits
As typical for rhesus monkeys, all digit lengths in males were

longer (p#0.006) than those in control females, except for 2D on

the right foot (Table 2). The length of right hand 2D in EPA

females was male-like, exhibiting increased length compared to

control females, and being comparable in length to males

(Figure 1a). Five of seven EPA, but only two of seven LPA,

females exceeded control values for right hand 2D length. As there

was no extension of the right hand 4D length in PA females

(Figure 1b), right hand 2D:4D in EPA females exceeded that of

control and LPA females, as well as that of males (Figure 1c).

Remaining digit length ratios did not differ between male and

female groups (Table 3, Figure 2), except for 2D:4D and 2D:3D in

the right foot. In this latter regard, males showed an expected,

sexually dimorphic smaller 2D:4D ratio compared to control

females (Table 3, Figure 2) and emulated that sex differential in

2D:3D. Interestingly, EPA females showed no difference to

controls.

Lengths and ratios of phalanges and joint space width
Phalanx length and joint space width showed less pronounced

sexual dimorphism than digit length (Table S1, data not shown,

respectively). There was no sexual dimorphism in any phalanx

length ratio (Table S2). There were no between female group

differences in any phalanx or joint space width measurements.

Associations with duration of fetal T exposure
Both anogenital distance (Figure 3: r2 = 0.97, p,1.061025) and

right hand 2D length (Figure 1g: r2 = 0.62, p,6.061025) were

positively influenced by the duration of fetal T exposure in EPA,

but not LPA, females. No associations were found with right hand

4D length (Figure 1h), right hand 2D:4D (Figure 1i) or other

finger, toe and phalanges, and joint space width parameters (data

not shown).

Associations between anogenital distance and right
hand 2D and 2D:4D

Figure 1d illustrates the positive association (r2 = 0.79,

p,1.061024 between all female groups; r2 = 0.76, p,1.061026

between all groups) linking anogenital and right hand 2D

elongation. EPA females, with only early-to-mid gestation

exposure to fetal male levels of T, are found in an intermediate

position between control and LPA females, and normal males, for

both parameters (Figure 1d). There was no relationship (r2 = 0.22,

p.0.14), however, between anogenital distance and right hand 4D

length for female groups alone (Figure 1e). When including males

with all female groups, right hand 4D length positively correlated

with anogenital distance (Figure 1e: r2 = 0.65, p,5.761025). A

positive relationship (r2 = 0.79, p,6.361024) between anogenital

distance and right hand 2D:4D is found when only female groups

are considered (Figure 1f).

Discussion

In many studies, a smaller 2D:4D finger length ratio is

repeatedly proposed as a reliable adult biomarker of fetal T

exposure [3–5,7,47–51]. Developmental sex differences in 2D:4D

start as early as 14 weeks of gestation in humans, at the beginning

of the second trimester [52,53,54], and do not stabilize until at

least two years of age [3]. The bony phalanges within the second

digit, however, can increase throughout childhood, though only in

the left hand [2]. Fetal T may enable preferential digit growth by

stimulating the expression of a series of digit development genes,

Wnt5, Ihh, Bmp6, Fgrf2, Igfbp2/5, Sox9 and Runx2 [25], or through

interaction with sexually dimorphic, differential expression of

androgen and estrogen receptors [25].

Table 2. Mean (6 SEM) digit length in control, early (EPA)
and late (LPA) prenatally androgenized females and control
male rhesus monkeys.

