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Abstract

Background: Interferon-beta (IFNb) is used to inhibit disease activity in multiple sclerosis (MS), but its mechanisms of action
are incompletely understood, individual treatment response varies, and biological markers predicting response to treatment
have yet to be identified.

Methods: The relationship between the molecular response to IFNb and treatment response was determined in 85 patients
using a longitudinal design in which treatment effect was categorized by brain magnetic resonance imaging as good
(n = 70) or poor response (n = 15). Molecular response was quantified using a customized cDNA macroarray assay for 166
IFN-regulated genes (IRGs).

Results: The molecular response to IFNb differed significantly between patients in the pattern and number of regulated
genes. The molecular response was strikingly stable for individuals for as long as 24 months, however, suggesting an
individual ‘IFN response fingerprint’. Unexpectedly, patients with poor response showed an exaggerated molecular
response. IRG induction ratios demonstrated an exaggerated molecular response at both the first and 6-month IFNb
injections.

Conclusion: MS patients exhibit individually unique but temporally stable biological responses to IFNb. Poor treatment
response is not explained by the duration of biological effects or the specific genes induced. Rather, individuals with poor
treatment response have a generally exaggerated biological response to type 1 IFN injections. We hypothesize that the
molecular response to type I IFN identifies a pathogenetically distinct subset of MS patients whose disease is driven in part
by innate immunity. The findings suggest a strategy for biologically based, rational use of IFNb for individual MS patients.
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Introduction

Interferon beta (IFNb) is routinely used to treat multiple

sclerosis (MS), and in randomized placebo-controlled trials,

reduced relapse rates by 30% [1–3]. However, clinical response

varied among individuals, and post-hoc analyses of one study

revealed that about 20% of IFNb recipients were poor responders

(PR), defined as $3 new T2 hyperintense brain lesions occurring

within 2 years of treatment onset [1,4]. Other studies by

independent groups [5–7] consistently demonstrate that new

brain MRI lesions develop in 20% to 25% of patients during IFNb
treatment and predict an unfavorable clinical outcome. Why some
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patients respond poorly to IFNb treatment, whereas others

respond better is not understood, and there are no validated

biomarkers that predict treatment response for individual patients.

IFNb (a type I IFN) treatment is therapeutic in MS patients, as

indicated by clinical trial patient group results. However, results

from a clinical trial of interferon gamma (IFNc) (a type II IFN)

[8,9] demonstrated disease activation in some patients. Because

type I and II IFNs regulate overlapping sets of IFN-regulated

genes (IRGs), it is possible that some patients may worsen with

IFNb treatment. Such an outcome would not be evident from

controlled clinical trials, where the majority of patients improve

with treatment. Type I IFN is a cardinal mediator of innate

immunity, whereas type II IFN participates in both innate and

adaptive immunity. In the IFNc trial, MS disease activation was

interpreted as implicating TH1-mediated processes in MS

pathogenesis. Development of type I IFN therapy continued,

however, leading to IFNb approval.

Increased bioavailability of type I IFNs is involved in diverse

autoimmune diseases [10], and increased expression of type I

IRGs has been detected in a subset of untreated MS patients [11],

suggesting that some patients have augmented innate immunity,

which is detected by monitoring type I IFN IRG expression in the

absence of IFNb injections. Moreover, several neuropathology and

immunology studies of IFNb treatment suggest that MS

immunopathogenesis may differ between patients [12,13]. There-

fore, it is plausible that most MS patients improve with IFNb
therapy, while a minority worsen.

Poor clinical response to IFNb can be related to production of

IFNb-neutralizing antibodies or to genetic variants in IFNb
receptors or signalling components [14]. In both categories,

patients have reduced IFNb bioavailability. However, such

patients account for a minority of PRs [15]. In the remaining

patients, poor response to IFNb might relate to the nature of the

IFNb response, a relationship that could yield insight to the

pathogenesis of MS, as well as strategies to personalize the use of

IFNb. Microarray-based cross-sectional expression analyses and

studies of individual candidate genes support this concept [16,17].

Here, we addressed the general hypothesis that the molecular

response to IFNb correlates with treatment response in individual

patients with MS, and thus might provide biological markers

useful to estimate prognosis, guide therapy, or offer insights into

pathogenesis.

