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Abstract

Human cognitive capacity includes recursively definable concepts, which are prevalent in domains involving lists, numbers,
and languages. Cognitive science currently lacks a satisfactory explanation for the systematic nature of such capacities (i.e.,
why the capacity for some recursive cognitive abilities–e.g., finding the smallest number in a list–implies the capacity for
certain others–finding the largest number, given knowledge of number order). The category-theoretic constructs of initial F-
algebra, catamorphism, and their duals, final coalgebra and anamorphism provide a formal, systematic treatment of
recursion in computer science. Here, we use this formalism to explain the systematicity of recursive cognitive capacities
without ad hoc assumptions (i.e., to the same explanatory standard used in our account of systematicity for non-recursive
capacities). The presence of an initial algebra/final coalgebra explains systematicity because all recursive cognitive
capacities, in the domain of interest, factor through (are composed of) the same component process. Moreover, this
factorization is unique, hence no further (ad hoc) assumptions are required to establish the intrinsic connection between
members of a group of systematically-related capacities. This formulation also provides a new perspective on the
relationship between recursive cognitive capacities. In particular, the link between number and language does not depend
on recursion, as such, but on the underlying functor on which the group of recursive capacities is based. Thus, many species
(and infants) can employ recursive processes without having a full-blown capacity for number and language.
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Introduction

Many cognitive domains include recursively definable concepts

(i.e., concepts defined with reference to themselves), such as

domains involving lists, numbers, or languages. In card games, for

example, a deck of cards can be defined (recursively) as a top card

(perhaps turned face up to reveal its value) and a (remaining) deck

of cards. To include finite decks, the definition has an alternative

clause specifying an empty deck; that is, a deck is either empty, or

contains a top card and a (smaller) deck. Operations on recursively

defined concepts may also be defined recursively. For example,

removing jokers from a deck of cards can be defined (recursively)

as removing the top card if it is a joker and then removing jokers

from the remaining deck of cards. Given that you don’t find

people who can remove the jokers from a hand of seven cards

without being able to remove jokers from a deck of fifty-three,

recursion-related capacities are further instances (see below) of the

systematic nature of human cognition.

Systematicity is a property of human cognitive architecture (i.e.,

the basic processes and modes of composition that together afford

cognition) whereby cognitive capacity is organized around groups

of related abilities. A standard example since the original

formulation of the problem [1] has been that you don’t find

people with the capacity to infer John as the lover from the

statement John loves Mary without having the capacity to infer Mary

as the lover from the related statement Mary loves John. In general,

an instance of systematicity is when a cognizer has cognitive

capacity c1 if and only if the cognizer has cognitive capacity c2 (see

[2]). In this format, we say, e.g., that systematicity is evident where

one has the capacity to remove the jokers if and only if one has the

capacity to remove the aces (assuming, of course, one has the

capacity to identify jokers and aces).

The classical explanation for systematicity has two components:

(1) combinatorial syntactically structured representations; and (2)

processes that are sensitive to (i.e., compatible with) those syntactic

structures. In a classical cognitive architecture, mental represen-

tations of constituent entities (e.g., John, Mary) are tokened

(instantiated) whenever the mental representations of their

complex hosts (e.g., John loves Mary) are tokened, with the meaning

of a complex host representation obtained (recursively) from the

meaning assigned to its constituent mental representations and

their syntactic relationships. By analogy to language, this form of

mental representation is called a language of thought (LoT) [3].

The three aspects of systematicity, i.e., systematicity of representation,

systematicity of inference, and compositionality of representation [1], can

often be derived from classical cognitive architectures, because the

same component processes are often used for each and every
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member of a group of systematically-related capacities. For

instance, a classical system has the capacity to represent John loves

Mary if and only if the system has a capacity to represent Mary loves

John when the common component process is something like a

production rule: S?Agent loves Patient (where John and Mary can

both be produced from Agent and Patient by other production

rules)–systematicity of representation. Likewise, a classical system

has the capacity to infer John as the lover in John loves Mary if and

only if it has the capacity to infer Mary as the lover in Mary loves

John given a common process that is sensitive to the syntactic

structure whereby the lover constituent is represented by the first

token–systematicity of inference. Also, the capacity to assign the

semantic content of John being the lover of Mary to the

representation John loves Mary if and only if there is the capacity

to assign the semantic content of Mary being the lover of John to

the representation Mary loves John derives from the tokening

principle (above) mediating classical representations and processes:

the process for juxtaposing tokens (symbols) John, loves, and Mary to

form John loves Mary with corresponding semantic content is the

same process that is used to form Mary loves John with

corresponding content.

Classical compositionality would seem to provide an elegant

explanation for systematicity with regard to recursive capacities,

even though it fails to provide a full account of systematicity

generally [4]. (Classical theory fails to provide a complete

explanation because one can construct syntactically compositional

systems that support some but not all members of a group of

systematically-related cognitive capacities. Additional, so-called ad

hoc, assumptions are needed to derive only those classical cognitive

architectures that support systematicity–see [4] for an extensive

and detailed analysis. This problem for classical theory echoes the

one originally raised against connectionism as a theory of cognitive

architecture [1,5].) For recursive definitions, like the deck of cards,

one self-referencing rule typically covers all cases (bar the

terminating case, such as the empty deck). For example, removing

jokers from a single hand, or an entire deck invokes the same

component process. The two tasks only differ in the number of

recursive steps.

Classical compositionality without systematicity for
recursion

However, the classical explanation with regard to recursive

capacities still suffers the same general problem (illustrated below)

that it suffers for non-recursive capacities. Suppose one card game

requires removing the lowest value card in the hand dealt, while

another card game requires removing the highest value card. In

schema terms, given knowledge of the relative value of the cards, a

person has the capacity to remove the lowest valued card if and

only if a person has the capacity to remove the highest valued

card, given that they know the relative values of each card. In

everyday terms, you never come across card players who can play

one of the games, but not the other. Classical theory admits at least

two general schemes for realizing these capacities, recursive and

non-recursive iteration, without requiring that they share a

common component process. Hence, classical theory admits the

case of having one capacity without having the other. Moreover,

even under restriction to a single recursive (or, non-recursive)

scheme, there remains an assumption that the processes for

making inferences from representations of recursively-definable

entities are compatible with the processes for building those

representations (see [6]). For these reasons, classical theory does

not provide a complete explanation of systematicity, even for

recursively defined capacities.

To illustrate the problem just outlined, suppose the following

recursive procedure, lowest, for identifying the lowest valued card

in a deck of cards (containing at least one card):

lowest(c : cs)~lower(c,lowest(cs))

lowest(c : ½ �)~c

where a deck of cards c : cs is represented by a recursively defined

list with c as the top card and cs as the remaining deck, ½� is the

empty deck, and lower returns the lower of two cards. Suppose,

also, the following classical non-recursive procedure, highest, for

identifying the highest valued card:

highest(cs)~(i,high)/(0,undefined)

while ivn do

(i,high)/(iz1,higher(high,csi))

return high

where deck cs is represented by an array of n cards with position

indexed by i (i.e., csi is the ith card), high maintains a

representation of the (currently) highest card, higher returns the

higher of two cards (undefined is some value guaranteed to be

lower than any card), and / indicates variable-value assignment.