Digit length Control female EPA LPA Male

Left hand

2D 3.21960.056a 3.34060.096 3.34960.081 3.61560.076

3D 4.09060.076b 4.23260.127c 4.13460.114i 4.69060.090

4D 3.96960.065b 4.13460.104 4.08060.095g 4.48060.082

Right hand

2D 3.21560.046b 3.44360.067f 3.27860.067g 3.56960.055

3D 4.08360.065b 4.11560.097c -* 4.54360.074

4D 3.93260.073b 3.85860.092e 3.96660.092h 4.46460.073

Left foot

2D 3.23060.061b 3.42860.086 3.52260.106 3.66960.075

3D 4.41360.065a 4.50060.112 4.38760.102g 4.81260.083

4D 4.16860.071a 4.24060.101c 4.26560.109 4.61460.089

Right foot

2D 3.42560.059 3.38660.112 3.41360.103 3.55760.084

3D 4.42060.066b 4.53260.131 4.46660.117 4.83160.093

4D 4.20660.065b 4.05560.130d 4.21560.106g 4.67860.087

*There were only two LPA females with intact phalanges in the 3rd digit of their
right hand.
aControl Female,Male, 0.001,p,0.01.
bControl Female,Male, p,0.001.
cEPA,Male, 0.01,p,0.05.
dEPA,Male, 0.001,p,0.01.
eEPA,Male, p,0.001.
fEPA.Control Female, 0.01,p,0.05.
gLPA,Male, 0.01,p,0.05.
hLPA,Male, 0.001,p,0.01.
iLPA,Male, p,0.001.
doi:10.1371/journal.pone.0042372.t002
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Figure 1. Right hand (RH) finger parameters in adult control and early (EPA) and late (LPA) prenatally androgenized female and
male rhesus monkeys. (A) RH 2D finger length (a p,2.961024, Control,Male; b p,0.041, EPA.Control; c p,0.012, LPA,Male), (B) RH 4D finger
length (d p,3.661024, Control,Male; e p,3.661024, EPA,Male; f p,0.002; LPA,Male), (C) RH 2D:4D ratio (g p,6.661024, EPA.Male; h p,0.009
EPA.Control Female; I p,0.016, EPA.LPA), (D) relationship between RH 2D finger length and anogenital distance (all groups, dashed line: r2 = 0.76,
p,1.061026; females only, dot-dash line: r2 = 0.79, p,1.061024; 95% Confidence Interval (CI), solid lines), (E) relationship between RH 4D finger
length and anogential distance (all groups, dashed line: r2 = 0.65, p,5.761025; females only: n.s.; 95% CI, solid lines), (F) relationship between RH
2D:4D ratio and anogenital distance (all groups: n.s.; females only, dot-dash line: r2 = 0.79, p,6.361024; 95% CI, solid lines), (G) relationship between
RH 2D finger length and duration of gestational exposure to testosterone propionate (Control and EPA females only, dotted line: r2 = 0.62,

2D:4D Ratio in Androgenized Female Monkeys
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Fetal T exposure induces changes in 2D:4D in female
rhesus monkeys

The current pilot study is the first to experimentally manipulate a

nonhuman primate to test the hypothesis that fetal T exposure

differentiates a smaller 2D:4D. Fetal female rhesus monkeys

exposed to fetal male levels of T during either early-to-mid gestation

(EPA monkeys) or mid-to-late gestation (LPA monkeys) [55,56]

exhibit a variety of masculinized behavioral, physical and physio-

logical traits including, respectively, mounting behavior, virilized

genitalia and impaired steroid negative feedback on luteinizing

hormone [28–32,36]. As anticipated from the studies of Manning,

McIntyre, Lutchmaya and colleagues [3,4,6,7,47,57–59], only EPA

female monkeys exhibit a significant difference in finger length ratio.

In contrast to an expected smaller 2D:4D finger length ratio,

however, EPA females demonstrate a relatively larger 2D:4D ratio

finger length ratio compared to both normal control females and

males, yet only in their right hands. This unexpected hyper-

feminine ,8% increase in right hand 2D:4D ratio in EPA female

monkeys is likely the product of an ,7% elongation in 2D finger

length. The degree of increased finger length in EPA females is

comparable to the ,11% greater length of 2D found in the right

hand of normal males compared to control females. Right hand 2D

elongation in EPA females, however, is without the accompanying

,13% longer right hand 4D, as found in males, hence the increased

2D:4D ratio in EPA females, but not in males.