Methods

Clinical Protocol
The Cleveland Clinic Institutional Review Board approved the

study. After discussion with our bioinformatics colleagues, but

without a formal power calculation, we sought to enroll 100

patients. All subjects provided written informed consent. Subjects

were eligible if they had clinically isolated syndrome (CIS) or

relapsing-remitting MS, were treatment-naı̈ve, were initiating

intramuscular IFNb-1a treatment, and were followed at the

Mellen Center (our MS center). Each patient was examined at

baseline, 6, 12, and 24 months. At 3 and 18 months, patients were

contacted by phone to assess treatment compliance and ascertain

side effects. At baseline, 6, and 24 months, blood was collected for

IRG analysis in a clinical research unit immediately before and

exactly 12 hours after an IFNb injection, and the patients had

standardized brain MRI scans for quantitative assessment of

lesions and brain atrophy. At each visit, patients had neurological

exams to determine the Kurtzke Expanded Disability Scale Score

[18], the Multiple Sclerosis Functional Composite score [19], and

history of intercurrent relapses or illness; they also were given a

structured questionnaire to characterize flu-like symptoms, muscle

aches, chills, fatigue, headache, and loss of strength. Serum was

tested for IFN-neutralizing antibodies at 6 and 24 months. This

report focuses on the 85 subjects with complete data at baseline

and 6 months.

MRI Analysis
The MRI acquisition included T2-weighted fluid-attenuated

inversion recovery (FLAIR), T2- and proton density-weighted dual

echo fast spin echo, and T1-weighted spin echo images acquired

before and after injection of a standard dose of gadolinium

(0.1 mmol/kg). Images were analyzed using software developed

in-house to determine brain parenchymal fraction (BPF), T2 lesion

volume, gadolinium-enhancing lesion volume and number, and

the numbers of new and enlarging T2 lesions. BPF was calculated

from FLAIR images using fully automated segmentation software

[20]. Details of the lesion analysis methodology have been

previously described [21]. Briefly, T2 hyperintense lesions were

automatically segmented in the FLAIR and T2/PD images and

visually verified using interactive software to correct misclassifica-

tions. Six-month follow-up images were registered to baseline, and

intensity was normalized. Baseline T2 lesion masks were applied to

the registered 6-month images to identify persistent lesions. The

baseline images were then subtracted from the registered,

intensity-normalized 6-month images to automatically identify

new and enlarging T2 lesions at 6 months. For detecting enlarging

lesions, the registration and subtraction software has cut-offs based

on scan-rescan reproducibility of individual lesion volumes. For

lesions $ 150 mm3, the lesion must grow by 20% to be counted as

enlarging. For lesions ,150 mm3, the lesion must grow by 50% to

be counted as enlarging. New and enlarging T2 lesions were

visually verified using interactive software to generate the final

counts.

RNA isolation
RNA was extracted ex-vivo from blood using the PAXgene RNA

blood extraction kit (PreAnalytix, Switzerland) per the manufac-

turer’s instructions and concentrated by ethanol precipitation.

RNA quality and quantity were assessed by spectrophotometry

(absorbance ratios, 260/280 nm) and visualized by agarose gel

electrophoresis. Samples were stored at 280uC.

Genes analyzed by macroarray
The cDNA macroarray analysis was performed as previously

described [22,23]. IRGs on a custom macroarray were represent-

ed by 166 human cDNAs selected from the Unigene database.

Table S1 lists all genes on the macroarray with their GenBank

accession numbers. These type I IFN IRGs were identified by

microarray analysis of fibrosarcoma, epithelial, or endothelial cell

lines treated with IFN-a or IFNb [22,23]. All were known IRGs.

The protocol for spotting DNA on the membrane, probe

labeling, and hybridization has been described previously, with

modifications as follows [22,23]. Total RNA, 5 mg, isolated ex-vivo

from blood was used for generating radiolabeled cDNA probes by

reverse transcription with Superscript II in the presence of
32P-dCTP (Invitrogen, Carlsbad, CA). Residual RNA was

hydrolyzed by alkaline treatment at 70uC for 20 min after which

cDNA was purified using G50 columns (GE Healthcare,

Buckinghamshire, UK). Preparation of macroarrays and hybrid-

ization of radioactive cDNA were conducted as described

previously [22,23]. Induction ratios (IRs) were calculated from

radioactivity bound to the membranes.

