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Abstract

The coordinated regulation of gene expression is essential for pathogens to infect and cause disease. A recently appreciated
mechanism of regulation is that afforded by small regulatory RNA (sRNA) molecules. Here, we set out to assess the
prevalence of sRNAs in the human bacterial pathogen group A Streptococcus (GAS). Genome-wide identification of
candidate GAS sRNAs was performed through a tiling Affymetrix microarray approach and identified 40 candidate sRNAs
within the M1T1 GAS strain MGAS2221. Together with a previous bioinformatic approach this brings the number of novel
candidate sRNAs in GAS to 75, a number that approximates the number of GAS transcription factors. Transcripts were
confirmed by Northern blot analysis for 16 of 32 candidate sRNAs tested, and the abundance of several of these sRNAs were
shown to be temporally regulated. Six sRNAs were selected for further study and the promoter, transcriptional start site, and
Rho-independent terminator identified for each. Significant variation was observed between the six sRNAs with respect to
their stability during growth, and with respect to their inter- and/or intra-serotype-specific levels of abundance. To start to
assess the contribution of sRNAs to gene regulation in M1T1 GAS we deleted the previously described sRNA PEL from four
clinical isolates. Data from genome-wide expression microarray, quantitative RT-PCR, and Western blot analyses are
consistent with PEL having no regulatory function in M1T1 GAS. The finding that candidate sRNA molecules are prevalent
throughout the GAS genome provides significant impetus to the study of this fundamental gene-regulatory mechanism in
an important human pathogen.
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Introduction

Small RNA molecules with regulatory activities have been

described in all three domains of life, indicative of an ancient

evolutionary history. In prokaryotes, small RNAs with regula-

tory functions include riboswitches [1], transfer-messenger

RNA (tmRNA) [2], 4.5S RNA [3], 6S RNA [4], and small

regulatory RNAs (sRNAs) [5]. sRNAs are key mediators of

virulence gene expression in some pathogens, and can regulate

diverse cellular processes such as the stress and adaptive

responses [6,7]. The majority of described sRNAs regulate

through a mechanism involving complementary base-pairing

with the 59 end of target mRNAs, blocking access to the

ribosome binding site and/or start codon. In addition to

blocking mRNA translation, sRNA:mRNA duplex formation

can target both RNA molecules for degradation by double-

stranded RNA cleaving ribonucleases (e.g. RNase III) [8]. The

post-transcriptional regulation afforded by sRNAs means they

impose a regulatory step independent of, and epistatic to, target

mRNA transcriptional signals [5].

The bacterial pathogen group A Streptococcus (GAS; Strepto-

coccus pyogenes) is the etiological agent of several human diseases,

including pharyngitis, impetigo, acute rheumatic fever, strep-

tococcal toxic-shock-like syndrome, and necrotizing fasciitis

[9]. The ability of GAS to cause such a wide variety of human

infections is at least in part due to its ability to coordinately

regulate gene expression to microenvironment specific condi-

tions [10,11]. GAS transcription is regulated through the

concerted action of 13 conserved ‘two-component’ signal

transduction systems (named due to the functional linkage of

two independent proteins, a sensor kinase and a response

regulator) and .60 ‘stand-alone’ transcription factors (named

due to their ability to independently regulate transcription)

[10,12].

To date only three sRNAs have been described in GAS, the

pleiotropic effect locus (PEL) [13,14], the fibronectin/fibrin-

ogen binding/hemolytic activity/streptokinase regulator X

(FASX) [15], and the RofA-like protein IV regulator X

(RIVX) [16]. PEL, FASX, and RIVX are all reported to

regulate GAS virulence factor expression, providing for the

possibility that sRNAs represent a major mechanism of

virulence-regulation in this pathogen. To start to address this

issue we determined the prevalence, location, orientation, and

temporal transcription pattern of candidate GAS sRNAs. The

mapping and initial characterization of sRNAs throughout the

GAS genome provides significant impetus to the study of these

molecules as potential regulators of virulence in GAS and

related pathogens.
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Materials and Methods

Bacterial strains and culture conditions
Strain MGAS2221 is representative of the highly virulent M1T1

GAS clone responsible for significant morbidity and mortality

since the mid-1980s in the U.S., Canada, and Western Europe

[17,18]. Strain information for the nine serotype M1 isolates used

in this study is listed in table S5. GAS strains were grown in vitro in

Todd-Hewitt broth with 0.2% yeast extract (THY broth) at 37uC
(5% CO2).