EPA 2D finger elongation is highly predictive of the degree of

masculinized (elongated) anogenital distance in EPA females. Such

a predictive relationship between the degree of masculinized

genitalia and right hand 2D finger length heavily contributes to

the positive association between right hand 2D:4D finger length

ratio and anogenital distance. The correlation with degree of

masculinized genitalia remains for right hand 2D finger length, but

not 2D:4D, when males are included. Female right hand 2D finger

length also positively correlates with duration of fetal T exposure,

when LPA females are excluded (LPA anogenital distance is

unresponsive to T). 2D finger elongation in EPA females thus likely

reflects the action of fetal T, or its locally derived androgenic or

estrogenic metabolites, on finger traits determined during the

critical period of early-to-mid gestation. Anogenital distance is

crucial in providing understanding for this potential fetal mecha-

nism since in rhesus monkeys, as in humans, anogenital distance is

an established biomarker of the duration of fetal T exposure (as

confirmed by this study), mostly through the action of its locally

derived androgenic metabolite, dihydrotestosterone, during early-

to-mid, but not late, gestation [29,30,32,33,60]. EPA female rhesus

monkeys display male-like elongation of their anogenital distance in

addition to obvious virilization of their external genitalia (phallus

and scrotum). Thus, in female rhesus monkeys during early-to-mid

gestation, duration of exposure to fetal male-typical T levels

incrementally increases both anogenital distance and right hand 2D

finger length, suggesting that androgen action on the two

anatomical differentiation events may be temporally linked.

Right-sided bias for 2D:4D
Right-sided bias in digit ratio differences also occurs in humans,

other nonhuman primates, and non-primate mammals

[24,25,61,62]. In humans, the magnitude of the sex difference in

2D:4D can be greater in the right than the left hand [18,51,62],

possibly because male-typical fetal T levels increase the degree of

bias in right-sided lateralization together with lower 2D:4D

[18,51,63–65]. Right-sided bias in human 2D:4D is positively

associated with tissue oxygen uptake and physical performance

[62,66,67] and may therefore contribute survival advantages.

Studies, however, are inconsistent as to whether right-sided bias in

human 2D:4D is [62,68–72] or is not [73,74] associated with an

increase in left-handedness as part of a functional asymmetry and

cerebral lateralization [75]. A larger right hand 2D:4D, however,

is associated with right handedness in both men and women [70].

Monkey handedness was not determined in the current study.

Potential mechanisms of fetal T induced changes in
2D:4D

Sexually dimorphic 2D:4D finger length ratios are not unusual

in nonhuman primates [58,76] and manifest together with

additional sexually dimorphic ratios for phalanges, metacarpals

and metatarsals in both hands and feet [77,78]. Sexual dimor-

phism in baboon, gorilla and chimpanzee metacarpal and

metatarsal bone length and ratios suggest T-mediated effects on

a variety of genes regulating phalanx growth [24,77,78]. In the

present study, however, in which female rhesus monkeys exposed

p,6.061025; 95% CI, solid lines), (H) relationship between RH 4D finger length and duration of gestational exposure to testosterone propionate
(Control and EPA females only: n.s.), and (I) the relationship between RH 2D:4D ratio and duration of gestational exposure to testosterone propionate
(Control and EPA females only: n.s.). Horizontal dashed lines indicate range of control female values (G–I).
doi:10.1371/journal.pone.0042372.g001

Table 3. Mean (6 SEM) digit length ratio in control, early
(EPA) and late (LPA) prenatally androgenized female and
control male rhesus monkeys.

Digit length
ratio

Control
female EPA LPA Male

Left hand

2D:3D 0.79460.010 0.80060.019 0.80660.015 0.76960.012

2D:4D 0.81760.010 0.83060.017 0.82860.014 0.80660.012

3D:4D 1.03260.014 1.01760.017 1.00060.015 1.04960.010

Right hand

2D:3D 0.79560.010 0.83060.014 -* 0.78460.011

2D:4D 0.81760.012 0.88460.014b,c,e 0.81560.015 0.79960.011

3D:4D 1.04260.014 1.06060.017 -* 1.01960.011

Left foot

2D:3D 0.74760.013 0.77660.018 -* 0.76960.014

2D:4D 0.79060.012 0.80260.017 -* 0.80560.014

3D:4D 1.05360.010 1.03860.016 1.03060.014 1.04460.012

Right foot

2D:3D 0.76760.006a 0.77860.012d 0.77260.012f 0.73560.008

2D:4D 0.81160.010a 0.82560.019d 0.81060.015 0.76160.013

3D:4D 1.05960.008 1.09060.017 1.05060.013 1.03660.011

*There were only two LPA females with intact phalanges permitting calculation
of 2D:3D and 3D:4D in the right hand together with 2D:3D and 2D:4D in the left
foot.
aControl Female.Male, 0.01,p,0.05.
bEPA.Control Female, 0.001,p,0.01.
cEPA.LPA, 0.01,p,0.05.
dEPA.Male, 0.01,p,0.05.
eEPA.Male, p,0.001.
fLPA.Male, 0.01,p,0.05.
doi:10.1371/journal.pone.0042372.t003
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to fetal T during early-to-mid, but not late, gestation exhibit