Clearly, the two procedures do not share any component

processes, and so do not provide a basis for systematicity, even

though systematicity could be supported when both tasks are

implemented in either the first style only, or the second style only.

(In fact, entire programming languages have been designed to

support only the first–e.g., Haskell–or only the second–e.g., Basic–

style of recursion/iteration.) Notice that we are not unfairly

stressing classical theory by apportioning capacity at the level of

constituents–systematicity concerns ‘‘molecular’’, not ‘‘atomic’’

capacities [1]. Rather, given constituent capacities lower and higher,

classical theory admits two independent compositional forms, as

the example illustrates. Notice, also, that even when confined to

recursive or iterative style, there is still the assumption that the

deck of cards is represented in a particular order. Item order is

crucial for, say, recalling the first item. An architecture that

constructs lists with one order, but accesses them assuming another

will fail to exhibit systematicity. This further problem is an analog

of the one highlighted for the classical explanation in regard to

non-recursively defined entities [6].

Category theory explanation of (non-)recursive
systematicity: outline

An explanation for non-recursive systematicity without ad hoc

assumptions was given in [6,7], using a branch of mathematics

called category theory [8]. Briefly (and informally), our category

theory explanation supposes that building blocks of a (categorial)

cognitive architecture are ‘‘universal constructions’’. In effect, a

universal construction guarantees that each and every morphism

(cognitive process) in the category (cognitive domain) of interest

factors through (is composed of) a universal arrow (common

component process) in a unique way (without requiring additional
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assumptions). The ad hoc aspects of previous approaches to

systematicity are avoided because uniqueness is a built-in part of

universal constructions. In this paper, we extend our category

theory explanation to recursive capacities using universal con-

structions called an initial F-algebra and a final F-coalgebra, which

have been extensively developed in computer science as a

theoretical basis for recursive computations [9–12]. Our previous

work [6,7] dealt with non-recursive domains using a kind of

universal construction called adjoint functors–a functor is a way

relating categories, which can be viewed as a way of constructing

objects and morphisms from one category based on those in

another. The current work uses endofunctors, which relate categories

to themselves, hence their relevance to recursion: from an initial F-

algebra on an endofunctor F we get systematicity of inference;

from the associated final F-coalgebra on the same endofunctor we

get systematicity of representation; and from endofunctors

composed of category-theoretic products we get compositionality

of representation. In the next section (Methods), we introduce the

category theory concepts needed for this explanation. Then, we

present our explanation for systematicity in regard to recursively

defined capacities, with specific examples (Results). Finally

(Discussion), we provide some perspective on our explanation in

terms of its potential limits, and some broader aspects of cognition,

including integration with non-systematic capacities, and the

debate over the relationship between recursion, number and

language in humans and other species.

Methods

Our approach to systematicity in recursive domains employs

standard category theory constructs and methods that can be

found in many general introductions to category theory (see, e.g.,

[8,13–15]), and more detailed treatments of F-algebras and

recursion (see, e.g., [16,17]). A semi-formal presentation is

provided here to facilitate an intuitive understanding of the

background theory, with an expanded treatment provided in Text

S1.

Category
All category theory constructs ‘‘live’’ in a category of some

description. Categories consist of objects and morphisms (or,

maps) between them, satisfying certain conditions. A standard

example is the category Set, which has sets for objects and total

functions between sets for morphisms. One way to think of a

category in regard to cognition is as a cognitive (sub)system where

the objects are (sets of) cognitive states and the morphisms are

state-transforming cognitive processes.

Definition (Category, object, morphism, domain,

codomain, composition). A category C consists of a class of

objects DCD~(A,B, . . . ); and for each pair of object A, B in C, a set

C(A,B) of morphisms (also called arrows, or maps) from A to B
where each morphism f : A?B has A as its domain and B as its

codomain, including the identity morphism 1A : A?A for each object

A; and a composition operation, denoted ‘‘0’’, of morphisms

f : A?B and g : B?C, written g0f : A?C that satisfies the laws

of:

N identity, where f 01A~f ~1B0f , for all f : A?B; and

N associativity, where h0(g0f )~(h0g)0f , for all f : A?B, g : B
?C and h : C?D.

For our purposes, we use the set-like category CPO of complete

partially ordered sets and continuous functions (see [15] for an

introduction). As the term suggests, a complete partial order is a set

with a partial order defined over it, plus some additional

requirements (see Text S1). Though the technical details are

important as part of a category-theoretic foundation for recursion,

and thereby our explanation of systematicity, we omit the details

here as they are not needed to convey the other concepts. Hence,

for expository purposes, our examples use the category Set. We

refer to CPO when being explicit about the category employed in

our explanation for systematicity. Furthermore, in CPO, each

object A (except the empty set) includes a least element, denoted \,

where \ ƒa for all a[A, and each morphism f : A?B preserves

this element, i.e., f (\) is the least element in B. A least element is

interpreted as the ‘‘undefined’’, or ‘‘unknown’’ value. In cognitive

terms, a system responds with unknown when given an unknown

input. So, morphisms in CPO (Results section) are implicitly

defined over these elements.

Certain objects and morphisms have special properties that

warrant giving them names. In particular, an initial object is an

object for which there is a morphism from it to every object in a

category that has one; a terminal object is an object for which there

is a morphism to it from every object in a category that has one.

For example, in Set the initial object is the empty set, and a

terminal object is any singleton (one-element) set. Initial and

terminal objects are our first examples of universal constructs, and

play an important role in our explanation of systematicity.

Definition (Initial object). An initial object in a category C is

an object, denoted 0, such that for every object A in C there exists

a unique morphism u : 0?A in C.

Definition (Terminal object). A terminal object in a category

C is an object, denoted 1, such that for every object A in C there

exists a unique morphism u : A?1 in C.

Category theory employs a weaker, though more useful notion

of ‘‘equality’’ called isomorphism. Two isomorphic constructs may

be regarded as essentially the same, even though they are not

identical. The notion of isomorphism commonly used in cognitive

science derives from the mathematical versions of isomorphism,

and the category theory notion of isomorphism is the most general

of these.

Definition (Isomorphism). A morphism f : A?B is an

isomorphism if and only if there exists a morphism g : B?A, such

that g0f ~1A and f 0g~1B. If g exists, then it is said to be the

inverse of f (also denoted f {1). If f : A?B is an isomorphism, then

A is said to be isomorphic to B, written A%B.

Category theory also provides two basic, principled means of

combining objects, called product and coproduct, where the prefix

‘‘co’’ is often used to label dual constructions, i.e., constructions

obtained by reversing the directions of the morphisms of the other

construct. One can think of a (co)product as a syntax-free notion of

compositionality. Note that not all products and coproducts

actually exist in all categories.