Total RNA isolation
Frozen GAS cell pellets were resuspended in 100 ml TE buffer

and transferred to 2 ml tubes containing fine glass shards (lysing

matrix B tubes, MP Biomedicals). Tubes were placed into a glass

bead beater (FastPrep machine, THERMO 101) and processed

for 15 s at speed 4. Tubes were centrifuged for 5 s at 14,000 g to

reduce foaming and an additional processing in the FastPrep

machine was performed following addition of 650 ml of buffer

RLT (Qiagen Inc.). Samples were centrifuged for 30 s at 14,000 g

to collect contents and 600 ml transferred to a 1.5 ml tube

containing 900 ml 100% ethanol. RNA samples were subsequently

bound to, washed on, and eluted from, RNeasy columns (Qiagen

Inc.) as per the manufacturers’ miRNeasy protocol. Contaminat-

ing genomic DNA was removed from eluted RNA samples via

four 30 min incubations at 37uC with 2 ml TURBO DNase-free

(Applied Biosystems), with DNA removal being verified by PCR.

Microarray identification of GAS sRNAs
A custom-made microarray (Affymetrix Inc.) was used to

identify GAS sRNAs. The microarray consisted of overlapping

25mer oligonucleotides tiled on both strands of intergenic regions

within the MGAS2221 genome. On average there were 17

nucleotides of overlap between adjacent probes. For each perfect

match (PM) probe a corresponding mismatch (MM) probe was

included on the array. MM probes are identical in sequence to PM

probes with the exception that the central base of each 25mer

probe is substituted. Subtracting MM probe hybridization signal

intensity from that of the PM probe reduces background noise,

increasing sensitivity.

Triplicate cultures of GAS strain MGAS2221 were grown at

37uC (5% CO2) in THY broth to the mid-exponential (O.D.600

,0.5) phase of growth. Recovered GAS were incubated at room

temperature for 5 min following addition of 2 volumes of

RNAprotect (Qiagen Inc.) to maintain RNA integrity. GAS were

harvested by centrifugation, quick frozen in liquid nitrogen, and

stored at 280uC. Total RNA was isolated as described above.

GAS RNA samples were quantified using the 2100 BioAnalyzer

system (Agilent Technologies) and converted to cDNA using

reverse transcriptase (Superscript III, Invitrogen Corp.) with

random hexamers as per the manufacturers’ protocol. Following

cDNA synthesis, RNA was removed via NaOH hydrolysis and the

cDNA quantified, again using the 2100 BioAnalyzer. Identical

concentrations of individual cDNA samples were fragmented with

DNase I to an average size of ,50 bases before biotin labeling

using terminal transferase (Promega) and the Affymetrix labeling

kit. Labeled cDNAs were hybridized to the custom microarray at

42uC for 16 h. Arrays were processed (washed, stained, scanned)

as per the Affymetrix protocol for low GC% bacteria (protocol

FS450_0005). GeneChip Operating Software v1.4 (GCOS,

Affymetrix Inc.), Tiling Analysis Software (TAS, Affymetrix

Inc.), and Integrated Genome Browser software (IGB, Affymetrix

Inc.) were used to generate probe specific signal intensities,

normalize samples, generate P-values (via Wilcoxon signed rank

test), and enable visualization of signal/P-value data in context of

genome location. All data is MIAME compliant and the raw data

has been deposited at the MIAME compliant Gene Expression

Omnibus (GEO) database at National Center for Biotechnology

Information (http://www.ncbi.nlm.nih.gov/geo) and are accessi-

ble through accession number GSE17790.

Northern blot analysis
Total RNA was isolated from strain MGAS2221 during early

exponential (O.D.600 ,0.2), late exponential (O.D.600 ,0.8), early

stationary (O.D.600 ,1.2), and late stationary (O.D.600 ,1.7)

phases of growth as described[19]. RNA samples (6 mg per growth

phase) were loaded onto a 5% TBE-Urea gel and separated by

electrophoresis. Biotinylated RNA size standards ranging in size

from 100 nucleotides to 1,000 nucleotides (Biotinylated RNA

century-plus marker, Applied Biosystems) were used to enable size

determination of detected transcripts. RNA was transferred to

nylon membrane via electroblotting, UV cross-linked, and probed

overnight with an in vitro transcribed probe complementary to a

candidate sRNA. In vitro transcribed probes were generated using

the Strip-EZ T7 kit (Applied Biosystems), enabling membranes to

be stripped and re-probed multiple times. DNA templates for in

vitro transcription reactions were generated by PCR, with one

primer containing the T7 promoter sequence (Table S2). On

average probes were 80 nucleotides in length but ranged from 70

to 300 nucleotides. RNA probes were labeled with biotin prior to

hybridization (Brightstar psoralen-biotin labeling kit, Applied

Biosystems). Following washes Northern blots were developed

(Brightstar biodetect kit, Applied Biosystems) and exposed to

autoradiography film.

