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Abstract

Background: DNA word frequencies, normalized for genomic AT content, are remarkably stable within prokaryotic
genomes and are therefore said to reflect a ‘‘genomic signature.’’ The genomic signatures can be used to phylogenetically
classify organisms from arbitrary sampled DNA. Genomic signatures can also be used to search for horizontally transferred
DNA or DNA regions subjected to special selection forces. Thus, the stability of the genomic signature can be used as a
measure of genomic homogeneity. The factors associated with the stability of the genomic signatures are not known, and
this motivated us to investigate further. We analyzed the intra-genomic variance of genomic signatures based on AT
content normalization (0th order Markov model) as well as genomic signatures normalized by smaller DNA words (1st and
2nd order Markov models) for 636 sequenced prokaryotic genomes. Regression models were fitted, with intra-genomic
signature variance as the response variable, to a set of factors representing genomic properties such as genomic AT
content, genome size, habitat, phylum, oxygen requirement, optimal growth temperature and oligonucleotide usage
variance (OUV, a measure of oligonucleotide usage bias), measured as the variance between genomic tetranucleotide
frequencies and Markov chain approximated tetranucleotide frequencies, as predictors.

Principal Findings: Regression analysis revealed that OUV was the most important factor (p,0.001) determining intra-
genomic homogeneity as measured using genomic signatures. This means that the less random the oligonucleotide usage
is in the sense of higher OUV, the more homogeneous the genome is in terms of the genomic signature. The other factors
influencing variance in the genomic signature (p,0.001) were genomic AT content, phylum and oxygen requirement.

Conclusions: Genomic homogeneity in prokaryotes is intimately linked to genomic GC content, oligonucleotide usage bias
(OUV) and aerobiosis, while oligonucleotide usage bias (OUV) is associated with genomic GC content, aerobiosis and
habitat.
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Introduction

Analyses of the DNA composition in prokaryotes and

eukaryotes have revealed important differences. While prokaryotes

have, on average, a higher fraction of coding DNA than

eukaryotes, the latter has a seemingly more advanced DNA

composition with large, non-protein coding regions [1]. In

addition, the DNA molecule in eukaryotic organisms is larger

and nucleosomes are used to compact it introducing pronounced,

small scale (sequences consisting of approximately 200 bp), long-

range correlation effects not present in bacteria [2]. In bacteria

however, small scale genomic DNA (i.e. genetic sections covering

200 bp) has a Brownian motion, or random walk reminiscent

composition, in other words, the long-range correlation effects

described above for eukaryotes are absent in microbial genomes

[3]. The random walk-like base composition pattern found in

prokaryotic genomes [1] indicates that statistical methods based on

random walk methodology, also known as Markov chains, may be

a useful tool to model and understand prokaryotic genome

composition.

Markov chains describe a set of stochastic processes that all

share the Markov property. This property states, in common

terms, that the probability that an event occurs in the future is only

dependent on the present and independent of any other events. In

other words, Markov chains are, in general, only concerned with

what happens in the last time step and not the previous history to

predict a future event, hence the term ‘‘random walk’’ [4]. Markov

chains can be extended to be made dependent on additional

events, or time steps, allowing for short range correlation effects,

i.e. short term memory, in the random walk process [4]. Short

range correlated Markov chains are known as n’th order Markov

chains, where n denotes the number of dependent time-steps, or

events [4].

Markov chain theory has found many applications in biology

and bioinformatics and are widely used in gene-finding [5], DNA

sequence search [6], rRNA gene localization [7], and protein

structure identification [8]. In this study, we used Markov chains

to analyze prokaryotic genome composition. This was carried out

by studying the genomic frequencies of small tuples of nucleotides

known as oligonucleotides. Examples of genomic oligonucleotide
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frequencies include nearest neighbor frequencies (dinucleotide

frequencies), codon frequencies (trinucleotides) and tuples of four

nucleotides, known as tetranucleotide frequencies. Dinucleotide

frequencies are associated with DNA structural features and base

stacking energies [9]. Codons code for amino acids in all living

organisms. Since there are 64 different codon combinations, but

only 20 different amino acids, multiple codons can code for the

same amino acid. Closely related species often prefer the same

codons for specific amino acids [10]. There are however

indications that codon preference is just as much driven by

environmental factors as phylogeny [11–13]. Tetranucleotide

patterns are influenced by biases from mono- to trinucleotide

frequencies [14]. Moreover, tetranucleotide patterns with corre-

sponding structural features are similarly distributed throughout

prokaryotic genomes [15], and have also been found to carry a

taxonomic signal [15–17]. As discussed above, prokaryotic DNA

has been found to follow a short range correlated, random walk

like pattern that can be modeled using Markov chain analysis.

To test the genomic sequences for random walk properties, or

lack thereof, we computed the variance difference between

genomic oligonucleotide frequencies and Markov chain approx-

imated oligonucleotide frequencies. Lower variance between

genomic oligonucleotide frequencies and Markov chain approx-

imated oligonucleotides implies more random walk like properties.

Due to the features described above for tetranucleotide frequen-

cies, Markov chain analysis was used to approximate genomic

tetranuclenucleotide frequencies with the genomic frequencies of

smaller DNA words (i.e. mono- to trinucleotide frequencies).

Higher variance (squared difference) between genomic and

approximated tetranucleotide frequencies is correlated with bias.

Hence, stronger bias is in the present study taken to mean that the

variance between genomic tetranucleotide frequencies and the

Markov chain based random walk models is high. The more

biased a genome is said to be, the more difficult it is to

approximate the genomic tetranucleotide frequencies using

random walk based methods such as Markov chains.