elongated right hand 2D finger length and increased right hand

2D:4D ratio, T-exposed EPA females show no corresponding

changes in phalanx length or joint space width, suggesting

insufficient involvement of bone, cartilage and joint connective

tissue in mediating elongation of right hand 2D finger length. As

rhesus monkeys, typical of anthropoid primates, have obvious

adipose accumulation in pronounced fingertip pads retained from

fetal life [79], and EPA females exhibit differential accumulation of

abdominal fat [38,80] and masculinized skin whorls in fingertip

pads [79,81,82], early-to-mid fetal T exposure may direct

preferential accumulation of adipose to the right hand 2D

fingertip in EPA females, potentially through a mechanism similar

to that proposed for 2D:4D sex differences in humans [83,84].

Subtle, menstrual cycle dependent changes in 2D:4D in women

certainly suggest contributions of soft tissue to female finger length

[85].

With regard to a T-dependent mechanism regulating finger

length, Talarovicova and colleagues [86] have shown in rats that

fetal T exposure diminishes 2D length in the left forepaw and

elongates 4D length in both forepaws resulting in the expected

smaller 2D:4D ratios. In mice, Zheng and Cohn [25] elegantly

demonstrate the relevance of both androgen receptor (AR) and

estrogen receptor alpha (ERa) in regulating developing digit

primordia, focusing on the hind paws. Through fetal exposure to

DHT or elimination of ERa expression in limbs of female mice,

Zheng and Cohn [25] show that androgen excess or estrogen

absence elongates 4D length and reduces 2D:4D ratio. For male

mice, elimination of AR expression in limbs or fetal exposure to

the androgen antagonist, flutamide, or estradiol, demonstrate that

absence of androgen action or presence of estrogen excess

diminishes 4D length and increases the 2D:4D ratio, and provide

converse hormonal and developmental findings to those in female

mice. The mouse findings reinforce the importance of fetal effects

of both androgenic and estrogenic action on finger length found

previously in a human study associating a higher amnionic fluid

ratio of testosterone to estradiol with reduced 2D:4D finger length

ratio [6]. The mouse studies also find that expression of both AR

and ERa are greater in 4D compared to 2D in males and females

[25]. Results of the current monkey study, however, fail to emulate

both rat and mouse findings with regard to right hand 2D finger

length differences in EPA females, but do emulate these previous

rodent results with regard to hindpaws [4,25], as male rhesus

monkeys have a smaller right foot 2D:4D, achieved by an

elongated 4D toe length.

Male-female monkey sexual dimorphism found in the right foot

2D:4D in the present study is surprising in two regards. Firstly, our

macaque sexual dimorphism is in the opposite direction from

previously recorded human toe sexual dimorphism [48,87].

Secondly, neither EPA nor LPA female monkeys show differences

in right foot 2D:4D ratio or 2D toe length compared to control

females. Since fingers and toes develop at the same early-to-mid

gestational age [88], the smaller 2D:4D toe length ratio in only the

male monkey right foot contrasts unexpectedly with an elongated

2D length and larger 2D:4D ratio in only the EPA female monkey

right hand, suggesting sexually dimorphic digit responses to fetal T

Figure 3. Female anogenital distance positively correlates
(Control and early prenatally androgenized (EPA) females
only, dotted line: r2 = 0.97, p,1.061026; 95% CI, solid lines)
with duration of early-to-mid gestation fetal T exposure.
Horizontal dashed lines indicate range of control female values.
doi:10.1371/journal.pone.0042372.g003