To minimize variability, each patient’s samples at baseline and

6 months were processed in a single batch experiment. A detailed

Biologic Response to IFNb and MS Disease Activity
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laboratory protocol for the macroarray method is available on

request.

IRs were validated using real-time (rt) quantitative PCR for 5

genes: OASL (accession number NM003733); TRAIL (U37518);

IFI44 (D28915); HLADRA (J00194); and TIMP-1 (M59906).

Spearman correlation coefficients between IRs calculated from rt-

PCR and macroarray data for OASL, TRAIL, IFI44, HLADRA,

and TIMP-1 were 0.92, 0.75, 0.36, 0.72, and 0.54, respectively, all

statistically significant.

Statistical analysis
Poor response to IFNb was based on quantitative MRI analysis,

comparing the MRI at the 6-month visit with baseline. Poor

response was defined as the occurrence of $3 new or enlarging

lesions. Differences in baseline characteristics between good

responder (GR) and PR groups were compared using t-tests or

Fisher’s exact tests, as appropriate. A Poisson regression was used

to test group differences in the number of induced IRGs with

IRs$2.0 at the baseline injection. Pearson correlation coefficients

of log2 transformed IRs at initial injection compared with 6

months were computed for all 85 patients. Baseline, 6-month, and

24-month pair-wise correlations were computed for 5 randomly

selected patients from each group.

To minimize noise, a filter was applied to exclude IRGs that

were not regulated in this study. Genes with mean IRs within the

range of 0.9 to 1.1 (i.e., +/- 10% from an IR of 1.0, or no change)

were excluded. Using this method, 48 of the 166 IRGs were

eliminated from further analysis at the initial IFNb injection, and

30 IRGs were eliminated at the 6-month injection. For the

remaining IRGs, covariate-adjusted least-square means (LS

means) of the log2-transformed IRs were computed and compared

between response groups by ANCOVA. The covariates were

baseline age, sex, presence of gadolinium-enhancing lesions, and

T2 volume.

The remaining IRGs were classified as upregulated or

downregulated as follows: an IRG was upregulated if more than

50% of the 85 subjects had an IR.1.0; an IRG was classified as

downregulated if more than 50% had an IR,1.0. For each IRG,

LS means of the IRs were compared between PRs and GRs. The

response was classified as exaggerated at the group level if

PRs.GRs in upregulated genes, or PRs,GRs in downregulated

genes. The proportion of genes showing an exaggerated response

in PRs was tested (one-sided) with a binomial proportion test

assuming a null hypothesis of proportion#0.5.

To further investigate whether IRGs could discriminate

between the responder groups, the magnitude of the exaggeration

in each patient was computed as a sum of the exaggerated

amounts (absolute differences between individual IRs and IR

medians) for each regulated IRG. That is, for upregulated genes, if

the individual IR was greater than the median for the whole

group, or for downregulated genes, if the individual IR was less

than the median for the whole group, then the exaggerated

amount was calculated. The magnitudes of exaggerated responses

were compared in PRs and GRs at the first and 6-month injections

using ANCOVA with baseline demographic features, presence of

baseline gadolinium lesions, and baseline T2 lesion volume as

covariates.

Results

Research Subjects
Of the 99 subjects enrolled, 85 continued to take intramuscular

IFNb-1a for at least 6 months, which was the predetermined time-

point for determining treatment response based on MRI, for

correlation with IRG macroarray results. Reasons for drop out

included: side effects (n = 4); new health issues (n = 2); no

explanation provided (n = 4); left area (n = 1); switched to

glatiramer acetate per patient preference (n = 1); sample hybrid-

ization not adequate at baseline or 6 month injection (n = 2).

Subjects were encouraged to remain in the protocol for 24 months,

so that the relationship between 6-month MRI activity and later

disease progression, as well as stability of the IFNb molecular

response, could also be determined. At the time of this report,

subject accrual was complete, and all subjects had 6-month visits.