For Northern blots comparing sRNA expression between

representative strains of 8 GAS serotypes total RNA was isolated

during exponential (O.D.600 ,0.4) and early stationary (O.D.600

,1.2) phases of growth in THY broth. For Northern blots

comparing sRNA expression between 9 representative serotype

M1 strains total RNA was isolated only during the exponential

phase. Northern blots were created and processed as described

above only using 4 mg RNA for exponential phase cultures and

6 mg RNA for early stationary phase cultures.

59 RACE to determine sRNA transcriptional start sites
The 59 rapid amplification of cDNA ends (RACE) system

(Invitrogen) was used as per the manufacturer’s instructions.

Briefly, sRNA-specific primers (GSP1 primers) were used to prime

the reverse transcription of RNA from strain MGAS2221 (Table

S2). Synthesized cDNA was purified and a poly(C) 39 tail added

using terminal transferase. Tailed cDNAs were used as template in

a PCR with downstream primer GSP2 (downstream relative to

primer GSP1) and a primer that ended with a poly(G) sequence

(primer AAP; Invitrogen). AAP primer specificity was assayed

through use of control PCRs using untailed cDNA as template.

Products were visualized on standard 2% agarose gels stained with

ethidium bromide. PCR-generated bands were gel extracted,

cloned (pCRII-TOPO; Invitrogen), and sequenced.

Measurement of sRNA stability
To gain insight into the stability of candidate sRNAs we

inhibited RNA synthesis in exponential (O.D. ,0.4) and late

stationary phase (O.D. ,1.7) cultures of MGAS2221 using

rifampicin (1 mg/ml final concentration) as previously de-

scribed[20]. Samples were taken before (T = 0) and after (T = 5,

10, 20, 30, 45, 60, and 90 min) rifampicin treatment. Samples

were added to 2 volumes of RNA protect to prevent further RNA

degradation, with GAS pelleted by centrifugation, quick frozen in
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liquid nitrogen, and stored at 280uC. Total RNA was isolated and

subjected to Northern blot analysis.

Construction of isogenic pel mutant strains
Isogenic pel mutants of parental strains MGAS2221,

MGAS5005, MGAS5406 and MGAS9127 were constructed by

replacement of pel with a spectinomycin resistance cassette. The

strategy used to construct the mutant strains is based upon a

previously described method [21]. PCR primers used in the

construction of mutant strains are listed in table S2. Confirmation

of isogenic mutant strain construction was gained via PCR,

sequencing, and Southern blot analyses (data not shown).

Microarray analysis of GAS gene expression
Genome-wide analysis of GAS gene expression was achieved

through use of a custom Affymetrix microarray that contained 16

antisense oligonucleotide probe pairs (PM + MM) for each gene in

the MGAS2221 genome. Strains were grown in triplicate at 37uC
(5% CO2) in THY broth. Samples were gained at mid-exponential

(O.D.600 ,0.5) and stationary (O.D.600 ,1.7) phases of growth.

Total RNA was isolated, converted to cDNA, labeled, and each

sample hybridized to a custom array as described[19]. Gene

expression estimates were calculated using GCOS software v1.4

(Affymetrix Inc.). Data were normalized across samples to minimize

discrepancies that can arise due to experimental variables (e.g.,

probe preparation, hybridization). Genes with expression values

below 100 were manually removed from the data and a two-sample

t-test (unequal variance) applied using the statistical package Partek

Pro v5.1 (Partek, Inc.). All data is MIAME compliant and the raw

data has been deposited at the MIAME compliant Gene Expression

Omnibus (GEO) database at National Center for Biotechnology

Information (http://www.ncbi.nlm.nih.gov/geo) and are accessible

through accession number GSE17790.

Quantitative RT-PCR verification of expression microarray
data

TaqMan quantitative RT-PCR was performed using an ABI

7500 Fast System (Applied Biosystems). Gene transcript levels of

isogenic mutant strains were compared to parental strains using the

DDCT method as described[22]. TaqMan primers and probes for the

genes of interest, and the internal control gene proS, are listed in

Table S2. Samples were ran in triplicate on three separate occasions.