A zero’th order Markov chain (ZOM) approximates genomic

oligonucleotide frequencies using the corresponding genomic

nucleotide frequencies (see materials and methods for more

details). For the ZOM-based approximation scheme, we assume

that the lower variance between genomic and approximated

tetranucleotide frequencies, the more mutated, or randomly

composed, a genome is. Since each oligonucleotide frequency is

approximated by the oligonucleotide’s corresponding nucleotide

frequencies, the ZOM approximation assumes that each nucleo-

tide, in the oligonucleotide that is being approximated, is

independent of its neighbors.

Nearest-neighbor effects, or short range correlations, are

important factors in both genomic DNA structure and DNA

sequence and such effects are largely responsible for the bias in the

ZOM variance model discussed above. For instance, nearest

neighbor nucleotides are associated with base stacking energies

[9], DNA helix structure [9] and DNA structure in general

[18,19]. The three nucleotides in each codon are also dependent

on each other, and this dependency is largely responsible for the

preference of some codons over others that code for specific amino

acids [10]. The dependencies between the nucleotides in each

codon is thus strongly linked to codon usage bias in prokaryotic

genomes [10]. Thus, it is clear that short range dependencies play

an important role in genomic DNA composition.

Dependence of nearest neighbor nucleotides in a random walk

model can be modeled using a first or second order Markov chain.

A first order Markov chain (FOM) approximates genomic

oligonucleotide frequencies using the oligonucleotide’s corre-

sponding mono- and dinucleotide frequencies. Hence, weak

dependencies are incorporated into the FOM model by the use

of genomic mono- and dinucleotide frequencies to approximate

the frequencies of larger oligonucleotides as compared to only

mononucleotide frequencies in the ZOM model. Even stronger

neighboring effects, or short range correlations, are incorporated

into the second order Markov chain (SOM), which uses di- and

trinucleotide frequencies to approximate larger oligonucleotides.

The lower the variance is between genomic tetranucleotide

frequencies and FOM and SOM based tetranucleotide frequency

approximations, the stronger are the interactions of two and three

neighboring nucleotides in the respective models. The variance

tests measuring the random walk like behavior of the genomic

DNA sequences are referred to as oligonucleotide usage variance

(OUV) [14,15]. Hence, OUV is here a measure of tetranucleotide

usage bias, measured as the variance between genomic tetranu-

cleotide frequencies and Markov-chain approximated tetranucle-

otide frequencies. The higher the OUV value, the more biased (i.e.

less random walk like) we say a genome is. Conversely, smaller

OUV values are taken to mean that a genome has a more random

walk or Brownian motion like sequence structure corresponding to

the Markov model used. In other words, while FOM and SOM

models emphasize dependence between 2 and 3 nucleotides in a

DNA sequence, the ZOM model assumes no such dependencies at

all. ZOM based approximations are thus assumed to better model

random mutations in DNA sequences, while FOM and SOM

based approximations are more suited to model neighboring

dependencies and short range correlations, respectively. Figure 1

shows how OUV varies in two bacterial genomes, Bacillus cereus

ATCC 14579 and Rhodopirellula baltica SH 1.

Figure 1. Oligonucleotide usage variance (OUV) in Bacillus
cereus and Pirelulla sp. The figure shows how tetranucleotide usage
varies within the Bacillus cereus ATCC 14579 (grey line) and
Rhodopirellula baltica SH 1 (black line) chromosomes. The vertical axis
(OUV) is a measure of oligonucleotide usage variance. Higher OUV
values indicate more biased tetranucleotide usage as compared to a
randomly constructed DNA sequence with corresponding AT content. It
can be seen that the R. baltica genome has, on average, more biased
tetranucleotide usage than the B. cereus genome.
doi:10.1371/journal.pone.0008113.g001

Prokaryotic Genome Homogeneity
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The odds-ratio of genomic oligonucleotide frequencies divided

by Markov chain approximated oligonucleotide frequencies, on

arbitrary bulks of 50 kbp, has been shown to correspond

remarkably well with known phylogenies for closely related

organisms [20,21]. The discovered phylogenetic signal made

Karlin and co-authors dub the odds-ratio of observed oligonucle-

otide frequencies divided by approximated oligonucleotide

frequencies as ‘‘genomic signatures’’ [22]. The stable property of

the odds-ratio between observed oligonucleotide frequencies and

Markov chain approximated oligonucleotide frequencies in

genomic DNA, was first discovered using a dinucleotide based

zero’th order Markov chain [23]. Although this finding dates back

to early 1960’s, it was Karlin and co-workers who discovered the

more general validity of the method and called it a ‘‘genomic

signature’’ [22]. Karlin and co-workers also tested an odds-ratio

model based on a second order Markov chain model, but could

not detect any improvement in performance compared to the

ZOM-based odds-ratio model [20]. Subsequent studies have given

a mixed picture regarding the genomic signature obtained with a

SOM-based odds-ratio model compared to ZOM-based genomic

signatures [16,24,25]. However, ZOM-, FOM- and SOM-based

odds-ratios reflect taxonomical signals in prokaryotic genomes.

The FOM-based odds-ratio model is especially suited to model

nearest neighbor interactions between nucleotides, and may

therefore be somewhat more biased towards base stacking energies

than the ZOM model. Table 1 gives an overview of the different

Markov chain models used in the present study together with the

corresponding assumptions and biases.

Genomic signature variances within genomes can be measured

using odds-ratios of genomic oligonucleotide frequencies divided

by approximated oligonucleotide frequencies from smaller chunks

of DNA, ranging from a few to a hundred kbps, and compared to

the corresponding odds-ratios for the whole DNA sequence [25].

The genomic signature varies little within prokaryotic genomes

[21,25]. However, variations of the genomic signature may be

indicative of foreign DNA from plasmids, virus or the environment

being integrated into a genome [26]. Variations in genomic

signatures within prokaryotic genomes is therefore occasionally

linked to virulence and pathogenicity islands [14,21,26]. By using

the Pearson correlation coefficient (r), giving the value 1 for

complete correlation and the value 0 for no correlation, as a

measure for comparing DNA sequences, it was observed [25] that

considerably smaller bulks of DNA could be used to search for

foreign DNA than the 50 kbp bulks of DNA first proposed [20].