Definition (Product of objects). A product of objects A and B
in category C is, up to a unique isomorphism, an object P (also

denoted A|B) together with two morphisms (sometimes called

projections) p1 : P?A and p2 : P?B, jointly expressed as (P,p1,p2),
such that for every object Z[ DCD and pair of morphisms f : Z?A
and g : Z?B there exists a unique morphism u : Z?P, also

denoted Sf ,gT, such that the following diagram commutes:
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By a straightforward extension, the finite product of n objects

A1, . . . ,An is (A1| . . . |An,p1, . . . ,pn). In the category Set, for

example, the Cartesian product S1| . . . |Sn of n sets is a product

of those sets in the categorical sense. The projections pi, for

i[f1, . . . ,ng, are the maps pi : (s1, . . . ,sn).si. The symbol .
indicates a mapping of an element in a domain, so f : x.y is the

same as saying f (x)~y.

(‘‘Commute’’ means that any two paths, with at least one path

composed of more than one morphism, with the same start object

and the same end object are equal, e.g., f ~p10Sf ,gT, in Diagram

1.)

Definition (Coproduct of objects). A coproduct of objects A

and B in category C is, up to a unique isomorphism, an object Q

(also denoted AzB) together with two morphisms q1 : A?Q and

q2 : B?Q, jointly expressed as (Q,q1,q2), such that for every

object Z[ DCD and pair of morphisms f : A?Z and g : B?Z

there exists a unique morphism u : Z?P, also denoted ½f ,g�, such

that the following diagram commutes:

By a straightforward extension, the finite coproduct of n objects

A1, . . . ,An is (A1z . . . zAn,q1, . . . ,qn).

Functor
Functors provide a principled means for relating categories. In

the context of categories as cognitive systems, functors provide a

means for relating cognitive systems in a structurally consistent

manner. One can think of a functor as a kind of function between

categories that maps objects and morphisms in a way that

preserves identities and compositions–ordinary functions only map

objects, not morphisms. However, the requirement that identities

and compositions are preserved means that not every such

function is a functor.

Definition (Functor). A functor F : C?D is a map from a

category C to a category D that associates each object A in C to an

object F (A) in D; and each morphism f : A?B in C to a

morphism F(f ) : F (A)?F (B) in D, and is structure-preserving in

that F (1A)~1F (A) for each object A in C, and

F (g0Cf )~F (g)0DF (f ) for all morphisms f : A?B and g : B?C.

One kind of functor is an endofunctor from a category to itself,

hence its relevance to recursion.

Definition (Endofunctor). An endofunctor F : C?C is a

functor whose domain and codomain are the same category C.

An apparently trivial but actually useful example of an

endofunctor is the identity functor, which maps every object and

morphism to itself.

Other kinds of functors, such as polynomial functors, are also

important for a categorical basis of recursion. The formal details

are provided in Text S1. Intuitively, one can think of a polynomial

functor by analogy to a polynomial function, but with the x of a

normal polynomial replaced by the identity functor, and the

constants of a polynomial replaced by constant functors.

F-Algebra
A category theory treatment of recursion starts with the concept

of an F-algebra constructed on an endofunctor F . One can build up

an intuition of F-algebras from the more familiar notion of

elementary algebra. Elementary algebra consists of operators (e.g.,

negation, addition) that apply to and return numbers. The key

difference is that F-algebra operators are defined in terms of

endofunctors, affording recursion.

Definition (F-algebra). For an endofunctor F : C?C, an F-

algebra is a pair (A,a), where A is an object and a : F (A)?A is a

morphism in C. For an example, see Text S1.

Definition (F-algebra homomorphism). An F-algebra

homomorphism h : (A,a)?(B,b) is a morphism h : A?B (in C)

such that the following diagram commutes:

That is, h0a~b0F (h).
Definition (Category of F-algebras). For endofunctor

F : C?C, a category of F-algebras Alg(F) has F-algebras (A,a)
for objects, and F-algebra homomorphisms h : (A,a)?(B,b) for

morphisms.

An initial object in a category of F-algebras (if one exists) is

called an initial F-algebra. And, just like an initial object in any other

category (that has one), it is a universal construction: for every F-

algebra in that category there exists a unique F-algebra

homomorphism to it from an initial algebra, hence the importance

of initial algebras to the systematicity of recursive capacities.

Definition (Initial algebra). An initial F-algebra (A,in),
hereafter also simply called an initial algebra, is an initial object in

the category of F -algebras Alg(F ). That is, there exists a unique F-

algebra homomorphism from (A,in) to every F-algebra in Alg(F).
Definition (Catamorphism). A catamorphism h : (A,in)?

(B,b) is the unique F-algebra homomorphism from initial F-

algebra (A,in) to F-algebra (B,b). That is, h0in~b0F (h), and the

uniquely specified h for each such b is denoted cata b (i.e.,

h~cata b), as indicated in the following diagram:

(Catamorphisms are also denoted by so-called banana brackets, see

[18].)

Duals: F-algebra, initial algebra, and catamorphism have dual

constructs called F-coalgebra, final coalgebra, and anamorphism

(respectively), which are also used in our explanation for

systematicity. Details are provided in Text S1. Here, we just note

that, like product and coproduct, they are related by reversal of the

directions of the morphisms that are involved in their respective

definitions.

An initial F-algebra for lists
An initial algebra for lists provides our category theory basis for

an explanation of systematicity with respect to list-related cognitive

capacities, such as identifying the smallest or largest item. More

formal details are provided in Text S1. For an intuitive

understanding, recall (from the Introduction) our informal

definition of a deck of cards as being a top card and a (remaining)
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deck of cards, or an empty deck. This definition is an instance of a

list, which is a head element and a (remaining) list, or an empty

list. So, list-related processing generally has two aspects: one for

empty lists and one for processing non-empty lists, which consist of

a head, and a remaining list (tail). In category theory terms, an

initial algebra for constructing lists is the pair (L,½empty,cons�),
where L is a set of lists, and ½empty,cons� : 1zA|L?L is the list-

constructing morphism, consisting of the constant function

empty : 1?L for constructing the empty list ½�, and the binary

function cons : A|L?L; (a,l).a:l for constructing the list with

element a[A prepended (:) to list l[L. The function cons will be

re-used later in the paper. If, for example, A is the set of natural

numbers N, then L is the set of all finite natural number lists.

Catamorphisms from this initial algebra to an F-algebra

(S,a : 1zA|S?S) have the form of a recursive function

foldL0½Iv,f � : L?S, where foldL0½Iv,f � :

½�.v for some v[S

(a,l).foldL0½If (v,a),f �(l)

indicated in commutative diagram

For instance, summing a list of numbers is foldL0

½I0,(z)� : L?N: e.g., foldL0½I0,(z)�(½3,2,5�)~(3z(2z(5z(0))))
s10. For a category theory development of various folds, see [17],

and for corresponding concrete implementations in the Haskell

programming language [19], see [20].

Notational convention: For morphisms, 1A indicates the identity

morphism on object A, and Iv : A?V indicates a constant

morphism (function) that maps all elements a[A to the same

element v[V . In Diagram 5, for example, a morphism

1zA|S?S is automatically of the form ½Iv,f � for some v[S

and some f : A|S?S. The names that we shall use for variants

of fold include an object name that is the argument to the

underlying functor. For example, foldL indicates a fold for the set of

lists L. To reduce bracketing, we assume that product (|) binds

more tightly than (i.e., takes precedence over) coproduct (z), so

e.g., 1zA|L~1z(A|L), and arguments to fold bind more

tightly than arguments to the resulting function, so e.g.,

foldL0½I0,(z)�(l)~(foldL0½I0,(z)�)(l). The prime (0) signifies

folding from the end of the list (or analogous structure, see fold

for numbers in Text S1), as opposed to folding from the front of

the list (foldL, see Text S1). How this difference relates to

systematicity is detailed in Text S1, and discussed in the last

section.