Western blot analysis of in vitro grown cultures
Supernatant proteins from overnight THY broth GAS cultures

were concentrated by ethanol precipitation and resuspended in

SDS-PAGE loading buffer at 1/20th the original volume. HRP

conjugated secondary antibodies were used to detect primary

antibody binding and generate signal.

Results

Microarray-based identification of GAS sRNAs
A previous bioinformatic search in GAS identified 42 candidate

sRNAs (Table 1, method L) [23]. As this bioinformatic approach

did not identify any of the three previously described GAS sRNAs

(PEL, FASX, or RIVX [13,15,16]) this indicates that potentially

significant numbers of sRNAs remain to be identified. A powerful

approach to the identification of sRNAs on a genome-wide scale has

been the recent use of tiling microarrays [24,25]. Tiling microarray

approaches complement bioinformatic approaches to sRNA

identification due to their ability to identify sRNAs that have a

propensity to be missed by bioinformatic approaches, in particular

sRNAs with limited secondary structure. Thus, the unison of both

tiling microarray and bioinformatic-based investigations represents

a comprehensive approach to sRNA discovery [26–28].

To facilitate identification of candidate sRNAs transcribed by

the serotype M1 GAS strain MGAS2221 we designed a custom

Affymetrix microarray. The custom array consisted of overlapping

25mer oligonucleotides tiled at high density from both strands of

intergenic regions within the MGAS2221 genome, with an

average of 17 nucleotides of overlap between adjacent probes.

Total RNA was isolated from triplicate MGAS2221 cultures

during the exponential phase of growth in THY broth, converted

to cDNA, labeled, and hybridized to our custom array as

described in the Materials and Methods section. Candidate

sRNAs were detected based upon (a) statistically significant signal

intensities between PM and MM probes located within a sliding

window 81 nucleotides in length (P,0.05, Wilcoxon signed rank

test); (b) a signal intensity score .500 for at least 6 contiguous

probes; and (c) visualization of signal intensities in context of

genome location to eliminate signal from apparent mRNA 59 or 39

untranslated regions. Analysis of the resultant data indicated the

presence of 40 sRNAs in the MGAS2221 genome (Figure 1 and

Table 1, method M). Importantly, and in contrast to the previous

bioinformatic analysis, the previously described sRNAs PEL and

FASX were both identified by the tiling microarray approach

(Figure 1A and data not shown), indicating that this is a powerful

tool with which to identify GAS sRNAs. It should be noted that

our inability to observe the sRNA RIVX in the array data was

expected given the very low level of RIVX transcription by wild-

type GAS strains [16]. Only 7 of the candidate sRNAs identified

by microarray were also identified by the bioinformatic approach.

Thus, combining bioinformatic and array data a total of 75 unique

candidate sRNAs are predicted to reside within the MGAS2221

genome.

Riboswitches and other small RNA molecules
We also identified 13 candidate small RNA molecules with

proposed activities distinct from sRNAs (Table 2). Based upon

sequence homology and genome location at least seven small RNAs

are predicted riboswitches. Riboswitches are structures located in

the 59 region of mRNAs that can directly bind intracellular

metabolites, regulating the transcription and/or translation of the

downstream mRNA [29]. A microarray signal was detected from

the two clustered, regularly interspaced short palindromic repeat

(CRISPR) elements within the MGAS2221 genome (Figure 1E and

Table 2). CRISPR elements, in association with a conserved set of

genes, provide a barrier to horizontal gene transfer [30].

Northern blot verification of sRNA transcription
To verify that sRNAs are transcribed at the locations indicated by

bioinformatic and microarray analyses we performed Northern blot

analysis. A total of 32 candidate sRNAs were tested by Northern

analysis, and were selected primarily from those candidates

identified by the microarray approach (see table S1). We observed

a transcript for 16 out of the 32 candidate sRNAs tested (Figure 2).

Several of the candidate sRNAs showed variation in transcript

concentration during growth, with transcripts decreasing in

abundance during stationary phase in most cases (Figure 2). While

we are unable to state that these sRNAs are transcribed in a growth-

phase dependent manner due to the potential degradation of sRNAs

by ribonucleases at specific growth phases, we can state that they

show growth-phase dependent regulation of RNA abundance, a

function of both RNA synthesis and decay [20].

Small RNA molecules corresponding to the 4.5S RNA, metK2

riboswitch, serS riboswitch and CRISPR-1 element were also

Analysis of GAS sRNAs
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Table 1. Candidate small regulatory RNAs identified by bioinformatic and tiling microarray approaches.