Figure 2. Right foot (RF) toe parameters in adult control and early (EPA) and late (LPA) prenatally androgenized female and male
rhesus monkeys. (A) RF 2D finger length, (B) RF 4D finger length (a p,9.061024, Control Female,Male; b p,0.002, EPA,Male; c p,0.011,
LPA,Male), and (C) RF2D:4D ratio (d p,0.02, Control Female.Male; e p,0.04, EPA.Male).
doi:10.1371/journal.pone.0042372.g002
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exposure. In addition, the direction of sex differences in digit

responses to fetal androgen or estrogen exposure, demonstrated in

the earlier mouse study [25], is only emulated by male monkeys in

the current study. One resolution of these digit differences between

male and female monkeys could be achieved if a temporally

discrete effect of fetal T (and/or its estrogenic metabolites) during

mid-gestation (days 76–93 of gestation), a period of female monkey

fetal development not examined by this study, was crucial for T-

mediated elongation of 4D in both right hand and foot. Such

gestational temporal differences in sex hormone-regulated 2D and

4D growth are possible since finger lengths reach their term length

late in gestation [53].

There are, however, several additional potential explanations.

Sexually dimorphic expression of AR and ERa may contribute to

sex differences in the length of 4D [25]. Relatively more ERa
expression in females [25] and local aromatization of exogenous T

shortens 4D and relatively more AR in males [25] enables

testicular fetal T to stimulate a longer 4D. In such a scenario,

increased TP-injected monkey dam conjugation of estrogens due

to placental aromatization of exogenous T in EPA pregnancies

[56], combined with placental transport of sulfated estrogens and

high expression of sulfatase in fetal digits [89], may increase 4D

exposure to local estrogenic action and thus diminish T-mediated

4D elongation in EPA females, alone. Genetically-determined

effects, independent of androgenic (or estrogenic) action, possibly

involving interactions between testis-determining SRY and genes

regulating finger length, such as Sox9 the downstream target of

SRY [25], and the interaction of Sox9 with TGF-beta regulation of

fetal digit extra-cellular matrix [90], may be crucial for male-like

digit responses to the fetal steroid hormone environment.

Regarding TGF-beta signaling in fetal digit development [90],

the epigenetic profile of visceral adipose from both infant and

adult EPA female monkeys includes altered DNA methylation of

genes involving TGF-beta signaling [41]. Whether one or more of

these potential mechanisms operate through combined effects on

phalanx length, joint space width and fingertip adipose deposition

remains to be determined.

The current pilot monkey study, however, does not differentiate

between these and other possibilities, but does identify difficulty in

employing adult 2D:4D digit ratios as reliable, generic biomarkers

for fetal T excess. Origins of digit length ratios are not as

straightforward as initially proposed by Manning and colleagues

[3,4,61,91]. Our monkey results may help to explain why

associations of 2D:4D with developmental outcomes in humans

are more pronounced than the magnitude of sex differences in

2D:4D [62,92], as well as the substantial variations in 2D:4D

between different human populations [58,62]. As genetically-

determined sex of an individual [93], together with gestational

stage at fetal T exposure (from exogenous or endogenous sources)

and its duration, may all influence how 2D:4D manifests after

birth, our monkey results call into question the widespread use of

2D:4D as an associated fetal T biomarker implicating gestational

T exposure with pathological [3,10,11,18,19] or other outcomes

[3,59,61,62]. Until in utero, hormonally-regulated mechanisms

determining finger lengths in both sexes are elucidated in

primates, including humans, our results indicate the potentially

misleading nature of using adult 2D:4D, alone, as a biomarker for

fetal T exposure.

Relevance of 2D:4D to PCOS
Our pilot monkey study also permits re-interpretation of recent

2D:4D findings in PCOS women and one previous conclusion that

PCOS is not associated with prior gestational T exposure [94,95].

In female animal models, while gestational T exposure reliably

induces PCOS-like traits [34,36,96–98], the origins of PCOS in

women are still unknown [35]. PCOS is a prevalent hyperandro-

genic disorder of reproduction and metabolism in reproductive

aged women [99–101]. Due to the difficulty of measuring human

fetal T levels during gestation [19,102], most cited evidence for

fetal T exposure, such as 2D:4D, is indirect. The use of adult

2D:4D, however, as evidence for T exposure during gestation in

women with PCOS has generated mixed results. Cattrall and

colleagues [17] measured 2D:4D in a group of 17 women with

classic PCOS (selected by NIH criteria [103]) and discovered a

small, but significant, decrease towards a male-like ratio in both

left and right hands. Lujan and colleagues [94,95], however,

showed that women with a variety of PCOS phenotypes

(Rotterdam criteria [46]) do not demonstrate a more male-like

2D:4D in either left or right hands in any PCOS phenotype.