The ability to detect genomic signature difference with less DNA

facilitates the identification of smaller regions of DNA that may be

associated with pathogenesis [14]. Analysis of dinucleotide-based

genomic signature variance within Thermotoga maritima revealed

that correlation scores as high as r.0.9 could be obtained between

genomic signatures from 5 kbp sliding windows and whole

chromosome based signatures [14]. Indeed, for the same genome

and sliding window size tetranucleotide-based genomic signatures

obtained correlation scores of r.0.8 [14]. In the Bacillus subtilis

genome the average correlation score was somewhat lower than

the score obtained for T. maritima using tetranucleotide-based

genomic signatures. Although both organisms are known to have

acquired considerable amounts of foreign DNA [27,28], the

average variance of the genomic signature within each genome

varied considerably between the two genomes [14]. We shall refer

to average variation measures of genomic signatures based on

Pearson correlation as Pearson correlation-coefficient homogene-

ity tests (PCH). Figure 2 shows how the genomic signature, as

measured using the PCH measure, varies within two genomes,

Rhodopirellula baltica SH 1 and Bacillus cereus ATCC 14579.

Table 1. Assumptions of the Markov chain models and the corresponding reflected bias.

Approximation
model

Oligonucleotide(s) used in
approximation Assumptions Bias

ZOM mononucleotide frequencies no correlations between neighboring nucleotides random mutations

FOM mono- and dinucleotide frequencies correlations between neighboring nucleotides base stacking energies

SOM di- and trinucleotide frequencies Correlations between all adjacent nucleotides base stacking energies, DNA structure, codon bias

The table shows the different assumptions and biases associated with the corresponding Markov chain model used to approximate genomic oligonucleotide
frequencies.
doi:10.1371/journal.pone.0008113.t001

Figure 2. Genomics signature variance in Bacillus cereus and
Pirelulla sp. The figure shows how the genomic signature varies within
one of the most homogeneous chromosomes, Rhodopirellula baltica SH
1 (black line), and within one of the most heterogeneous chromosomes,
Bacillus cereus ATCC 14579 (grey line). The vertical axis representing
PCH, gives a measure of how homogeneous a genome is. The higher
the PCH value, the more homogeneous the chromosome. It can be seen
that PCH is both higher and with less variation in the R. baltica genome
as compared to the B. cereus genome. While R. baltica is a slow growing
GC rich bacterium with a relatively large genome (7 mbp), B. cereus is a
fast growing AT rich bacterium with a genome of approximately
5.5 mbp.
doi:10.1371/journal.pone.0008113.g002

Prokaryotic Genome Homogeneity
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The difference in average genomic signature variance between the

bacteria discussed above motivated us to investigate genomic

homogeneity in sequenced prokaryotic genomes by utilizing the stable

property reflected by the Markov chain based genomic signature

methods. The aim was to explore how genomic homogeneity, as

measured by tetranucleotide-based genomic signatures, varied within

all sequenced prokaryotic genomes, and whether this variance could be

attributed to specific phylogenetic and environmental factors.

Moreover, we wanted to examine the DNA compositional random

walk like properties in each sequenced prokaryotic genome, and

whether it could be linked to genomic homogeneity (PCH), and if it

could be attributed to specific phylogenetic and environmental factors.

To model the factors affecting genomic homogeneity in

prokaryotes, a linear regression analysis was used with PCH as

the response variable with the predictor variables: growth

temperature (a categorical factor classifying organisms as psychro-

philic, mesophilic or thermophilic), AT content, chromosome size,

habitat (a categorical factor describing the organisms habitat as

aquatic, host-associated, multiple, specialized or terrestrial) and

phyla, in addition to the corresponding Markov chain OUV.

To examine factors influencing the random walk like behavior

of genomic DNA sequences, a linear regression model was set up

with ZOM, FOM and SOM OUV as response variables to the

following predictor variables: growth temperature, AT content,

chromosome size, habitat and phyla.

Separate models were fitted for whole chromosomes, including

coding and non-coding regions, and open reading frames (orfs) to

measure whether any differences in the PCH and OUV measures

could be detected between coding and non-coding regions.

Results

OUV Regression Models
In Table 2 it can be seen that AT content and phyla were the

strongest contributing factors in the OUV-based regression

models. This means that the random walk like properties of

genomic DNA in prokaryotes is, first and foremost, associated with

genomic AT content (Figure 3) and phylogeny. The higher the

genomic AT content, the more random walk like the genomic

DNA sequence pattern tend to be. Oxygen requirement was

Table 2. OUV regression AIC/Coefficient of variation scores.

Constant Size AT Phyla Oxygen Habitat Growth temperature Transform

ZOM 1187 909, R2 = 0.33 649, R2 = 0.55 646, R2 = 0.55 log

ZOM orfs 1056 683, R2 = 0.42 402, R2 = 0.62 397, R2 = 0.62 390, R2 = 0.63 log

FOM 24399 24463, R2 = 0.09 25515, R2 = 0.54 25695, R2 = 0.65 25715, R2 = 0.66 25717, R2 = 0.67 log

FOM orfs 24204 24757, R2 = 0.55 24954, R2 = 0.67 24961, R2 = 0.67 24967, R2 = 0.68 log

SOM 961 542, R2 = 0.45 324, R2 = 0.61 314, R2 = 0.62 308, R2 = 0.62 295, R2 = 0.63 log

SOM orfs 2544 2511. R2 = 0.05 2033, R2 = 0.52 1766, R2 = 0.68 1763. R2 = 0.68 1757, R2 = 0.69 log

Results of forward fitting regression models with the response variable in the leftmost column followed by the included predictors in the subsequent columns.
doi:10.1371/journal.pone.0008113.t002