Universal constructions
Specific kinds of universal constructions were used to provide

category theory explanations for the systematicity and quasi-

systematicity of non-recursive relational structures in [6,7]. Initial

algebras (and final coalgebras) are another kind of universal

construction that we use here to extend our explanation of

systematicity to recursive capacities. Universal constructions (if

they exist) in a category are characterized by a single (co)universal

morphism which is a factor (via composition of morphisms) of all

morphisms in the category, hence their relevance to systematicity:

a (co)universal morphism underpins each and every group of

systematically-related cognitive capacities. Initial algebras are

instances of couniversal morphisms; final coalgebras are instances

of universal morphisms (defined in Text S1).

Definition (Couniversal morphism). Given an object

X[DCD and a functor F : B?C, a couniversal morphism from X to

F is a pair (B,y) where B is an object of B, and y is a morphism in

C, such that for every object Y[DBD and every morphism

f : X?F (Y ), there exists a unique morphism k : B?Y , such

that F (k)0y~f , as indicated by commutative diagram

Definition (Universal construction). A universal construction

is either a universal morphism, or (its dual) a couniversal

morphism.

Results

Our explanation for systematicity proceeds in two stages: In the

first stage, we use the universal property associated with initial

algebras and catamorphisms to provide a category theory

explanation for systematicity of inference in domains involving

lists, numbers, and trees (relating to language). Systematicity of

inference assumes processes for systematically constructing

representations of the entities from which inference proceeds.

The second stage of our explanation uses the dual notion of a final

coalgebra to provide a corresponding category theory explanation

for systematicity of representation. These two components of our

explanation are necessarily connected, because the structure

morphism fin : A?F (A) of the final coalgebra is the inverse of

the structure morphism in : F (A)?A of the initial algebra for the

functor underlying the category of algebras and coalgebras

considered. The third aspect of systematicity, compositionality of

representation, derives from endofunctors constructed from

products. Since we have already shown that categorical products

explain compositionality of representation [7], we do not repeat

our explanation of this aspect of systematicity here. Then, we turn

our attention to the relationships between these domains, and why

number-, list-, and language-related capacities are not necessarily

systematically related to each other. This result sheds light on why

species and infants can have a capacity for recursion without

having a capacity for language–systematic recursive capacity is

tied to the underlying endofunctor; it is not a language-specific

recursion construct–which we discuss in the next section.

Systematicity: list-related capacities
Working with lists is a common, everyday cognitive activity,

whether it be working through a shopping list, totaling money in

hand, searching for a credit card, or entering an identification

code. The explanation for this kind of systematicity is based on an

initial algebra and associated catamorphisms in a category of F-

algebras on a particular functor F .
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Finding the smallest/largest item. We return to the

example of systematicity raised (in the Introduction) as a

problem for classical theory: a common task is to select the

smallest or largest item in a collection of items. Systematicity, for

this case, means that if one has the capacity to distinguish the

relative sizes of items, and one has the capacity to identify the

smallest item in a list of items, then one also has the capacity to

identify the largest item in a list of items. Here, we illustrate our

account of systematicity with respect to the natural numbers, i.e.,

where the type A, in the definition of catamorphism (in Diagram

5), is N. For other domains, such as selecting the ripest apple,

largest watermelon, tallest player, etc., A is set to the appropriate

type for that domain. For current purposes, it suffices to set the

fold of an empty list to infinity (i.e., from Diagram 5, v~?),

effectively meaning that the smallest number in any one-item list is

that item. The function f in Diagram 5 is min : (x,y).
x, if xƒy else y, which returns the smaller of two items. So, the

catamorphism for identifying the smallest number is

foldL0½1?,min�, as indicated in commutative diagram

For example, foldL0½1?,min�(½2,1,3�)~min(2,min(1,min

(3,?)))~1. By replacing min in Diagram 7 with

max : (x,y).x, if x§y else y, and ? with 0 (or {? for lists

of integers or reals), we have the catamorphism that corresponds to

identifying the largest number. For example, foldL0

½10,max�(½2,1,3�)~max(2,max(1,max(3,0)))~3. Since the two

computations have the couniversal morphism ½empty,cons� as the

common component, this arrangement accounts for systematicity

with respect to these capacities. Moreover, since the catamorph-

isms are uniquely determined, we have an account of systematicity

without further (ad hoc) assumptions.

Accepting/rejecting/classifying items. A more general

capacity is to select not just a single element from a list, but a

sublist of elements satisfying some criterion. For example, when

picking fruit one selects only the ripe ones based on some criterion

of ripeness. When catching fish, one may reject those below a

certain length. Or, when processing tomatoes, one may classify

them on the basis of size. All such cases are examples of

systematically related capacities: you don’t find people who can

identify the largest tomato without being able to classify them into

small versus large. The initial algebra and catamorphisms that

account for this form of systematicity are shown in commutative

diagram

where f (in Diagram 5) is fp : A|L?L,(a,as).a:as,

if p(a) else as, which is a function that accepts or rejects items

depending on whether they satisfy condition p : A?Bool,

returning True when a[A has the criterion property p, else False.

In the case of classifying items, f (in Diagram 5) is the function cp,

which returns a list of classes, one for each element, according to

some classification criterion. That is, cp : A|L(A)?L(C),
(a,as).c:cs, where p : A?C,a.c is a classification function,

and lists are explicitly labeled with the type of their elements, e.g.,

L(A) indicates a list of type A. If we wish to group items from the

original list into two lists on the basis of item classification, then f is

the function gp : A|L?L|L,(a,as).a:as1, if p(a) else a:as2,

and v~(½�,½�), for the empty list, as indicated in commutative

diagram

where list type is not explicitly labeled, since all lists have the same

type. For example, grouping a list of natural numbers into even

and odd numbers is foldl ½I½ �,½ �,gisEven�(½2,1,5,4,6�)~
(½2,4,6�,½1,5�), where isEven : N?Bool, returns True if n[N is

even, otherwise False. Clearly, the capacity for classifying/

grouping items can be generalized to more categories (e.g., small,

medium, large). The explanation for systematicity without ad hoc

assumptions parallels our explanation for systematicity in non-

recursive domains [6,7]: every capacity has as a factor the same

couniversal morphism.

Systematicity: number-related capacities
Number is another domain where humans exhibit systematicity

over recursive capacities. Primary among these capacities are

various forms of counting. Simple counting involves producing the

sequence of numbers starting from a given number, such as

counting the first ten numbers starting from one. Other forms of

counting include modular counting (where the successor of a number

may be 0, e.g., counting in 3’s: 0,1,2,0,1,2,0, . . .), stepwise counting

(such as counting in steps of two, or three, etc.), and multiple counting

(where two or more counts are performed concurrently). In this

section, we explain why systematicity with regard to these

capacities follows from an F-algebra and catamorphism model

without ad hoc assumptions. First, we present a category of F-

algebras that includes number-related capacities, an initial algebra

for this category and its associated general catamorphism. Then,

we provide catamorphisms specialized to particular number-

related capacities. Further details are given in Text S1.