This report focuses on the analysis of 85 patients with complete

data at baseline and 6 months. Of the 14 patients who were

enrolled in the study but did not complete the planned 6-month

macroarray analysis, 12 discontinued IFNb-1a, whereas sample

hybridization was unsuccessful in the other 2, either at first

injection or 6 months. Ten patients who had completed the 24-

Table 1. Comparison of baseline characteristics between patients with a good vs poor response to IFNb treatment.*

Characteristic Good Responders (n = 70) Poor Responders (n = 15) All Patients (n = 85) P-value GR vs PR

Age (years) 36.3 (9.4) 33.0 (11.2) 35.7 (9.8) 0.30

Symptom duration (years) 2.5 (3.0) 1.2 (1.7) 2.4 (2.9) 0.39

Female (%) 69 47 65 0.11

White (%) 93 80 91 0.14

CIS /RRMS (%/%) 34 / 66 20 / 80 32 / 68 0.37

EDSS 1.6 (1.0) 1.6 (1.2) 1.6 (1.0) 0.91

MSFC score 0.39 (0.48) 0.19 (0.41) 0.35 (0.47) 0.10

Patients (%) with gad-enhancing lesions 24.3 53.3 29.4 0.03

Gad-enhancing lesion volume (mm3) 0.097(0.38) 0.44 (0.72) 0.16 (0.47) 0.09

T2 Volume 3.0 (3.7) 5.8 (3.9) 3.5 (3.8) 0.02

T1 BH Volume 0.55 (0.75) 0.87 (0.82) 0.61 (0.77) 0.19

BPF 0.858 (0.014) 0.859 (0.013) 0.859 (0.014) 0.79

*All values are mean6SD, unless otherwise indicated.
CIS = clinically isolated syndrome; RRMS = relapsing-remitting multiple sclerosis; EDSS = Expanded Disability Scale Score; MSFC = Multiple Sclerosis Functional
Composite; Gad = gadolinium; BH = black hole; BPF = brain parenchymal fraction.
doi:10.1371/journal.pone.0019262.t001

Biologic Response to IFNb and MS Disease Activity
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month protocol contributed blood for 24-month IRG analysis.

Baseline demographic and disease characteristics did not signifi-

cantly differ between those who completed the first 6 months and

those who did not (data not shown). For all other analyses, only the

85 patients who completed the first 6 months were included.

Among these 85, 32% had CIS with multiple brain MRI lesions,

and 68% had relapsing-remitting MS. The mean age was 35.7

years; mean disease duration was 2.4 years; 65% were women; and

91% were white. At 6 months, 15 (18%) subjects were classified as

PRs based on our pre-determined MRI definition. The two groups

were similar at baseline on all characteristics except that a higher

proportion of PRs had gadolinium-enhancing lesions and greater

T2 lesion volumes at baseline, indicating PRs had more severe

disease (Table 1).

IRG Response to First Injection and Stability over Time
Preliminary assays in healthy subjects not receiving IFNb

showed that IRs did not vary more than 1.5-fold in assays

separated by 12 or 24 hours. Therefore, an IR$2.0 defined

induction of an IRG. The number of induced IRGs at the first

IFNb injection varied among patients, ranging from 7 to 135, with

no relationship between IFNb responder status and number of

induced genes (p = 0.76) (data not shown). Similarly, the pattern of

response to the initial IFNb injection varied considerably between

patients as previously reported22.

Figure 1 shows the IRs at first injection plotted against IRs at 6

months for a representative patient with a good response (Fig 1A),

a representative patient with a poor response (Fig 1B), for all 70

patients with a good response (Fig 1C) and for all 15 patients with

a poor response (Fig 1D). Despite inter-individual variability in the

pattern and magnitude of IRG response after the first IFNb-1a

injection, the response was remarkably stable over time for

individual subjects. Figure S1 shows the IRs at baseline and 6

months for each of the 85 patients. Two subjects (patients 7 and

25) had viral infections at the initial injection and so had little or

no IRG induction at the first injection due to high pre-injection

IRG expression levels. Both subjects responded to IFNb injection

at 6 months. Patient 21 developed neutralizing antibodies to IFNb
detected at 6 months. This subject responded briskly to the first

IFNb injection, but minimally at 6 months. Neutralizing antibody

testing of all other subjects was negative at 6 months.