Figure 3. Oligonucleotide usage variance (OUV) based on ZOM, FOM and SOM models. OUV scores based on ZOM (left), FOM (middle),
and SOM (right) measures are found on the vertical axis, with each respective chromosome, sorted from left to right by increasing AT content, on the
horizontal axis. Red lines indicate whole chromosome OUV scores, including both coding and non-coding section, while blue lines represent
concatenated open reading frames. Lower values mean better OUV approximations. Dotted lines represent 99% prediction intervals.
doi:10.1371/journal.pone.0008113.g003

Prokaryotic Genome Homogeneity
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associated with genomic base composition as measured by the

OUV measure (p,0.001) for both FOM and SOM models. The

results from the regression model indicate that aerobic organisms

have a more biased genome compared to the FOM and SOM

based random walk models. Habitat was associated with OUV for

all models but the FOM model (p,0.001), meaning that the

random walk like sequence structure in prokaryotic DNA is also

affected by environmental conditions. Growth temperature was

associated with FOM and SOM OUV (p,0.001), but only slightly

in terms of AIC and R2 scores. Hence, it is likely that growth

temperature has an effect on genomic DNA composition, but that

it is one of many factors involved. Chromosome size was only

found to be associated with FOM and SOM orfs models

(p,0.001), it is therefore unclear how direct the impact of genome

size is on DNA composition in prokaryotes. It is known that AT

content is strongly associated with genome size [14,29], and it is

therefore possible that the link observed between the FOM and

SOM orfs models and genome size is a confounding factor. Table 2

shows that the coefficient of determination (R2) increased for all

OUV-based regression models when restricted to open reading

frames (orfs). This means that the statistical models were better at

explaining variance in open reading frames than in genomic DNA

sequences containing both coding and non-coding DNA.

From Figure 3 it can be seen that OUV scores were noticeably

higher in open reading frames for all models when compared to

AT content. Thus, open reading frames have a less random walk

like sequence structure than non-coding regions.

OUV scores dropped when the order of the Markov model

increased (Figure 4), indicating dependence and strong interac-

tions between neighboring nucleotides in all sequenced prokary-

otic genomes examined.

From Table 2 it can be seen that the ZOM-based regression

model explained the least observed variance (R2 = 0.55), while the

SOM model restricted to open reading frames explained the most

variance (R2 = 0.69).

ZOM OUV compared to FOM OUV scores obtained

R2 = 0.39. ZOM OUV compared to SOM OUV scores were

the least associated of all measures with R2 = 0.3, while FOM

OUV compared to SOM OUV scores obtained the highest

coefficient of determination of R2 = 0.57. In summary, this

indicates that the ZOM OUV model resembled the FOM OUV

model more than the SOM OUV model.

PCH Regression Models
From Table 3 it can be seen that all Markov model based PCH

regression models were influenced by AT content, respective order

Markov model based OUV scores, and phyla. Thus, genomic

DNA homogeneity as measured by the intra-genomic variance of

Markov chain based genomic signatures increased with GC

content and OUV. The more biased, i.e. less random walk like, the

genomic DNA compositions was, the more homogeneous the

genomic DNA sequence in terms of the Markov chain based

genomic signature was found to be. Oxygen requirement was

associated with increased genome homogeneity in all regression

models except the ZOM model (p,0.001), while chromosome size

was only found to be significant for the FOM orfs model. As was

mentioned above, since chromosome size was only associated with

the FOM orfs model, it is possible that the chromosome size

confounds with AT content, or one of the other factors, and is thus

found significant by the regression models. Habitat was found to

improve the coefficient of determination (R2) slightly but only for

the ZOM and SOM orf regression models. It is therefore possible

that habitat is confounding with another covariate, just as in the

case for chromosome size. Most variance was explained by the

Figure 4. Overview of Markov model based oligonucleotide
approximations in prokaryotes. OUV scores based on 0th, 1st and
2nd order Markov models (ZOM, FOM, and SOM respectively) are found
on the vertical axis. Each chromosome is sorted with respect to
increasing AT content from left to right along the horizontal axis. ZOMs
(red line) approximate genomic tetranucleotide usage with nucleotide
frequencies, while FOMs (green line) use genomic dinucleotide content
in addition. The 2nd order Markov model (blue line) bases tetranucle-
otide frequency approximations on genomic di- and trinucleotide
usage. Larger OUV values mean poorer approximations which is a
consequence of more biased tetranucleotide usage.
doi:10.1371/journal.pone.0008113.g004

Table 3. PCH regression AIC/Coefficient of variation scores.

Constant Size AT OUV Phyla Oxygen Habitat Transform

ZOM 2728 21051, R2 = 0.37 21492, R2 = 0.67 21727, R2 = 0.77 21730, R2 = 0.77 l= 10

ZOM orfs 2827 21240, R2 = 0.45 21629, R2 = 0.68 21740, R2 = 0.74 21753, R2 = 0.74 l= 17

FOM 2828 21364, R2 = 0.4 21831, R2 = 0.8 21894, R2 = 0.82 21920 R2 = 0.83 l= 4

FOM orfs 2715 2816, R2 = 0.14 21361, R2 = 0.61 21847, R2 = 0.8 21902, R2 = 0.82 21924, R2 = 0.83 l= 9

SOM 21088 21278, R2 = 0.24 21845, R2 = 0.66 22032, R2 = 0.75 22051, R2 = 0.76 l= 3

SOM orfs 21059 21306, R2 = 0.3 21460, R2 = 0.44 21636, R2 = 0.58 21665, R2 = 0.59 21666, R2 = 0.6 l= 3

Results of forward fitting regression models with the response variable in the leftmost column followed by the predictors used in the models.
doi:10.1371/journal.pone.0008113.t003

Prokaryotic Genome Homogeneity
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FOM and FOM orfs regression models (R2 = 0.83), while the least

variance was explained by the SOM orfs model (R2 = 0.58). The

orfs models were in general better, in terms of variance explained

(Table 3), than the models based on whole chromosomes, and,

from Figure 5, it can be seen that they in general obtained higher

PCH scores.