Simple/stepwise/modular/multiple counting. The

category of F-algebras that includes number-related capacities is

constructed from the polynomial functor F : CPO?CPO; S.
1zS,f.11zf . An initial algebra in this category is

(N,½zero,succ�), where N is a set used to model the natural

numbers (N), ½zero,succ� : 1zN?N, zero : 1?N is a nullary

function (equivalently, a constant) returning the element Zero[N,

and succ : N?N; n.succ(n) is a unary function returning the

successor of element n[N. In this system, the number 2, for

example, corresponds to succ(succ(Zero)). For this initial algebra,

there is a general catamorphism called foldN (i.e., fold for

numbers), defined as foldN½Iv,f � : N?S, where

Zero.v

Categorial Compositionality III

PLoS ONE | www.plosone.org 6 April 2012 | Volume 7 | Issue 4 | e35028



succ(n).foldN½If (v),f �(n)

f : S?S is a unary function, and v[S is a constant. The initial

algebra and catamorphism are indicated in commutative diagram

A simple counting task is to list out, in order, the first n numbers

starting from a given number m: e.g., listing out the first five

numbers from three yields the sequence: 3, 4, 5, 6, 7. The

corresponding computation is an instance of the initial algebra and

catamorphism given in the following commutative diagram:

where f : ½N�?½N�; xs.xs:½succ(last(xs))�, and ½N� is the set of

lists constructed from N, : is the list concatenation operator, and

last : ½N�?N returns the last number x from a list of number xs.

Thus, simple counting starting from m is the parameterized

function gm~foldN½I½m�,f � : N?½N�, where m[N.

Another simple counting task is to list out, in order, the first n

numbers from a given number m at intervals of k: e.g., listing out

the first four numbers from 1 at intervals of two yields the

sequence: 1, 3, 5, 7. The corresponding diagram for this

computation employs the same initial algebra and a unique

catamorphism involving foldN in Diagram 11, except that the

function corresponding to f is now defined as:

fk : ½N�?½N�; xs.xs:½(zk)(last(xs))�, where the function

zk : N?N; x.x plus k, and plus is a model for z (see Text

S1). Thus, simple counting by interval is the parameterized function

gm,k~foldN½I½m�,fk� : N?½N�.
These and other counting tasks (e.g., modular and multiple

counting, see Text S1) involve the same initial algebra; i.e., the

same couniversal morphism ½zero,succ� : 1zN?N, and a unique

catamorphism involving foldN. Hence, systematicity in regard to

such capacities is explained by this universal construction, without

further (ad hoc) assumptions. In cognitive terms, having the

capacity for simple counting and knowing the interval relation-

ships between numbers (e.g., 5 is two greater than 3) implies

having the capacity to count in twos, because both capacities are

uniquely composed of a common, universal component (namely

½zero, succ�). Thus, the presence or absence of this universal

component is enough to imply the presence or absence of the

entire collection of systematically-related capacities.

Systematicity: language-related capacities
In this domain, we use an artificial grammar (for arithmetic

expressions) to illustrate our explanation for systematicity with

regard to language-related capacities. Artificial grammars are

often used, because their forms are more easily adapted to the

question at hand. We investigate a fragment of natural language

(tail- versus center-embedded sentences), in the next section, in the

context of capacities that may not be systematically related. Up to

this point, we have addressed systematicity with respect to

inference, e.g., why the capacity to infer the smallest list item is

systematically related to the capacity to infer the largest list item–

systematicity of inference. This aspect of systematicity assumes that the

cognitive system also has the capacity to systematically represent

the entities from which such inferences are made–systematicity of

representation. Here, we also provide a category theory explanation

for systematicity of representation, using the closely related, dual

notion of an F-coalgebra.

Arithmetic expressions: systematicity of inference. The

example in this section is based on [21], but adapted to model the

cognitive capacity for evaluating numerical expressions. We first

present a category of F-algebras that includes the language-related

capacities of current interest, its initial algebra and associated

general catamorphism, and then we specialize this catamorphism

for arithmetic expressions (see Text S1, for further details).

The category of F-algebras that includes language-related

capacities is constructed from the polynomial functor

FA : CPO?CPO; S.AzS|S,f.1Azf |f . The F-algebras

for the category Alg(FA) can be represented as pairs (S,½f ,g�),
where ½f ,g� : AzS|S?S, f : A?S is a unary function, and

g : S|S?S is a binary function. An initial algebra in this

category is (T ,½leaf ,branch�), where T is the set of trees of type A,

½leaf ,branch� : AzT|T?T , leaf : A?T ; a.SaT returns a

tree consisting of a single leaf a[A, and branch : T|
T?T ; (l,r).Sl,rT returns a tree consisting of a left branch l
and a right branch r, where l,r[T . For example, a binary tree of

numbers SS1T,SS2T,S3TTT has a leaf 1 as its left branch, and a

tree, with left leaf 2 and a right leaf 3, as its right branch. A

catamorphism from initial algebra (T ,½leaf ,branch�) to an

arbitrary F-algebra (S,½f ,g�) in Alg(FA) is the recursive function

foldT (i.e., fold for trees), defined as follows. The (higher-order)

function foldT takes a unary function f : A?S and a binary

function g : S|S?S and returns the recursive function

foldT ½f ,g� : T?S, where

SaT.f (a)

Sl,rT.g(foldT ½f ,g�(l),foldT ½f ,g�(r))

and T is a set of trees of type A, indicated in commutative diagram

Suppose participants are given arithmetic expressions involving

a particular operator, say, addition, e.g., (1z2)z(2z3), which

they are required to evaluate. Given that participants can correctly

evaluate such expressions, there is a host of other capacities that

are also afforded provided that they have some other basic

knowledge. For example, given knowledge of another binary

operator, say, subtraction, participants can also evaluate the related
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expression (4{2){(2{1) as 1. The specific catamorphism for

the addition case is given in commutative diagram

For the case of subtraction, the binary operator (z) for addition is

replaced with ({) in Diagram 13. Hence, the second task is

computed as foldT ½1N ,({)�. The universal construction common

to these two capacities is the couniversal morphism ½leaf ,branch�.
So, the explanation for systematicity is essentially the same as the

explanations we provided for list- and number-related capacities,

albeit based on a different underlying functor–the capacities for

evaluating expressions involving addition and subtraction contain

½leaf ,branch� as the common factor.

The addition and subtraction examples only consider cases

where each expression consists of only one kind of operator. A

more developed ability is the capacity to evaluate expressions that

include different operators, e.g., (2z4){(3{1). Such expressions

require trees that explicitly include each operator, e.g., the tree

Sz,1,S{,2,3TT corresponds to the expression 1z(2{3). An

initial algebra for such expressions is based on the functor

FN,O : CPO?CPO; S.NzO|S|S,f.1Nz1O|f |f . An

initial algebra is ½leaf ,root� : NzO|T|T?T , where

root : (op,l,r).Sop,l,rT, and O~fz,{, � ,=g is the set of

arithmetic operators. Here, the set of numbers N includes the

reals. This example can be extended further by considering

expressions that include operators of different arities, as in the

expression ({8)z4. This extension requires yet another kind of

tree algebra based on the functor FN,O : CPO?CPO; S
.NzO|SzO|S|S,f.1Nz1O|f z1O|f |f . These po-

ssibilities raise the question of which tree to construct. Both

systematicity of representation and the problem of determining

which tree are addressed using the dual notion of an F-coalgebra,

which we turn to next.