Excluding those three subjects, IRs at first injection strongly

correlated with IRs at 6 months for individual patients [Pearson

correlation coefficient mean (6SD) = 0.8160.11]. The mean

correlation coefficient for the 15 PRs (study numbers 1, 4, 12,

14, 18, 40, 49, 57, 62, 65, 66, 70, 87, 91, and 92) was 0.8160.10,

Figure 1. Correlations between induction ratios (IRs) for two patients at the initial (baseline) and 6-month injections. A) Patient 2 had
a good treatment response; B) Patient 1 had a poor treatment response; C) All genes in all patients with a good treatment response; and D) All genes
in all patients with a poor treatment response. Identical IRs at the two time points fall on the diagonal line whereas deviation from the diagonal
reflects changes in the IRs at the first injection compared with the 6-month injection. Note the highly conserved IRG response at the two time points,
both at the initial injection and 6 months later. There were no differences in consistency of the response in the good vs poor responders.
Supplemental Figure 1 shows correlations for each of the 85 patients, including patients 1 and 2.
doi:10.1371/journal.pone.0019262.g001
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compared with a mean of 0.8160.11 for the 67 GR patients

(excluding subjects 7, 21, and 25, Figure S1).

The IRG analysis was repeated at 24 months for 10 selected

patients (5 PRs and 5 GRs) (Figure 2). The IRG response was

consistent over 2 years, with no appreciable difference between

GRs and PRs. The IRs strongly correlated between baseline and 6

months (r = 0.80 for GRs, r = 0.91 for PRs); between 6 months and

24 months (r = 0.81 for GRs, r = 0.83 for PRs); and between

baseline and 24 months (r = 0.83 for GRs, r = 0.87 for PRs). Figure

S2 shows scatter plots for each patient, demonstrating highly

consistent molecular responses to IFNb injections over 24 months,

regardless of responder status. These results suggested that

treatment response status could not be attributed to attenuation

of the molecular response to IFNb over time.

IRG Response in Good vs Poor IFNb Responders
The biological effects of IFNb are traditionally accounted for by

the activities of the IRG protein products [24]. We addressed

Figure 2. Scatter plots showing correlations between induction ratios between 3 time points over 24 months. Panels (A), (C) and (E): 5
good responders showing the correlation between the initial injection and the 6-month injection (A); between the 6-month and 24-month injection
(C); and between the initial and the 24-month injection (E). Panels (B), (D), (F): 5 poor responders at the same time points. Note the highly conserved
IRG response over 24 months, both in the good and poor responders.
doi:10.1371/journal.pone.0019262.g002

Biologic Response to IFNb and MS Disease Activity
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whether the characteristics of the molecular response to IFNb
might explain PR status, either by revealing induction of

deleterious inflammatory gene products [17] or selective failure

of expression of beneficial genes [25]. In univariate analyses of the

genes remaining after filtering, the covariate-adjusted LS mean

IRs indicated differential responses (p#0.05) between the PR and

GR groups for 13 genes at the initial IFNb injection, and 16 genes

at the 6-month injection (Table 2). Unexpectedly, for all 13 genes

at the initial injection, and for all 16 genes at the 6-month

injection, the response, either induction or repression, was greater

for patients with a poor response. This suggested an exaggerated

IFNb molecular response in the patients with a poor clinical

response to IFNb treatment. Figure 3 shows that 97 (82%) of 118

genes with mean IRs outside the 0.9–1.1 range showed an

exaggerated response to IFNb at the first injection, and 100 (74%)

of 136 genes with mean IRs outside the 0.9–1.1 range showed an

exaggerated response at the 6-month injection. The proportion of

genes with an exaggerated response in PRs was significantly higher

than 50% (p,0.001 at first injection and 6 months). Figure 4

shows the magnitude of the difference between the biological

response for GRs and PRs at the first injection (figure 4A) and at 6

months (Figure 4B). the magnitude of exaggeration was signifi-

cantly higher in PRs at the first injection (p = 0.007 and 6-month

injection (p = 0.02).