The ZOM PCH compared to FOM PCH scores obtained a

coefficient of determination score of R2 = 0.38, while ZOM PCH

compared to SOM PCH scores were found to have a R2 = 0.21.

Similar to the FOM and SOM OUV scores, the FOM compared

to SOM PCH scores obtained the highest coefficient of

determination with R2 = 0.52. Hence, corresponding to the results

obtained for the OUV values, ZOM PCH was more similar to

FOM PCH than SOM PCH.

Both OUV and PCH based regression models were also tested

with pathogenicity as a factor. This factor is assumed to give a

weak indication of recombination or horizontal transfer [30,31],

but was not found significant for any of the models and therefore

removed.

Discussion

OUV-Based Models and their Association with Genomic
Signatures

The Markov model based genomic signatures discussed here

differentiate organisms in terms of the ratio of genomic

tetranucleotide frequencies divided by Markov chain approximat-

ed tetranucleotide frequencies. OUV values, or the variance

between genomic tetranucleotide frequencies and approximated

tetranucleotide frequencies, are therefore strongly associated with

genomic signatures, since the bias in tetranucleotide usage drives

the genomic signature in the respective organism. Factors affecting

Markov model approximated OUV values in prokaryotes were

examined using regression analysis. The regression models

revealed that OUV is more associated with AT content than

phyla. The relationship between OUV and AT/GC content is

most likely also confounded with factors not specified in the model,

since genomic AT content has been associated with environment

[11,12]. Habitat, a categorical factor describing the environment

where the organisms are usually found, was divided into five

branches: aquatic, host-associated, terrestrial, specialized (extre-

mophiles) and multiple (same species found in many different

environments). The regression models, except FOM OUV,

improved with the inclusion of the habitat factor for all measures.

It is assumed that the lack of significant association between the

FOM OUV measure and habitat is due to the coarseness of the

methods used. The same can be said for the categorical variable

specifying oxygen requirement. The oxygen requirement variable

describes aerobic, anaerobic and facultative lifestyles, and was

found to be significantly improving all regression models except for

the ZOM OUV model.

The coefficient of determination (R2) is in general higher for all

OUV models restricted to open reading frames, indicating that the

variances in the regression models are better explained in the

Figure 5. Markov chain model based PCH scores in prokaryotes. ZOM (left), FOM (middle) and SOM (right) PCH values (vertical axis) obtained
for each chromosome sorted from left to right by increasing AT content (horizontal axis). The PCH scores show how the Markov chain based genomic
signatures change, on average, within each chromosome. For all models we find that PCH scores are noticeably higher in coding regions (blue lines)
than chromosomes, containing both coding and non-coding regions (red lines). Higher PCH values mean more homogeneous chromosomes while
lower PCH means more heterogeneous chromosomes with respect to the corresponding Markov-chain based genomic signatures. Dotted lines
represent 99% prediction intervals.
doi:10.1371/journal.pone.0008113.g005

Prokaryotic Genome Homogeneity
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coding regions. The oligonucleotide based genomic signature

methods require relatively large segments of DNA to give

meaningful results, i.e. at least multiple kbp’s depending on the

Markov model used [25]. The non-coding regions were therefore

not separated from the chromosomes analyzed. Hence, difference

between coding and non-coding regions was measured as the

difference between chromosomes, containing both coding and

non-coding regions, and predicted open reading frames. It is

interesting to note that AT content explains more variance in the

OUV models than phyla. An explanation may be that the genomic

DNA composition of prokaryotes is more sensitive to changes in

conditions affecting mononucleotide frequencies than phyla. In

other words, phyla could provide prokaryotic genomes with a

sense of ‘inertia’ (or memory) while environmental factors affecting

base composition may be responsible for inducing more rapid

genomic changes. For instance, nitrogen is more abundant in GC

rich genomes meaning that changes in nitrogen levels may affect

the base composition in such genomes severely [32]. Similar trends

have been observed for oxygen and aerobic bacteria, in the sense

that the genomes of aerobic bacteria tend to be more GC rich

[33]. In general, it has been shown, using sequenced genomes, that

the environment affects the base composition in bacteria [11], and

that the resulting change is relatively fast [12].

GC rich genomes were found to be more strongly biased in

terms of OUV than AT rich genomes in the sense that AT rich

genomes had, on average, a more random walk like DNA

composition. Lower OUV scores mean less bias which, in turn,

implies increased independence between the adjacent nucleotides

and therefore more random genomic sequence patterns, presum-

ably due to increased mutation rates [14]. This is supported by the

observation that intracellular bacteria having undergone genome

reduction tend to lose DNA repair genes and become AT rich

[34–36]. This appears to happen to free living genomes as well

when the amount of available nutrition changes. An example of

the latter can be found in different strains of the ocean living

bacterium Prochlorococcus marinus. Some of the P. marinus strains that

live in the upper high light layer of the ocean tend to have smaller

genomes than strains living in the nutrition rich low light areas

[37]. Although only slightly, AT content was associated with

habitat for host associated and terrestrial environments (p,0.001),

but aquatic, multiple (bacteria found in different environments)

and specialized habitats (extremophiles) were not found significant.

Oxygen requirement was also associated with AT content, but

only slightly for anaerobic and facultative oxygen requirement

(p,0.001). In contrast, growth temperature was not significantly

(p.0.5) associated with AT content. It should be emphasized that

global genomic data is necessarily ‘‘noisy’’, and many of the

environmental influences are assumed to affect particular areas of

the genome and in distinct patterns [38]. Examinations of

environmental influences on more specific genomic regions will,

however, require the use of different methods than those employed

here. It is conceivable that such methods should be based on

nucleotides rather than oligonucleotides for an increase in

sensitivity [39,40].