Interestingly, however, PCOS women in Lujan’s studies [94,95]

do exhibit a hyper-feminized 2D:4D ratio because of relatively

lengthy 2D compared to 4D finger lengths in both left and right

hands. The greatest relative elongation of 2D finger length occurs

in the most hyperandrogenic PCOS women, resulting in positive

rather than the expected negative correlations between 2D:4D and

basal T, free androgen index and hirsutism score. 2D:4D,

however, is regulated mostly by the fetal and not adult hormone

environment [7,49]. Thus, if 2D:4D is determined similarly in

PCOS women as in EPA, PCOS-like female rhesus monkeys, such

positive correlations between adult 2D:4D and parameters of adult

hyperandrogenism suggest that the degree of androgen excess and

elongation of 2D:4D in PCOS may reflect the degree and duration

of fetal T exposure during early-to-mid gestation.

Direct evidence for a fetal T contribution to developmental

origins of PCOS in humans, however, has been restricted to

assessment of umbilical cord blood hormone levels from term

births. Daughters born to women with PCOS, and at increased

risk of PCOS in adulthood [104], have elevated, male-like T levels

in umbilical vein blood at term [105]. In a separate study,

however, PCOS daughters had reduced levels of androstenedione,

an androgenic precursor to T, in mixed cord blood [106]. The late

term gestational environment of PCOS daughters may thus be

abnormal in terms of circulating androgens, but inconsistently so.

Mixed cord blood levels of T are also not elevated in girls who

were subsequently diagnosed with PCOS in adolescence [107];

however, the overly-prevalent adolescent diagnosis of PCOS

(28%) in this Australian population is confounded by age-

appropriate anovulation and multifollicular ovaries [108,109].

Such term assessments, however, may be too removed from

transient, mid-gestational ovarian androgen biosynthesis [110] and

fetal male-like elevations in circulating T [102] to accurately

identify PCOS risk. Accompanying elevations in maternal [111] or

fetal [112] insulin during hyperglycemic gestations in PCOS

women [113] and PA monkeys [112] may enhance fetal ovarian

androgenicity [114]. Until advances in technology permit safe and

accurate measurement of human fetal blood concentrations, or

identification of a reliable postnatal biomarker of early-to-mid-

gestational androgen exposure, understanding fetal T contribu-

tions to human 2D:4D and to the origins of PCOS will remain

elusive.

Materials and Methods

Ethics Statement
The Institutional Animal Care and Use Committee of the

Graduate School of the University of Wisconsin-Madison

approved all procedures used in the study, and the care and

housing of the monkeys was in accordance with the recommen-
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dations of the Guide for the Care and Use of Laboratory Animals

and Animal Welfare Act with its subsequent amendments.

Animals
The 33 female and 9 male adult rhesus monkeys (Macaca mulatta)

used in this study were maintained at WNPRC, according to

standard protocol as previously described [30,40]. Age, weight and

body mass index (BMI; body weight (kg)/crown-rump length (m2)

[115]) of female groups were comparable, whereas male body

weight and BMI showed species-typical sexual dimorphism

(Table 1). Somatometric measurements were obtained from each

animal while anesthetized with ketamine HCl (7 mg/kg, intra-

muscular (i.m.) injection) and xylazine (Rompun; 0.6 mg/kg, i.m).

Fourteen of the 33 female monkeys were exposed to fetal

testosterone excess by subcutaneous (s.c.) injection of their dams

with 10 mg testosterone propionate (TP). Dams of seven PA

females received daily TP injections starting on gestational days

40–44 for 15–35 consecutive days (early-to-mid gestation, E). The

other seven dams received injections of TP starting on gestational

days 94–115 for 15–25 consecutive days (late gestation, L). We

could only study 14 of the 23 previously described PA monkeys

[37] as nine of the PA females had died of natural causes. The

other 19 control female monkeys, and all males, in this study were

not exposed to exogenous testosterone excess in utero, and were

selected from monkeys not otherwise manipulated during gestation

by other investigators or colony management at the WNPRC.