RNA name Left nucleotide Right nucleotide Size (nt) Orientation Information and/or adjacent genes Method

SR79100 79100 79500 400 , Adjacent to ribosmal protein L17P and M5005_Spy_0072 M

SR125800 125800 125900 100 , Adjacent to a sortase and M5005_Spy_0115 M

SR146132 146132 146288 157 . Adjacent to M5005_Spy_0135 and purA L

SR188392 188392 188735 343 . Adjacent to a tRNA-specific adenosine deaminase and
M5005_Spy_0180

L

SR188971 188971 189044 73 . Adjacent to a tRNA-specific adenosine deaminase and
M5005_Spy_0180

L

SR195750 195750 195870 140 , Adjacent to putative transcription factor and a transposase M

SR214350 214350 214500 150 . fasX M

SR237399 237399 237709 310 . Adjacent to ribosomal protein S7P and fus L

SR254481 254481 254590 109 . Adjacent to sufB and a D-alanyl-D-alanine serine-type
carboxypeptidase

L

SR257300 257300 257400 100 ? Adjacent to dacA2 and oppA M

SR263982 263982 264054 72 . Adjacent to oppF and a putative transposase pseudogene L

SR271250 271250 271350 100 . Adjacent to comX and a transposase M

SR277250 277250 277350 100 . Adjacent to a putative methyltransferase and M5005_Spy_0267 M

SR307231 307231 307572 341 , Adjacent to a putative transposase and inner membrane protein
YIDC

L

SR331095 331095 331188 93 , Adjacent to ferrichrome transport ATP-binding protein fhuA and
murE

L

SR336250 336250 336450 200 . Adjacent to clpP and M5005_Spy_0329 M

SR358650 358650 358800 150 , Adjacent to spyA and M5005_Spy_0352 M

SR360800 360800 361300 500 , Adjacent to M5005_Spy_0354 and M5005_Spy_0355 M

SR396160 396160 396487 327 . Adjacent to silD and M5005_Spy_0402 L

SR418861 418861 419103 242 . Adjacent to M5005_Spy_0426 and thrS L

SR452230 452230 452500 270 . Adjacent to M5005_Spy_0460 and M5005_Spy_0461 M

SR520921 520921 521058 138 . Adjacent to ftsX and M5005_Spy_0533 L

SR540686 540686 540783 98 , Adjacent to M5005_Spy_0550 and rplS L

SR541600 541600 541800 200 . Adjacent to a tRNA-Arg and M5005_Spy_0552 L,M

SR559590 559590 559700 110 . pel M

SR622408 622408 622534 126 . Adjacent to cmk and infC L

SR638450 638450 638600 150 . Adjacent to ribosomal protein L27P and a putative transcription
factor

M

SR641213 641213 641345 132 . Adjacent to M5005_Spy_0638 and pyrR L

SR678133 678133 678532 399 . Adjacent to M5005_Spy_0674 and M5005_Spy_0676 L

SR701500 701500 702300 800 . Adjacent to punA and deoD2 M

SR721150 721150 721350 200 ? Adjacent to tRNA-Arg and M5005_Spy_0716 M

SR758876 758876 758976 100 . Adjacent to acoL and hylA L

SR759205 759205 759368 163 , Adjacent to acoL and hylA L

SR800747 800747 800916 169 . Adjacent to thdF and rplJ L

SR801894 801894 802142 249 . Adjacent to rplL and M5005_Spy_0797 L

SR843321 843321 843412 91 . Adjacent to pta and M5005_Spy_0852 L

SR862600 862600 862900 300 . Adjacent to an ABC transporter and nox M

SR869300 869300 869600 300 . Adjacent to a glyoxalase family protein and M5005_Spy_0877 M

SR914400 914400 914600 200 , Adjacent to rnhB and a cardiolipin synthetase L,M

SR933600 933600 934150 550 , Adacent to cdd and the 16S rRNA methyltransferase M

SR961800 961800 962000 200 , Adjacent to M5005_Spy_0976 and pcrA M

SR969000 969000 969100 100 ? Adjacent to cfa and a histidine-binding protein M

SR1016300 1016300 1016500 200 . Prophage-encoded M

SR1018400 1018400 1018500 100 . Prophage-encoded M

SR1131900 1131900 1132100 200 , Adjacent to prfC and deaD L,M
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probed by Northern blot (Figure 3). The 4.5S RNA represents the

RNA component of the signal recognition particle (SRP) that

facilitates protein secretion via the co-translational pathway [31].