The SOM OUV method has also been used to approximate

oligonucleotide frequencies in E. coli [41,42]. The SOM method

was found to be inferior to similar methods allowing gaps [42].

Our findings indicate that the quality of the oligonucleotide

approximations in prokaryotes depend, most importantly, on AT

content. Thus, since AT rich genomes tended to be less biased, in

terms of random walk like sequence patterns, than GC rich

genomes, it may indicate that AT rich genomes are more

concentrated, that is, dependencies between nucleotides are more

short ranged, and therefore easier to approximate.

Variance of Genomic Signatures within Genomes
The principal motivation for this work was to examine

prokaryotic genome homogeneity using Markov chain based

genomic signatures. Figure 6 shows how the genomic signature

changes within an E. coli K-12 genome. The ZOM PCH measure

obtained higher scores than the FOM PCH measure, which, in

turn, obtained higher scores than the SOM PCH measure. It can

be seen that PCH scores increase with wider sliding windows [25].

The regression models indicate that all PCH methods are

influenced by AT content and phyla, but most of all, corresponding

Markov chain model OUV scores. Thus, genomic homogeneity, as

measured using Markov chain based genomic signatures, is

positively correlated with bias in genomic tetranucleotide patterns

in the sense that the less random walk like the DNA composition of a

genome is, the more homogeneous the genome is.

The FOM PCH based regression model obtained a coefficient

of determination higher than the other Markov-chain based PCH

models. In other words, FOM PCH was the best regression model

in terms of variance explained. Although the reason for this is not

known, it has been shown that mono- and dinucleotide frequencies

to a large degree determine genome wide codon usage bias, and

that the codon bias can be determined from intergenic regions as

well [43]. Codon bias is therefore found to be, first and foremost,

determined by forces inducing mutations on the whole genome

and only secondary by factors related to specific genes [43]. The

SOM PCH based models obtained R2 values lower than those of

both ZOM and FOM PCH models. The low PCH scores obtained

with the SOM-based measures may indicate that the lower R2

values obtained with the SOM PCH regression models may be

caused by the increased genetic ‘noise’ found in these models.

The correlation between OUV and PCH scores means that

random walk like DNA composition is strongly associated with

intra-genomic heterogeneity, as measured by the different Markov

model based genomic signatures. All PCH models, except for the

ZOM PCH model, improved significantly with the inclusion of the

oxygen requirement factor, although only slightly in terms of AIC

and R2. This result may indicate that oxygen requirement affects

DNA composition in prokaryotes on many levels. Oxygen

requirement did not reach the same significance level in the

ZOM PCH model (p = 0.08) as the other models.

A small, but significant, improvement to the ZOM and SOM

PCH orfs models was observed with the inclusion of the habitat

factor. Chromosome size was only found to improve the FOM

PCH orfs model. These results mean that chromosomal

homogeneity, in terms of variance in the Markov model based

genomic signatures, is associated with, first and foremost,

corresponding ZOM, FOM and SOM OUV scores followed by

AT content and phyla, with oxygen requirement influencing

chromosomal homogeneity to a lesser degree.

Although all Markov-chain based PCH measures, and partic-

ularly the SOM PCH model, are fairly crude in measuring average

chromosomal homogeneity it was of some surprise to note the

substantial improvement to the models by the inclusion of AT

content as a factor. All statistical models improved considerably in

terms of both AIC and R2 scores. This was unexpected since the

variance of genomic signatures within genomes has usually been

associated with foreign genetic elements like phages and

pathogenicity islands [21]. The finding that global AT content is

an important factor associated with how the genomic signatures

vary within genomes can be seen from tables 4–9, where the high

PCH scoring genomes tend to have lower AT content than the low

PCH scoring genomes. The strong association with the corre-

sponding OUV values may be a consequence of selective forces.

Indeed, AT content is associated with phyla in the sense that

Prokaryotic Genome Homogeneity
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Figure 6. E. coli K-12 profiles based on ZOM, FOM and SOM PCH measures. Plots of genomic signatures based on ZOM (red line), FOM (green
line), or SOM (blue line) models compared with tetranucleotide-based signatures from a 10 kbp sliding window, overlapping every 5 kbp. Higher PCH
(vertical axis) mean greater intra-chromosomal homogeneity. The low dips located close to genomic positions (horizontal axis) 2.1 mbp and 2.8 mbp
indicate prophage DNA.
doi:10.1371/journal.pone.0008113.g006
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similar species and strains tend to have similar AT content.

However, all statistical PCH models indicated that AT content

contributed more to the regression models than phyla. It should be

noted that the above mentioned results are trends with a varying

proportion of unexplained variance, i.e. exceptions do occur. In

addition, the selection of sequenced genomes is in turn biased both

by genome size and interest.

Genomic OUV and PCH Scores as Measures of Selection
Forces

It is reasonable to think that OUV mirrors, although somewhat

crudely, the sum of selective forces acting on an organism’s

genomic DNA. Low OUV scores implies that the observed

genomic DNA composition is closer to a model assuming, in the

simplest case (ZOM), only similar mononucleotide frequencies.

Thus, the more similar the genomic DNA composition, measured

as mononucleotide frequency approximated tetranucleotide fre-

quencies, is to corresponding mononucleotide frequencies, the

weaker selective forces are assumed to have been acting on the

genome. It has also been noted in several articles [34,36], that

genomes in a stable environment, such as in a nutrition providing

cell, tend to lose DNA repair genes with the implication that

genomes mutate, particularly from cytosine to thymine on the

lagging strand [44], leading subsequently to many defective genes

and, ultimately, reduced genomes [34]. To reverse the processes of

genome reduction, stronger selection forces must act on the

genome. There are not many examples of genome expansion

known to the authors, however Ehrlichia ruminantium and Frankia sp.

strain EAN1pec are assumed to be affected by stronger selection

forces due to their alleged genome increase [45,46]. The strong

association between OUV and PCH scores may indicate that

strong selection forces, i.e. high OUV and PCH scores, have a high

impact on an organisms DNA sequence which results in higher

chromosomal homogeneity. This may explain the association

between AT content and OUV/PCH scores, which, furthermore,

may imply that genomic amelioration rates [47] are linked to AT

content.