Arithmetic expressions: systematicity of represen-

tation. The previous section considered various systematically-

related capacities for evaluating trees. These examples are

instances of systematicity of inference [1,4,6]. Yet, such expressions

are not given to the cognitive system in tree-form. Typically, such

trees are assumed to be constructed from an input (list of

characters) by another process. The input may take on several

different formats: e.g., alpha-numeric, as in 1z(2z3), or word

form, as in one plus (two plus three), which correspond to the same

tree. Again, these two forms are systematically related: one has the

capacity to represent the expression 1z(2z3) if and only if one

has the capacity to represent the expression one plus (two plus three)

assuming, of course, a person knows that one, two and three denote

the same things as 1, 2 and 3 (respectively), and plus denotes the

same thing as z. This form of systematicity is called systematicity of

representation [1,4,6]. In this section, we show how systematicity of

representation is addressed using coalgebras. Since a coalgebra on

a functor F is intimately tied to its dual algebra on F , coalgebras

also address the problem of determining which tree to construct.

Constructing trees from lists is achieved by a dual construction

called an F-coalgebra [21] (see Text S1, for definitions). The

explanation for systematicity in this case proceeds in a ‘‘dual’’

manner: i.e., every morphism in a category of F-coalgebras with a

terminal (dual to initial) object, called a final coalgebra (dual to initial

algebra) is composed of a unique anamorphism (dual to catamorph-

ism) and a common final coalgebra. (Note the reversal in the order

of composition compared with F-algebras.)

The development of the concept of final coalgebra derives from

the dual definition of the concept of initial algebra, in this case in

the category of F-algebras Alg(FA) on the functor

FA : CPO?CPO; S.AzS|S,f.1Azf |f . A final coalgebra

in the dual category CoAlg(FA) is (T ,(pST?fmleaf ,fmbranch)),
where conditional pST?fmleaf ,fmbranch consists of a condition

pST : T?Bool that tests whether t[T is a leaf (i.e., t~SaT,a[A),

or a branch (i.e., t~Sl,rT,l,r[T ), and associates functions

fmleaf : T?A,SaT.a, for retrieving a value from a leaf, and

fmbranch : T?T|T ,Sl,rT.(l,r), for retrieving a pair of left and

right subtrees from a branch. There are more details on

conditional functions in Text S1 and [9]. The dual category

CoAlg(FA) has F-coalgebras (S,(p?f ,g)) as objects, and F-

coalgebra homomorphisms as morphisms. The anamorphism

associated with this final coalgebra is called unfoldT (i.e., unfold for

trees), defined recursively as unfoldT(p?f ,g) : S?T

s.Sf (s)T if p(s)

s.SunfoldT (p?f ,g)(p10g(s)),unfoldT (p?f ,g) (p20g(s)T

otherwise

The final coalgebra and associated anamorphism are indicated in

commutative diagram

Diagram 14 indicates the general form of the anamorphism

from which we need to specify a particular p?f ,g for our domain

of arithmetic expressions. That is, we need to define the test

function p : L?Bool, where Bool~fTrue,Falseg that deter-

mines whether an expression (i.e., list of characters, such as

‘‘1+(2+3)’’) indicates a simple (value) or complex expression, and

associated functions f : L?N and g : L?L|L for transforming

simple expressions into numbers and complex expressions into

pairs of expressions, respectively.

Specifications of f and g (in Diagram 14) are obtained from case

analysis. Examples of simple expressions, which indicate values,

are: ‘‘1’’, ‘‘(2)’’, and ‘‘((3))’’, i.e., any well-formed expression that

does not contain the ‘‘+’’ character. A complex expression is any

well-formed expression that is not simple. So, p is the function

isVal : l.‘‘z’’=[l (and l is a well-formed expression). Later, we

show how this extends to other operators. Since f is associated

with p(l) being true, we require a function to convert a string into

a (internal) representation for the corresponding number, i.e., f is

the function str2num : L?N that converts a string of characters

like ‘‘123’’ to the corresponding number 123. Finally, we need a

function g for complex expressions. Examples of complex

expressions include: ‘‘1+2’’, ‘‘1+(2+3)’’, ‘‘(1+2)+3’’,

‘‘(1+2)+(3+4)’’, and so on. The purpose of g is to split an

expression into two subexpressions, one corresponding to the left

branch of the tree, and the other to the right branch. That is, g
must split the expression at the topmost operator into two

subexpressions containing the strings before and after the ‘‘+’’

symbol, after stripping off the outer brackets. Identifying the split

point is also determined by case analysis: Basically, the split point

is the first instance of ‘‘+’’ in the absence of an unmatched right

bracket ‘‘)’’. So, one simply maintains a counter, starting from 0

(i.e., no unmatched brackets, or top level), which is incremented/

decremented on every occurrence of a left/right bracket, when

read from left to right, and on finding a ‘‘+’’ when the counter is 0,
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splits the string at this point. For example, ‘‘(1+2)+3’’ is split into

‘‘(1+2)’’ and ‘‘3’’. g is this function split : L?L|L. Thus, the

function for parsing expressions into trees is the anamorphism

unfoldT(isVal?str2num,split).

Systematicity of representation (in this example, constructing

trees) is obtained in the same way as systematicity of inference

(destructing trees). Destruct is used in a technical sense as the dual to

construct: e.g., to destruct a tree is to pull apart its constituents,

which are either the left and right subtrees in the case of a branch,

or the value of the leaf in the case of a leaf (see also Text S1). To

represent the same tree from the expressions in word form, one

simply replaces the argument isVal?str2num,split as appropri-

ate. Thus, the function str2num is replaced with word2num which

converts numbers in word form (e.g., ‘‘one’’, ‘‘two’’, etc.) to their

corresponding internal representation of number, and isVal

searches for the string ‘‘plus’’ rather than ‘‘+’’. In any case, the

resulting anamorphism factors through the same universal

morphism, i.e., pST?fmleaf ,fmbranch from Diagram 14.

Given initial algebra in : F (A)?A in a category Alg(F ), the

corresponding final coalgebra fin : A?F(A) is guaranteed to

exist, because F (A)%A, and indeed in has as inverse fin. Thus,

further (ad hoc) assumptions are not required to guarantee a

correspondence between expressions and evaluations since they

are indivisibly bound by the initial algebra/final coalgebra. By

contrast, classical theory assumes that the processes for construct-

ing syntactically compositional representations and the processes

for systematically transforming those representations correspond

[6]. Naturally, this result extends to other kinds of (final) initial

(co)algebras, such as those pertaining to lists (see Text S1, for

further details).

Numbers, lists, and languages: are they systematically
related?