Discussion

Although IFNb is the most commonly used disease-modifying

treatment for MS, its mechanisms of action are not fully

understood, no biological markers are available to guide

individualized therapy, and differential clinical responsiveness is

not understood at a mechanistic level. We sought to determine

molecular correlates of the treatment response to IFNb therapy in

relapsing-remitting MS. Response to IFNb was defined in

advance, using MRI to classify treatment response in individual

patients. In that regard, numerous reports have documented that

patients developing new lesions while on IFNb have relatively poor

clinical outcomes. [4–7] Neutralizing antibodies were not observed

at 6 months in any of the 15 patients classified as poor responders,

and so could not have explained the poor response to therapy. We

believe these 15 patients will have a poor clinical outcome

compared with the patients classified as a good treatment

response, but that differences will become evident only with

longer follow-up. We continue to follow these patients, and will

report outcomes in a future publication after all patients have been

followed at least 2 years.

We initially hypothesized that 1) the molecular response to

IFNb would differ between patients but would be stable over time

within individuals, and 2) treatment response would correlate with

the nature of the primary molecular response or its persistence

over time. We confirmed that the molecular response differs

significantly between patients in regard to the identity and number

of regulated IRGs and the extent of induction or repression.[22]

Our study documents that the IRG response was remarkably

consistent in individual MS patients for as long as 24 months,

suggesting an individual IRG ‘fingerprint’. Exceptions to this

finding (patients 7, 21, 25) were uncommon and readily explained.

The molecular response remained consistent over time regardless

of MRI outcome, excluding the possibility that attenuated IRG

Table 2. Univariate analysis with adjustment for covariates
comparing induction ratios between good and poor
responders to IFNb.

Time of IFNb
Injection Gene Mean Adjusted IR P Value

Good
Response

Poor
Response

Month 0 IL2 0.89 0.47 0.001

(n = 85) ISG15-L 2.01 3.07 0.004

TIMP-1 0.96 0.65 0.005

IDO 3.18 5.17 0.008

CD3e 0.73 0.54 0.012

IFIT5 1.91 2.51 0.013

FK506 1.29 1.65 0.013

P4Ha1 1.14 1.41 0.020

PI3K 1.50 1.99 0.026

OASL 3.41 4.63 0.030

HLADP 0.91 0.72 0.039

TRAIL 4.50 6.23 0.048

MT1X 2.95 4.53 0.049

Month 6 IFIT5 1.53 2.25 0.001

(n = 84)* Elastase2 1.16 1.45 0.003

CCR5 1.09 1.40 0.004

UBE2L6 1.56 2.09 0.011

Hou 1.54 2.35 0.016

TRAIL 3.51 4.93 0.028

TNFAIP6 2.17 3.05 0.029

IL 15 1.28 1.64 0.030

TOR1B 1.96 2.57 0.033

IP-10 1.20 1.49 0.039

Caspase 1 1.36 1.80 0.039

FLJ20035 1.67 2.19 0.040

PLSCR1 1.22 1.46 0.040

IFN-44 2.00 2.68 0.043

CEACAM 1.52 1.96 0.045

RIG-1 3.27 4.60 0.045

IR = Induction ratio.
*1 patient with NAB with no biological response at 6 months was excluded.
doi:10.1371/journal.pone.0019262.t002

Figure 3. Number of genes with an exaggerated response in
poor responders at the initial (A) and 6-month injection (B). The
dark gray bars represent genes with an exaggerated response, and the
light gray bars represent genes with no exaggerated response, as
defined in the Methods section. The proportion of genes with an
exaggerated response in PRs was significantly higher than 50% at first
injection (p,0.001) and 6 months (p,0.001).
doi:10.1371/journal.pone.0019262.g003
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regulation explained the variable response to IFNb. The groups

differed, however, in the magnitude of IRG induction and

repression, both of which, surprisingly, were exaggerated in PRs.

This study differs methodologically from prior studies of IRG

expression in MS. First, we used a prospective design and a

defined, validated outcome measure based on an objective MRI

criterion [4] that clearly delineates patients with poor clinical

outcomes on IFNb treatment [7]. Second, we quantified IRG

expression with a customized cDNA macroarray assay containing

166 IRGs, selected on the basis of previous microarray

experiments. This macroarray has been validated for other disease

indications such as IFN-a treatment for hepatitis C virus, and is

reproducible, sensitive, and quantitative [23]. For focused

quantitative studies of a relatively small number of regulated

genes such as the IRGs, the macroarray was well-suited to our

research questions. Importantly, phlebotomy was performed in a

clinical research unit precisely 12 hours after IFN injection,

minimizing variability induced by differences in sampling times.