In some of the female monkeys employed in this study,

somatometric measures, basal testosterone, menstrual cycle

duration and ovarian morphology were previously reported in a

variety of earlier studies, but are included here to provide

appropriate context for analyses of the lengths of digits (fingers

and toes) as well as phalanges (bones of the fingers and toes) and

joint space width [34–37,40,116–118]. Blood samples providing

serum for hormone analyses were obtained from animals trained

to use a tabletop restraint without anesthesia [116]. Ovarian

morphology was visualized during abdominal laparoscopy [119]

while the animals were sedated with Ketamine HCl (10 mg/kg,

i.m.).

Parameters relevant to PCOS-like traits
Menstrual cycle assessment. Each female monkey under-

went saphenous venipuncture three times weekly between 06:00

and 09:00 h while in a familiar tabletop restraint without

anesthesia, and the resultant serum was assayed for progesterone

for ,2–6 month intervals [34–37,40,116–118]. Since menstrual

discharge was not usually observed in approximately one-third of

ovulatory EPA female rhesus monkeys [116], both a decline in

serum progesterone values and the first day of menstruation were

used to determine menstrual cycle phase onset and duration. The

day that serum progesterone levels exceeded 0.4 ng/ml was

designated as the first day of a luteal phase, while the day that

serum progesterone levels declined below 0.4 ng/ml was defined

as the onset of the follicular phase [116]. Ovulatory menstrual

cycles were identified as those with two serum progesterone levels

above 1 ng/ml within 15 days before menses or serum progester-

one falling below 0.4 ng/ml [30,116].

Hormone assays. Circulating progesterone and T determi-

nations were undertaken by enzymeimmunoassay in the

WNPRC/Institute of Clinical Translational Research (ICTR)

Hormone Assay Services Laboratory [117,120]. T measurements

were performed following diethyl ether extraction of serum and

solvent fraction separation by celite chromatography. Intra- and

inter-assay CVs for quality control preparation (QC) values were,

respectively, progesterone, 3.9% and 8.9%; T, 3.5% and 14.0%.

Ovarian morphology. During laparoscopic assessment of

ovarian dimensions [121,122] while the animals were sedated with

Ketamine HCl (10 mg/kg, i.m.), photographic images were taken

of trans-illuminated ovaries [119] at their largest diameter during

the early follicular phase (menstrual cycle days 1–5) or an

anovulatory interval. Ovarian images with .10, ,1–3 mm

diameter follicles were scored as polyfollicular (Table 1), a

criterion modified from the prevailing ultrasonographic determi-

nation of polycystic ovaries in women [45] before the Rotterdam

consensus [46].

Somatometrics
Somatometric measurements were performed immediately after

x-rays of hands and feet, or after DXA scans (for an unrelated

study), as previously validated for rhesus monkeys [123]. Each

animal was anesthetized with ketamine HCl (7 mg/kg, i.m.) and

xylazine (Rompun; 0.6 mg/kg, i.m) and was assessed for body

weight, crown-rump length, digit length and anogenital distance.

Digit Lengths. With the animal in left lateral recumbency,

digit measurements were taken of the right hand and foot. The

animal was then moved to right lateral recumbency and the left

hand and foot digits were measured. Digit lengths were measured

on the ventral surface of the hands and feet, using a Lange

digitized caliper measuring to the nearest 60.1 mm, from the

middle of the proximal skin crease at the base of the digit to the

mid-point at the tip of the digit [3,4,58]. Each digit was extended

and placed flat on a tabletop, dorsal side facing down, during

measurement to ensure the most accurate digit measurement

possible, while avoiding the confounding factor of soft tissue in the

finger tips distorting the length measurement when pressed

ventrally against a glass surface to be photocopied or scanned

[51]. The same experimenter repeated the digit measurement

three times for all monkeys, taking the average for each digit.