The short answer is: No. A more technical explanation is

provided in Text S1. Here, we simply point to the differences

between the respective F-algebra categories, which are made

obvious from the commutative diagrams for the initial algebras in

each category. The basic point is that although tree-related

capacities subsume list-related capacities, which in turn subsume

number-related capacities (because, e.g., numbers can be repre-

sented as lists of 1s–in effect tally marks) the converse is not true:

having a capacity for number does not in general afford a capacity

for lists, which in turn does not in general afford a capacity for

trees.

Notice from the commutative diagrams indicating initial

algebras for number (Diagram 10), list (Diagram 5), and tree

(Diagram 12) that the underlying endofunctor has a different form.

The endofunctor underlying the F-algebra category including

number, i.e., F : S.1zS,f.1zf is an unparameterized

polynomial functor of order one (cf. polynomial functions). For

lists, the endofunctor is the parameterized polynomial functor of

order one, FA : S?1zA|S,f.11z1A|f , or equivalently,

binomial functor F (A,S). For language-related trees, the endo-

functor is the parameterized polynomial functor of order two,

FA : S?AzS|S,f.1Azf |f , or the functor FA : S?1z

A|S|S,f.11z1A|f |f . So, although a tree can be used to

model a list, and a list can be used to model a number, generally, a

number cannot be used to model a list, and a list cannot be used to

model a tree in any natural way. Technically, that is to say, the

three endofunctors are not related by natural equivalences (see

Text S1). Thus, the forms of recursion that afford systematic

cognitive capacity with regard to number do not afford systematic

cognitive capacity with regard to list, nor tree, and likewise

systematic capacity with regard to list does not afford systematic

capacity with regard to tree.

Natural language: Tail- versus center-embedded

recursion. A caveat to the distinction between number, list,

and tree involves tail- versus center-embedded recursive

constructions that are found in natural languages. The following

example is taken from [22]. An example of a tail-embedded

construction is This is the cat that killed the rat that ate the malt that lay in

the house that Jack built. This expression in center-embedded form is

The malt that the rat that the cat killed ate lay in the house that Jack built. In

general form, we have production rules S?eDabS for tail-

embedded sentences, and S?eDaSb for center-embedded

sentences, where e is the symbol for the empty string. Such

constructions are indicative of the difference between regular

grammars and context-free grammars. However, from the

perspective of F-algebras, both are realized by list-related

functors, albeit of different forms. The tail-embedded case is

included in the category of F-algebras on the functor

Ft
A,B : S.A|BzA|B|S,f.1A|1Bz1A|1B|f , which

includes the initial F-algebra for constructing lists such as ½a1,b1�,
½a1,b1,a2,b2�, etc. The center-embedded case is included in the

category of F-algebras on the functor Fc
A,B : S.A|

BzA|S|B,f.1A|1Bz1A|f |1B, which includes the

initial F-algebra for constructing lists such as ½a1,b1�,
½a1,a2,b2,b1�, etc. However, these two functors are related by a

natural isomorphism, suggesting that they are systematically

related. We discuss the implications of this commonality in the

next section.

Discussion

Our explanation for systematicity with regard to recursive

domains employs the same general category theory construct–

universal construction–as our previous explanations for (quasi-

)systematicity in regard to non-recursive domains [6,7], albeit with

different kinds of functors: here, for recursive domains, the

universal constructions involved endofunctors (i.e., where the

domain and codomain are the same category), whereas for non-

recursive domains, the universal constructions involved adjoint

functors (which are reciprocating, though not necessarily inverse,

functorial maps between categories that are not necessarily the

same. Every composition of left and right adjoints is an

endofunctor, but not every endofunctor can be decomposed into

a pair of adjoint functors. So, having some (primitive) form of

systematicity over a recursive domain does not imply having

systematicity for non-recursive domains. Nor, for that matter, does

having the systematicity property for one recursive domain (e.g.,

numbers) imply the having the systematicity property for another

recursive domain (e.g., lists), when the universal constructions

involve functors not related by a natural isomorphism (this

distinction also applies to non-recursive domains). See any of

[8,13,15,16] or Text S1 for a technical description of the concept

of naturality. This functorial distinction between universal

constructions has important implications for comparative and

developmental psychology, which we discuss later.

This category theory explanation goes significantly beyond the

classical one, despite some similarity between the two. The

similarity between the two explanations lies in the use of common

subprocesses underlying each and every member of a group of

systematically-related cognitive capacities, which was the case in

our explanation for non-recursive systematic capacities [6,7]. In

the case of recursive systematic capacities, the capacities are also

intrinsically connected by two common subprocesses that are

necessarily inverses of each other. Where we also go beyond the
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classical explanation is by introducing a principled distinction

between commonalities that are universal (universal constructions),

and those that are not (i.e., not necessarily universal). Note that we

are not providing an ‘‘explanation’’ of systematicity by simply

(re)defining it in the terms of some alternative, formal language.

The formal concept of a universal construction has precise,

empirically testable implications, a general schema for which we

provided in Text S2. Hence, we can test the limits of systematicity,

and thereby the limits of our theoretical explanation. Thus,

although it may not seem obvious that adding a list of numbers is

closely related to finding the smallest number (both involve a fold

over lists), such cases can be put to an empirical test.

Our explanation for systematicity is based on universal

constructions, but we require that the universal constructions

arise from functors that are related by natural transformations, as

we did previously: natural transformations were part of our

explanation for non-recursive capacities in the form of universal

constructions that are adjunctions–every adjunction consists of two

natural transformations, and a collection of (co)universal morph-

isms.

Limitations
There are two points at which our theory is likely to be

incomplete: one point is where competence meets performance,

such as when supposed systematically related capacities span

memory or cognitive complexity limits (see [23] for a review and

discussion of both kinds of limits). The other point is where

systematic cognition meets non-systematic cognition: not all

cognition is regarded as systematic; idioms (e.g., John kicked the

bucket–i.e., he died–is not systematic with Mary kicked the bucket [with

her foot]) are an example [1]. We discuss our theory in the context

of both cases.

An example of the first point (competence versus performance)

is the case of lists where the morphism f is not associative (e.g.,

subtraction): computing with a right-fold version of list fold means

keeping all list items in memory (if presented once only), so

systematicity would not extend beyond lists of more than a few

items. Such cases are generally not regarded as evidence against

the systematicity property–human cognition is ceteris paribus (e.g.,

memory requirements being the same) largely systematic (see [2]).

Nonetheless, a more complete theory will address both aspects of

cognition. Category theory may also provide independent

principles for performance, since cognitive development-related

limits in children were identified with the arity of the (co)product

underlying the task [24]: e.g., the ability of children older than the

median age of five years to perform transitive inference and class

inclusion in the more difficult–cognitively complex–condition

versus children younger than five was related to (co)product arity,

i.e., binary versus unary (co)products. Note that here, too, the

difference in ‘‘complexity’’ of the endofunctors for number (no/

unary product of functors), list (binary product of constant and

identity functors) and tree (binary product of two identity functors,

or ternary product of constant and two identity functors). Product

arity does not appear to distinguish the endofunctors underlying

center-embedded versus tail-embedded recursion (their underlying

functors are related by a natural isomorphism), yet center-

embedded recursion is generally more difficult than tail-embedded

recursion and appears to be unique to humans [22]. However,

center-embedded recursion requires keeping all unmatched items

in memory, so in expanded form center-embedded recursion

employs a higher arity product. Nonetheless, performance

(resource) related differences are beyond the scope of our theory

as it currently stands.