Figure 4. The magnitude of the exaggerated response for good and poor responder groups at the initial (A) and the 6-month (B)
injection. The magnitude of exaggeration was significantly higher in PRs at the first (p = 0.007) and 6-month injections (p = 0.02).
doi:10.1371/journal.pone.0019262.g004
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Finally, we used a single IFNb preparation, likely reducing noise in

the molecular response measure. The findings can be extrapolated

to IFNb treatment generally because the molecular response to the

three approved IFNb preparations is highly consistent [26–30].

The consistent pattern of exaggerated induction or repression of

IRGs in patients who responded poorly was observed at the initial

IFNb injection and confirmed at 6 months, indicating that this

exaggerated response was a stable phenotype. Over time,

circulating leukocyte subsets change with IFNb therapy, so it

was not surprising that the specific genes identified as distinguish-

ing good and poor responders differed at the two time points. This

observation leads to a novel hypothesis: patients with MS who

exhibit an exaggerated response to exogenous IFNb have both a

poor treatment response and more severe disease. Indeed, patients

categorized as poor responders were more likely to have

gadolinium enhancing lesions at baseline, and had a higher T2

lesion burden. Thus, patients with poor response to IFNb
injections already had more active disease at treatment start. We

believe the explanation for this observation is that the response to

exogenous IFNb injections reflects responses to endogenous type 1

IFN. It has been well recognized that some, but not all, MS

patients experience relapses during viral infection, which strongly

induces endogenous type 1 IFN. An exaggerated response to type

1 IFN plus disease driven by aberrant innate immunity might

explain the response to viral infection in a subset of MS patients.

Our hypothesis would predict that patients experiencing disease

activation with viral infections would have more severe disease.

This has not been studied.

Our study has several limitations. First, there was no placebo-

treated, or untreated comparison group, so the subset we’ve

identified could simply represent more severe disease, and the

outcome might have nothing to do with IFNb treatment. Second,

advances in microarray technology during the course of this

longitudinal study now permit more quantitative assessment of the

RNA we collected. Those experiments, currently ongoing, have

the potential to confirm or refute the current findings, and possibly

to extend them considerably. Third, the classification of poor

treatment response was based entirely on a prospectively defined

MRI outcome. The clinical outcome for poor and good response

subgroups needs to be established in long-term follow-up studies,

which are ongoing. Lastly, our findings must be confirmed in

separate patient cohorts and by independent investigators.

Our hypothesis is consistent with a recent report by Axtell and

colleagues suggesting that fundamentally different pathogenic

pathways in MS subjects underlie the differential response to IFNb
therapy [12]. They reported that IFNb was effective in suppressing

murine experimental allergic encephalomyelitis caused by transfer

of TH1 cells, but exacerbated disease caused by transfer of TH17

cells. Intriguingly, two IRGs we found to be markedly regulated by

IFNb (IL2, PI3K) would be predicted to act in a manner consistent

with the hypothesis proposed by Axtell et al. Specifically, we

observed exaggerated inhibition of IL2 and exaggerated induction

of PI3K, which together could cause TH17-mediated inflamma-

tion that would be resistant to inhibition by gene products of the

type I IFN response, including IL10 [31,32]. van Baarsen et al.

[33] found that high expression of 15 IRGs before starting IFNb
treatment predicted limited induction of IRGs after treatment.

They concluded that the ability to respond to IFNb pharmaco-

logically was intrinsic to circulating blood cells, before the

introduction of IFNb. Our results are in part consistent with

Comabella et al., [34] who found overexpression of IFN-induced

genes prior to IFNb treatment in patients with a poor clinical

response. Our findings also generally agree with recent genome-

wide association studies showing that MS susceptibility was

associated with a SNP near the IRF8 gene [35] and another

SNP within the gene encoding TYK2 [36], a cytoplasmic tyrosine

kinase required for IFN responses. The IRF8 susceptibility SNP

was associated with increased expression of a wide variety of IFN

pathway genes, and the TYK2 SNP encoded a variant amino acid

in the kinase domain that was predicted to modify IFN-driven

gene expression. These observations suggest that the type I IFN

pathway, a critical component of the innate immune system, may

play a pathogenic role in some patients with MS. Finally, our

results are reminiscent of findings related to the IFN-treatment

response in patients with chronic hepatitis C infection [37].