In summary, homogeneity in prokaryotic genomes, measured

using genomic signatures, is highly associated, in order of

importance, with bias in DNA composition, as measured by the

Table 4. Highest ZOM PCH scoring genera.

Name
NCBI accession
number

ZOM
PCH AT

Size
mbp

ZOM OUV/
Z-scores (log) Oxygen Habitat

Growth
temperaure

Candidatus Korarchaeum cryptofilum strain OPF8 NC 010482 0.96 0.51 1.59 4.32E-006/0.96 Anaerobic Specialized Thermophilic

Rhodopirellula baltica SH 1 NC 005027 0.96 0.45 7.15 3.59E-006/0.63 Aerobic Aquatic Mesophilic

Wolinella succinogenes NC 005090 0.96 0.52 2.11 4.61E-006/1.07 Aerobic Host associated Mesophilic

Dichelobacter nodosus strain VCS1703A NC 009446 0.96 0.56 1.39 6.26E-006/1.7 Anaerobic Host associated Mesophilic

Leptospira borgpetersenii serovar Hardjo-bovis
strain JB197

NC 008510 0.96 0.6 3.58 5.08E-006/1.25 Aerobic Host associated Mesophilic

doi:10.1371/journal.pone.0008113.t004

Table 5. Lowest ZOM PCH scoring genera.

Name
NCBI accession
number

ZOM
PCH AT

Size
mbp

ZOM OUV/
Z-scores (log) Oxygen Habitat

Growth
temperaure

Buchnera aphidicola NC 004545 0.73 0.75 0.62 1.99E-006/-0.41 Facultative Host associated Mesophilic

Staphylococcus epidermidis strain RP62A NC 002976 0.73 0.68 2.62 7.62E-007/-2.11 Facultative Host associated Mesophilic

Candidatus Blochmannia floridanus NC 005061 0.75 0.73 0.71 9.18E-007/-1.78 Aerobic Specialized Mesophilic

Bacillus cereus strain ATCC 14579 NC 004722 0.77 0.65 5.22 1.24E-006/-1.31 Facultative Multiple Mesophilic

Finegoldia magna strain ATCC 29328 NC 010376 0.78 0.68 1.8 2.47E-006/-0.03 Anaerobic Multiple Mesophilic

doi:10.1371/journal.pone.0008113.t005

Table 6. Highest FOM PCH scoring genera.

Name
NCBI accession
number

FOM
PCH AT

Size
mbp

FOM OUV/
Z score (log) Oxygen Habitat

Growth
temperaure

Caldivirga maquilingensis strain IC-167 NC 009954 0.92 0.57 2.08 2.36E-006/1.95 Aerobic Specialized Thermophilic

Helicobacter acinonychis strain Sheeba NC 008229 0.92 0.62 1.55 1.28E-006/0.87 Aerobic Host associated Mesophilic

Dehalococcoides strain CBDB1 NC 007356 0.91 0.53 1.4 1.36E-006/0.98 Anerobic Multiple Mesophilic

Pyrobaculum aerophilum NC 003364 0.91 0.49 2.22 1.32E-006/0.93 Facultative Aquatic Thermophilic

Ignicoccus hospitalis strain KIN4 I NC 009976 0.91 0.43 1.36 1.5E-006/1.15 Anaerobic Aquatic Thermophilic

doi:10.1371/journal.pone.0008113.t006
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OUV measure, AT content, phyla and oxygen requirement. All

Markov-chain based genomic signatures were found to be

associated with AT/GC content, with the implication that the

more GC rich and higher OUV a genome has, the more

homogeneous is the genome. In other words, GC rich genomes

tend to be more homogeneous than AT rich. This result was not

expected since genomic signatures are known to be sensitive to

foreign genetic elements. Other factors such as habitat and oxygen

requirement were also significant factors for the different models,

and the genomic signatures were more stable in coding regions

than in non-coding regions.

Materials and Methods

All 636 genomes, consisting of 694 prokaryotic chromosomes,

were downloaded from the NCBI database [48] [http://www.

ncbi.nlm.nih.gov/genomes/lproks.cgi]. Genomic properties and

information about the different organisms were also obtained from

the NCBI website [48]. Regression analyses and data visualization

was performed with R [49], and computer programs were made

according to the guidelines described below. DNA sequences were

analyzed in the 59 R 39 direction. All data used in the analyses,

can be found as supporting information (File S1).

Notation
Using the notation from Karlin and co-workers [20], the ZOM,

FOM and SOM based functions are represented by the following

formulas:

rXYZW fð Þ~ fXYZW

fX fY fZfW

ZOMð Þ

jXYZW fð Þ~ fY fZfXYZW

fXY fYZfZW

FOMð Þ

gXYZW fð Þ~ fXYZW fYZ

fXYZfYZW

SOMð Þ

f is the DNA sequence while fXYZW indicates the frequency of oligo

Table 7. Lowest FOM PCH scoring genera.

Name
NCBI accession
number

FOM
PCH AT Size mbp

FOM OUV/Z
score (log) Oxygen Habitat

Growth
temperaure

Fusobacterium nucleatum NC 003454 0.46 0.73 2.17 8.88E-007/0.23 Anaerobic Host associated Mesophilic

Mycoplasma penetrans NC 004432 0.46 0.74 1.36 3.87E-007/-1.23 Facultative Host associated Mesophilic

Borrelia afzelii strain PKo NC 008277 0.53 0.72 0.91 3.69E-007/-1.31 Aerobic Host associated Mesophilic

Parachlamydia sp. strain UWE25 NC 005861 0.55 0.65 2.41 8.98E-008/-3.05 Aerobic Host associated Mesophilic

Clostridium difficile strain 630 NC 009089 0.56 0.71 4.29 6.34E-007/-0.36 Anaerobic Multiple Mesophilic

doi:10.1371/journal.pone.0008113.t007

Table 8. Highest SOM PCH scoring genera.