Given the important function of the SRP pathway it is not

surprising that the 4.5S RNA is transcribed throughout growth

[32]. The metK2 and serS riboswitches, based upon analogies to the

function of these riboswitches in other organisms, should decrease

transcription of their corresponding genes in the presence of SAM

and charged seryl-tRNAs, and increase transcription of these

genes in the absence of SAM and charged seryl-tRNAs,

respectively. The small RNAs identified by Northern for the two

riboswitches presumably represent transcription termination

products, with termination occurring during exponential phase

where SAM and charged seryl-tRNAs are not limiting (Figure 3).

CRISPR elements are transcribed as single transcripts and

subsequently processed into smaller RNA molecules [30], a fact

that is consistent with our observation of a multiple banding

pattern for GAS CRISPR-1 transcripts (Figure 3).

sRNA gene and promoter analysis
We selected six candidate sRNAs and determined their sequence

by measuring the approximate length of the transcripts via Northern

blot analysis (Figure 2), identifying the sRNA transcriptional start

sites via 59 rapid amplification of cDNA ends (59 RACE) [33], and

using the transcriptional start site and transcript length data to

identify putative transcriptional terminators (Figure 4). As most

sRNAs function through a process involving complementary base-

pairing with target mRNA molecules, the deduced sequence of these

sRNAs may facilitate the identification of putative mRNA targets,

for example by using the sRNA sequence data in a bioinformatic

RNA name Left nucleotide Right nucleotide Size (nt) Orientation Information and/or adjacent genes Method

SR1173300 1173300 1173350 50 . Prophage-encoded M

SR1175500 1175500 1175800 300 . Prophage-encoded M

SR1175900 1175900 1176100 200 . Prophage-encoded M

SR1201244 1201244 1201471 227 , Adjacent to ileS and divIVAS L

SR1207340 1207340 1207537 198 . Adjacent to ftsA and divIB L

SR1251900 1251900 1252100 200 , Adjacent to M5005_Spy_1295 and a ribosomal protein L,M

SR1291775 1291775 1291982 207 , Adjacent to M5005_Spy_1324 and ribosome associated factor Y L

SR1355150 1355150 1355250 100 , Adjacent to glpK and M5005_Spy_1382 M

SR1358431 1358431 1358497 66 , Adjacent to glyS and glyQ L

SR1385110 1385110 1385204 94 , Adjacent to M5005_Spy_1413 and bacteriophage gene
M5005_Spy_1414

L

SR1532800 1532800 1532900 100 ? Adjacent to M5005_Spy_1571 and M5005_Spy_1572 M

SR1568180 1568180 1568273 93 , Adjacent to pyrG and rpoE L

SR1587818 1587818 1588167 349 , Adjacent to hsdM and transcriptional regulatory protein degU L

SR1604140 1604140 1604210 70 , Adjacent to lacR.2 and dinJ M

SR1605828 1605828 1606280 452 , Adjacent to an integrase pseudogene and SSU ribosomoal
protein rpsI

L

SR1678800 1678800 1678950 150 , Adjacent to scpA and a transposase L,M

SR1678950 1678950 1679050 100 , Adjacent to scpA and a transposase M

SR1681917 1681917 1682067 150 . Adjacent to virulence factors sic and emm L

SR1698200 1698200 1698640 440 ? Adjacent to speB and M5005_Spy_1736 M

SR1719800 1719800 1719900 100 , Adjacent to pepD and M5005_Spy_1759 M

SR1720792 1720792 1720852 60 . Adjacent to putative transcription factor M5005_Spy_1760
and groEL

L

SR1720816 1720816 1720922 106 , Adjacent to putative transcription factor M5005_Spy_1760
and groEL

L

SR1727893 1727893 1728188 295 , Adjacent to a tranposase and peroxiredoxin gene ahpC L

SR1745900 1745900 1746000 100 . Adjacent to a putative transcriptional regulator and rpsB M

SR1754950 1754950 1755050 100 , Adjacent to treR and M5005_Spy_1786 L,M

SR1765900 1765900 1766000 100 ? Adjacent to recA and spxA M

SR1789300 1789300 1789400 100 ? Adjacent to a putative transcriptional regulator and
M5005_Spy_1821

L,M

SR1806601 1806601 1806858 257 , Adjacent to trmU and M5005_Spy_1839 L

SR1808413 1808413 1808633 220 , Adjacent to trmU and sdhB L

SR1811574 1811574 1811651 77 , Adjacent to M5005_Spy_1843 and ABC permease protein cbiQ L

Nucleotide coordinates and gene designations are relative to the publically available MGAS5005 genome sequence [17]. Candidate sRNAs without a clearly defined
orientation are highlighted with a question mark. RNAs were identified from a previous bioinformatic analysis (L) or by the microarray-based method described here (M).
doi:10.1371/journal.pone.0007668.t001

Table 1. Cont.