Patients with a poor treatment response to pegylated IFNa and

ribavirin had high levels of IRG products in pre-treatment liver

biopsies compared to patients with a good response, suggesting

that activation of the endogenous IFN system was not only

ineffective in clearing hepatitis C virus, but was also predictive of a

poor response to exogenous IFN therapy.

Despite these recent reports, predictive biomarkers for IFNb
treatment failure have not been identified or validated

[6,14,16,38–48]. Our observations introduce the novel concept

that the differential treatment response to IFNb is not explained by

a specific set of IRGs, but rather by a generally augmented IRG

response to IFNb injections, and that response to IFNb injection

unmasks a subset of patients who not only respond poorly to IFNb
treatment, but who have a pathogenetically distinct form of MS.

This hypothesis has at least two major implications. First, because

the response to an initial IFNb injection strongly correlated to

response to therapy 6 months later it should be possible to develop

assays that identify patients who will have a poor response to IFNb
therapy, enabling the tailoring of disease-modifying therapy for

individual patients. It may be possible to develop an assay that

could be applied to decide whether a patient is likely to do poorly

on IFNb therapy. Because MS lesions can irreversibly injure axons

[49], optimizing therapy quickly might substantially benefit

patients. Development and validation of a biomarker based on

these observations, is beyond the scope of this initial report,

however.

A more wide-ranging implication relates to MS pathogenesis.

Mechanistic proposals for disease pathogenesis have focused on

adaptive immunity, particularly immune responses directed

against myelin constituents. We found that IFNb recipients who

became PRs already had higher levels of disease activity and

disease burden, as measured by MRI, upon entering the study. We

hypothesize that these patients exhibit a pathogenic pathway that is

characterized in part by their response to endogenous type 1 interferon. A

corollary is that differences in innate immunity, either within type

I IFN pathways or affecting the expression levels of IRGs

indirectly, are determinant for enhanced disease severity in PRs.

In that regard, IFNb injection can be viewed as a provocative

test that may expose a genetically or epigenetically determined

type 1 IFN response that contributes to pathogenesis. In these

individuals, exogenous IFNb elicits an exaggerated response,

either by upregulation from a lower pre-injection IRG expression

level32 or through augmented responses from an equivalent pre-

injection baseline. In either case, the findings in this study

implicate innate immunity in MS pathogenesis from its onset and

may provide novel insights into the fundamental disease process,

along with new therapeutic targets and hope for personalized use

of IFNb.

Supporting Information

Figure S1A Scatter plots showing the IFNb molecular
response at baseline and 6 months for 57 of 85 patients.
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The study subject number is indicated above each plot; response at

baseline is shown on the x-axis and at 6 months is shown on the y-

axis. For each subject, the induction ratio for each of 166 genes is

shown at the two time points. The variability of the molecular

response between the two time points is indicated by deviation

from the diagonal line in each plot. A consistent response at the

two time points is evident except for patients 7, 21, and 25 (see

text). Also, response consistency was similar between patients with

poor treatment response (circled study subject numbers).

(EPS)

Figure S1B Scatter plots showing the IFNb molecular
response at baseline and 6 months for the remaining 37
of the 85 patients. The study subject number is indicated above

each plot; response at baseline is shown on the x-axis and at 6

months is shown on the y-axis. For each subject, the induction

ratio for each of 166 genes is shown at the two time points. The

variability of the molecular response between the two time points

is indicated by deviation from the diagonal line in each plot.

Response consistency was similar between patients with poor

treatment response (circled study subject numbers).

(EPS)

Figure S2 Scatter plots for 10 individual patients
showing a consistent response over 24 months. Five good

and 5 poor responders were randomly selected from each group

with macroarray data at baseline, 6 months, and 24 months. The

first 3 columns show patients with a good treatment response, and

the last 3 columns are patients with a poor treatment response.

Columns 1 and 4 compare responses at baseline and 6 months;

columns 2 and 5 compare responses at 6 and 24 months; and

columns 3 and 6 compare responses at baseline at 24 months.

Note the consistency of response for all time points and that the

molecular response is consistent regardless of whether treatment

response is good or poor.

(EPS)
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