In regard to the second point (systematic versus non-systematic

cognition), category theory also provides a principled means for

joining two cognitive (sub)systems via (co)products of categories

(see Text S1, for a (co)product of categories definition), where one

category models systematic cognitive capacity and the other non-

systematic capacity, and (say) the coproduct category models both.

An example of integrating systems with products is a hybrid

distributive-symbolic model of grammar [25], where one category

employs symbols and the other vectors. However, as Aizawa [4]

explains, the required explanatory standard for hybrid theories is

higher, because one must also explain why/when component

theories are invoked. One possible reason is efficiency. Recall that

a primitive form of addition was supported (systematically) by the

category of F-algebras that included number-related capacities via

foldN, where the number of iterations was proportional to the size

of the addends. The time required to add numbers can be reduced

(and so efficiency increased) by memorizing the addition table for

small numbers, which is what children are taught to do. However,

addition via memorized associations is not a systematic process:

one can memorize part of a table without memorizing the other

part (this example is an analog of the phrase-book example in

language [1]). So, utility may drive the cognitive system to employ

a faster, though non-systematic process. However, utility is also

outside the scope of our current theory. To meet this raised

explanatory standard, one must explain why and under what

conditions either component is employed, without resorting to ad

hoc assumptions.

These sorts of questions can be put to an empirical test using the

general schema for (non-)recursive systematicity detailed in Text

S2. The basic format of this schema says that if participants have

the capacity for the (co)universal component, and its composition

with task specific components, then it must have the capacity for

other tasks composed of the same (co)universal component.

Success on a new task instance, i.e., without further feedback

regarding the correct response, is an empirical test of systematicity.

Perspective
At the core of our category theory explanation for systematic

recursive capacity is a special pair of dual constructions: an (final)

initial (co)algebra in a category of (co)algebras on a polynomial

functor F . Although one can reverse the direction of any collection

of arrows to form a dual, such duals may not exist in the category

of interest (e.g., the existence of products in some category does

not automatically guarantee the existence of coproducts in the

same category). Yet, for categories of (co)algebras on a polynomial

functor (final) initial (co)algebras are guaranteed to exist [16], and

an initial algebra in : F (A)?A is guaranteed to have an inverse

fin : A?F (A), because the component objects are isomorphic

(i.e., A%F (A)), which constitutes a final coalgebra for the domains

we have investigated. For polynomial functors, in general, an

initial algebra (final coalgebra) is given uniquely by a final

coalgebra (initial algebra), see [21]. So, the systematic relationship

between representation and inference is guaranteed without

further (ad hoc) assumptions, in contrast to the classical explanation

where the link between the two is just assumed [6]. Notice,

moreover, that this dual relationship between systematicity of

representation and systematicity of inference is more general (and

more useful) than an inverse. In the arithmetic expressions

example, lists were represented as trees (systematicity of represen-

tation), but trees were evaluated as numbers (systematicity of

inference). This form of duality goes beyond the simple inverse

relationship between sentence recognition and generation found in

parsing/production rules in a classical approach to language.
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The capacity for recursion has been a contentious issue in the

broader interests of cognitive science, which includes comparative

and developmental psychology. Some argue that recursion is

specific to humans and depends on language [26]; more

particularly, a fully inductive (recursive) basis for number is

specific to adults and distinct from infants’ non-inductive basis

[27]. In contrast, others claim a human language-like capacity for

recursion in songbirds [28] (but, see [22]), and that adult

understanding of number (in its fully induced form) is founded

on a more primitive infant conception [29]. See also [30], for a

review of the debate over the link between number and language.

Our category theory treatment of recursive cognitive capacities

provides a different perspective on this issue: specifically, as we

have shown, the particular systematic capacities for recursion

depend on the underlying functor, not a general capacity for

recursion, as such. In particular, one can have a basic recursive

capacity for number without having a full-blown capacity for

language, because the functor underlying recursive number-

related capacities does not provide a systematic basis for recursive

language-related capacities, though by our account language-

related recursive capacities afford number-related recursive

capacities. Analysis of the songbird evidence [28] for supposed

center-embedded recursion suggested that these birds were using a

simple counting strategy [22], which accords with our F-(co)alge-

braic basis for recursion in cognition, where simple counting

involves a fold for numbers, not lists or trees. Thus, other species

(and infants) can have elementary recursive capacities without

implying a full-blown capacity for number and language as they

are available in adult humans.

The development of category-theoretic approaches to recursion

in programming language design and automated refinement

would seem to have little to do with a theory of cognitive

architecture. Why, then, would one want to consider it as an

approach to systematicity? In fact, the importance of the

systematicity property to cognitive biological systems parallels

the importance of abstraction in software systems engineering.

Universal constructions in software design afford both economy of

coding, and robustness: every call to an existing function obviates

the need to write further code, and guarantees ‘‘correctness’’

across the various instantiations. That is, the same lines of code

when called are guaranteed to work the same way every time; by

contrast, any new line of code is ‘‘likely to introduce a new bug

50% of the time’’ (programmers’ folklore). So, although the

applications differ, the underlying principle is the same, and one

can envisage evolution favouring the emergence of systematic

processes because of the reproductive advantage afforded by this

kind of efficiency. For this reason, category-theoretic approaches,

which have worked well in theoretical computer science, are

appropriate as an approach to the systematicity problem.

The goals of the cognitive and computer scientist are not

entirely the same, of course. One potential point of divergence is

with the origins of the structures underlying (cognitive) computa-

tion: computer scientists specify computational structures and

identify their properties, whereas cognitive scientists are also

concerned with their development/acquisition. Earlier categorical

computational work focussed more heavily on F-algebras, while F-

coalgebras were relatively underdeveloped [31]. For the systema-

ticity problem, we see both as equally important, and their

intrinsic connection suggests that their (co)habitation is important

for a more complete theory of cognitive architecture. Just as the

needs of computer scientists spurred the further development of F-

(co)algebras for computing, the needs of cognitive scientists may

spur yet further category theory development in this area. One

area for future development is an account of how the universal

constructions that we have proposed in our explanation for

systematicity are modeled (implemented) by neural systems.

The classicist’s approach to cognitive architecture is fundamen-

tally limited not in advocating syntax, but in placing syntax at the

foundation of their theory. Given the often ad hoc and idiosyncratic

choices that go into programming language design, computer

scientists in recent decades have turned to category theory for a

deeper syntax-free understanding of the principles of computation.

Cognitive science, as couched within the framework of computa-

tionalism, can likewise do better than lay foundations on the

shifting sands of syntax.

We have adapted category theory principles for the beginnings

of a categorial computational theory of cognitive architecture. Yet,

if the answer to the systematicity problem is universal construc-

tions, then the question that follows is, How do the processes

corresponding to universal constructions arise in the evolution/development of

minds? Perhaps, here too, category theory will provide an answer.

Supporting Information

Text S1 Further explanation of background category
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ticity.
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