Analysis of GAS sRNAs

PLoS ONE | www.plosone.org 5 November 2009 | Volume 4 | Issue 11 | e7668



program such as TargetRNA [34]. Analysis of the promoter regions

of the six sRNAs identified no shared sequence motifs.

Analysis of sRNA stability
The abundance of any sRNA at a given time point is a reflection

of the rate of its synthesis and decay. To measure the stability of

candidate sRNAs we performed Northern blot analysis using RNA

isolated from GAS cultures that were treated with rifampicin to

inhibit RNA synthesis. All seven of the sRNAs tested were more

stable during stationary phase than exponential phase (Figure 5), in

keeping with data from a previous study that measured mRNA

stability [20]. Given that the sRNAs tested were generally more

abundant during exponential phase than stationary phase (Figure 2),

the apparent reduced rate of sRNA transcription in stationary phase

more than offsets any influence on sRNA abundance caused by

increased stability. The stability of individual sRNAs varied widely

from highly stable (SR914400) to highly unstable (SR1251900),

similar to that observed for sRNAs in other bacteria [35,36].

Analysis of strain and/or serotype-specific variation in
sRNA transcription

The transcript levels of several S. aureus sRNAs fluctuate between

clinical isolates, potentially resulting in derivatives with distinct

virulence characteristics [37,38]. We set out to assay whether sRNA

transcript abundance varied within and/or between different GAS

serotypes. Northern blot analysis using RNA isolated from nine

serotype M1 strains identified that, with the possible exception of

increased SR195750 expression in strains MGAS5005 and

MGAS294, no variation in transcript abundance was observed for

the five candidate sRNAs tested (Figure 6A). In contrast, comparing

sRNA transcript abundance in GAS strains representing eight

different serotypes we identified an apparent serotype-specific

abundance for sRNAs PEL, FASX, and SR195750 (Figure 6B).

RNA from the serotype M3 and M4 strains showed little to no

hybridization with the FASX probe, an interesting observation given

its role in virulence factor regulation [15]. Likewise, hybridization to

the SR195750 probe was not observed for the M1 and M2 strains

during the stationary phase of growth, while all other strains, and in

particular the M3, M6, and M18 strains, exhibited abundant

SR195750 transcript levels. While there was little variation in

SR1251900 transcript abundance among the eight difference

serotypes we did observe variation in transcript size (Figure 6B).

Analysis of the PEL regulon in M1T1 GAS
The role of PEL in regulating GAS virulence gene expression has

mainly been investigated by Northern blot analyses of select genes

[13,14]. To investigate PEL-mediated gene regulation on a genome-

wide scale we performed expression microarray analysis. To facilitate

analysis of the genes regulated by PEL in strain MGAS2221 we

constructed the isogenic PEL mutant strain 2221DPEL. 2221DPEL

was created using a well-described PCR-based procedure that

replaced PEL with a spectinomycin resistance cassette [39]. PEL is

an atypical sRNA in that it also functions as an mRNA, encoding the

hemolysin streptolysin S from the sagA gene [13,40]. We were able to

exploit this function to confirm loss of PEL/sagA in strain 2221DPEL

using a hemolysis plate assay (Figure 7A). Parental strain MGAS2221

containing vector pDC123 gave a typical b-hemolytic morphology

when streaked onto agar plates containing 5% sheep blood. In

contrast, isogenic mutant 2221DPEL containing vector pDC123

failed to show hemolytic activity (Figure 7A). Hemolytic activity was

restored to 2221DPEL by introduction of plasmid pPELC, a pDC123

derivative containing wild-type PEL.

Expression microarray comparisons of strains MGAS2221 and

2221DPEL were performed using RNA isolated from triplicate

cultures of each strain grown in THY broth at both the exponential

and stationary phases of growth. Somewhat surprisingly, only 2 genes

met our criteria of being differentially expressed (fold-change $

1.5-fold, P-value#0.05) between MGAS2221 and isogenic mutant

2221DPEL at either time-point (Figure 7B and data not shown).