Because of age and social housing, several digit measures were

omitted due to either visibly compromised digits (i.e., incomplete,

damaged, missing, bent) or x-ray determined damage in digit

phalanges (i.e., arthritic growth, dislocated bones, improperly

healed fractures, missing bones, broken bones). Interclass corre-

lation coefficient (ICC) was used to assess reliability of mean finger

and toe length measurement (average length ICC with absolute-

agreement definition) [124] and ranged from 0.95–0.98.

Anogenital distance. This measure was performed with the

animal in right lateral recumbency and using a cloth tape measure

to the nearest 60.1 cm. One end of the tape measure was placed

above the center of the anus while the length measurement above

the center of the urethra was recorded.

Phalanx measurements. Radiographs, using standard tech-

niques, were taken of hands and feet of all monkeys with digits

fully extended and flattened against the radiographic plate. Three

radiographs of the right foot in control females were omitted from

analyses because they did not permit accurate phalanx measure-

ments when viewed under 62 magnification on a radiograph light

box. A single operator measured each phalanx (proximal, P1;

intermediate, P2; distal, P3) three different times to obtain the

average length used in analyses while blind to female fetal history.

Phalanx length was obtained using a Fisherbrand Traceable

Electronic Digital Caliper accurate to 60.01 mm from the mid-

points of the proximal and distal ends of each phalanx [2].

Emphasis was placed on measuring the straight alignment of the

distal and proximal ends of the shaft rather than its vertical

alignment [78]. The same observer, after ,2–60 months, used the

same methodology to re-measure phalanges in 76.2% (32/42) of

radiographs, without regard to previous measurements, in order to

assess reliability of phalanx measurements by calculating intra-
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observer reliability (IOR) between original and repeated assess-

ments [57,58]. Intra-observer correlations ranged from 0.95–0.97.

Due to the mid-to-late reproductive years of the monkeys used

[36,37], an independent observer scored all the phalanges for

arthritis while blind to animal group. Digits that were obviously

arthritic, damaged, missing, broken, incomplete or bent were

omitted from analyses.
Cartilage Measurements. The joint space width (JSW) of

the metacarpophalangeal (MCP), proximal interphalangeal (PIP)

and distal interphalangeal (DIP) joints in the second digit of the

right hand were measured from the already captured radiographs

using a Fisherbrand Traceable Electronic Digital Caliper, accurate

to 60.01 mm. Using the previously described method of

measuring JSW by Angwin and colleagues [125], values were

taken from three different positions along the JSW: two were on

the outside of the second digit – lateral and medial to the middle

finger, and one in the center of the JSW of the second digit [125].

A single operator measured each JSW three different times to

obtain the average length used in analyses while blind to animal

group. The same observer, after 6 months, used the same

methodology to re-measure JSW in 31% (13/42) of radiographs,

without regard to previous measurements. Intra-observer correla-

tions ranged from 0.65–0.71.

Statistical Analysis
Variables were compared by one-way ANOVA using fetal T

exposure as the main factor. When significant (p,0.05), post-hoc

analysis was performed using Tukey’s test (Systat 12, Chicago, IL).

Least-mean square regression was employed to examine param-

eter association. As a large number of ANOVAs were performed

on phalanx and joint distance measures, the standard criterion for

statistical significance (p,0.05) may have been exceeded by

chance. It is thus important that statistical assessments of phalanx

and joint space parameters be interpreted in relation to

appropriate accompanying effect size (g2
p; [43,44]), particularly

medium (,0.5) to large (,0.8) effect sizes [42], as employed by

McFadden and Bracht [126] in examining relative lengths of

metacarpals and metatarsals in Great Apes. Effect sizes for all

parameters are provided in Table S3.

Supporting Information

Table S1 Mean (± SEM) phalanx lengths in control,
early (EPA) and late (LPA) prenatally androgenized
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(DOCX)

Table S2 Mean (± SEM) phalanx length ratios in
control, early (EPA) and late (LPA) prenatally androge-
nized female and control male rhesus monkeys.
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Table S3 Effect size (g2
p) [42] of digit length averages,

phalanx length averages, digit ratios, phalanx length
ratios and biological statistics in control, early (EPA)
and late (LPA) prenatally androgenized female and
control male rhesus monkeys. Categories of effect size:

small: 0.20; medium: 0.50; large: 0.80 [42].
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