Name
NCBI accession
number

SOM
PCH AT

Size
mbp

SOM OUV/Z
score (log) Oxygen Habitat

Growth
temperaure

Helicobacter acinonychis strain Sheeba NC 008229 0.87 0.62 1.55 4.12E-007/1.31 Aerobic Host associated Mesophilic

Thermoproteus neutrophilus strain V24Sta NC 010525 0.86 0.4 1.77 8.74E-007/2.88 Anaerobic Specialized Thermophilic

Ignicoccus hospitalis strain KIN4 I NC 009776 0.86 0.43 1.3 4.79E-007/1.63 Anaerobic Aquatic Thermophilic

Methanococcus aeolicus strain Nankai-3 NC 009635 0.84 0.7 1.57 3.22E-007/0.8 Anaerobic Aquatic Mesophilic

Methanoculleus marisnigri strain JR1 NC 009051 0.84 0.38 2.48 5.3E-006/1.84 Anaerobic Aquatic Mesophilic

doi:10.1371/journal.pone.0008113.t008

Table 9. Lowest SOM PCH scoring genera.

Name
NCBI accession
number

SOM
PCH AT

Size
mbp

SOM OUV/Z
score Oxygen Habitat

Growth
temperaure

Kineococcus radiotolerans strain SRS30216 NC 009664 0.27 0.26 4.76 7.84E-007/2.65 Aerobic Multiple Mesophilic

Mycoplasma penetrans NC 004432 0.4 0.74 1.36 1.95E-007/-0.24 Facultative Host associated Mesophilic

Ehrlichia ruminantium strain Gardel NC 006831 0.4 0.72 1.5 1.7E-007/-0.53 Aerobic Host associated Mesophilic

Nocardioides sp. strain JS614 NC 008699 0.43 0.28 4.99 4.85E-007/1.65 Aerobic Multiple Mesophilic

Fusobacterium nucleatum NC 003454 0.44 0.73 2.17 2.81E-007/0.52 Anaerobic Host associated Mesophilic

doi:10.1371/journal.pone.0008113.t009
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XYZW in f. fX, fXY, and fXYZ represents mono- to trinucleotide-

frequencies of X, XY and XYZ in DNA sequence f, respectively.

The Pearson correlation formula was used to compare different

DNA sequences f and g:

Corj f ,gð Þ~

P
XYZW

jXYZW fð Þ{jXYZW fð Þ
� �

jXYZW gð Þ{jXYZW gð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
XYZW

jXYZW fð Þ{jXYZW fð Þ
� �2 P

XYZW

jXYZW gð Þ{jXYZW gð Þ
� �2

s

This comparison was carried out using the FOM model, and the

sums are taken over every possible tetranucleotide combination

XYZW.

To measure how the genomic signature changed within the

different genomes, an average correlation score was calculated

based on the ZOM, FOM and SOM measures above together

with the correlation formula. Thus, the variance of the different

ZOM, FOM and SOM-based genomic signatures were examined

within each chromosome by comparing whole-chromosome

signatures to signatures obtained from a non-overlapping sliding

window of 20 kbps using the Pearson correlation formula. The

average value for each chromosome was in turn calculated from

the correlation scores between each sliding window and the whole

chromosome signature.

The maximum number of sliding windows S is given by:

S~
size of DNA string-sliding window size

sliding window size

The ZOM, FOM and SOM based OUV measures calculate the

variance between observed and approximated oligonucleotide

frequencies:

OUVZOM fð Þ~ 1

N{1

X
XYZW

fXYZW {fX fY fZfWð Þ2, N~44~256, 1ƒiƒN ZOM OUVð Þ

OUVFOM fð Þ~ 1

N{1

X
XYZW

fXYZW {
fXY fYZfZW

fY fZ

� �2

, N~44~256, 1ƒiƒN FOM OUVð Þ

OUVSOM fð Þ~ 1

N{1

X
XYZW

fXYZW {
fXYZfYZW

fYZ

� �2

, N~44~256, 1ƒiƒN SOM OUVð Þ

Regression Analysis
The models measuring associations between OUV values as

response functions and chromosome size, AT content, phyla,

habitat, oxygen requirement and growth temperature as predic-

tors, were all based on transformed ‘linear’ regression analysis:

E YOUVð Þl
� �

~SizezSize2zATzAT2zPhyla

zOxygen requirementzHabitatzGrowth temp

All PCH models were on a similar form, but with OUV

included as a factor:

E YPCHð Þl
� �

~SizezSize2zATzAT2zOUVzOUV 2

zPhylazOxygen requirementzHabitat

All regression equations explained in this work were trans-

formed on the left hand side with the l coefficient found using

Box-Cox estimation [50] to conform as much as possible to the

underlying hypothesis of normally distributed residuals. Phyla,

oxygen requirement, habitat and growth temperature were all

categorical variables, while PCH, Size, AT and OUV were

numerical variables.

The results obtained must be considered as coarse as there is

some expected co-linearity between predictors like OUV, AT

content and chromosome size [14,15,29,51]. In addition, the

computed oligonucleotide frequencies were all obtained by

counting overlapping oligonucleotides, thereby adding consider-

able ‘noise’ to any potential genomic signal. The quality of the

models was assessed using the Akaike information criterion (AIC)

and the coefficient of determination (R2). Factors were added

forwardly to the models and deleted if p.0.001. The Z-scores, i.e.

(Z-m)/s, in tables 4–9 are based on transformed OUV values.

Supporting Information

File S1 Main dataset. An Excel file containing the data used to

generate the results in the paper

Found at: doi:10.1371/journal.pone.0008113.s001 (0.26 MB

XLS)
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