These differentially regulated genes were sagA encoding streptolysin S

(169 and 734-fold decreased expression in 2221DPEL during

exponential and stationary phases, respectively), and the downstream

gene sagB encoding a protein involved in the processing and transport

of streptolysin S (2 and 3-fold decreased expression in 2221DPEL

during exponential and stationary phases, respectively) [40]. The

significant down-regulation of sagA is due to this gene being encoded

within the PEL RNA molecule [13], and hence is deleted in strain

2221DPEL. As some PEL/sagA transcripts also read-through into the

downstream sagB gene, the deletion of PEL/sagA also provides an

explanation for the reduction in the level of sagB transcripts [40].

To address whether the lack of PEL regulatory function was a

common occurrence in M1T1 GAS we created three additional pel

isogenic mutants in the M1T1 background and subjected them to

Figure 1. Representative candidate small RNA molecules
identified by tiling microarray. Genes are represented by black
arrows facing the direction of transcription. Red vertical lines represent
signal intensities from probes (PM-MM) tiled within intergenic regions.
Red lines extending upward indicate left to right transcription,
downward extending lines indicate right to left transcription. Blue
horizontal bars indicate RNA length with the size in nucleotides shown.
(A) Validation of our custom microarray as a tool to identify GAS sRNAs.
The previously described FASX sRNA is located downstream of fasA
(M5005_spy_0206 from the published MGAS5005 genome) and can be
visualized as a distinct peak of signal intensity. (B) A candidate sRNA
located upstream, and in the same orientation as, the C5a peptidase
encoding gene scpA (M5005_spy_1715). (C) A candidate sRNA located
downstream, and in opposite orientation to, dipeptidase A
(M5005_spy_1758). (D) A candidate sRNA located downstream of, and
in opposite orientation to, the treR gene encoding a putative repressor
of the trehalose operon (M5005_spy_1785). (E) A clustered, regularly
interspaced short palindromic repeat (CRISPR) element in GAS is
transcribed in the same orientation as CRISPR-associated genes (cas1,
cas2, cas4; M5005_spy_1285-7).
doi:10.1371/journal.pone.0007668.g001
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quantitative RT-PCR and Western blot analyses. The three

additional parental M1T1 strains differed in their year and

country of isolation, and their disease characteristics (Table S5).

The genes and proteins investigated by quantitative RT-PCR and

Western blot were previously described as being PEL-regulated

[13,14]. Similar to the expression microarray data, we essentially

observed no difference between parental and isogenic mutant

strains (Figures 7C and 7D). Our data are consistent with PEL

having no regulatory function in M1T1 GAS.

Discussion

Regulating gene expression to microenvironment-specific con-

ditions is key to the ability of bacterial pathogens to infect and

cause disease. Here, we show that sRNAs are abundantly

transcribed throughout the GAS genome, with 75 unique

candidate sRNAs identified via our microarray-based approach

and a previous bioinformatic approach [23]. As this number

approximates the number of GAS transcription factors this raises

the possibility that sRNA-mediated regulation represents a major

mechanism of regulation in this pathogen. Indeed, as only

exponential phase GAS was analyzed by tiling microarray it is

possible that additional sRNAs would be discovered in GAS grown

to other growth phases. While regulatory functions for the newly

discovered sRNAs have yet to be shown, the observation that

many show growth phase-dependent regulation of transcript

abundance is consistent with these sRNAs potentially regulating

expression in a growth phase-dependent manner. Our dataset

should promote investigation of sRNA-mediated regulation in this

important Gram-positive pathogen.

Of the 75 candidate sRNAs cumulatively identified only 7 were

identified by both microarray and bioinformatic methods. As the

microarray method can only detect transcribed sRNAs, and some

sRNAs may only be transcribed in response to specific growth

phase or in vivo signals, it is possible that several sRNAs currently

identified only via bioinformatics will also be identified by

microarray once planned in vitro and ex vivo experiments are

performed. We cannot discount the possibility that some sRNAs

may have been missed in our study due to mischaracterization of

microarray probe signal as belonging to mRNA 59 or 39

untranslated regions rather than to sRNAs. The potential to

mischaracterize signal intensity increases for poorly transcribed

sRNAs that are located adjacent to highly transcribed mRNAs,

especially if the genes are in close proximity to one-another. The

bioinformatic approach, while not identifying any of the three

previously described GAS sRNAs (PEL, FASX, and RIVX), did

identify unique sRNAs (Table 1). Thus, while the software requires

optimizing for GAS sRNA prediction, it never-the-less has been a

useful tool in GAS sRNA discovery [23]. The minimal level of

overlap between the microarray and bioinformatic sRNA

identification methods is consistent with that observed in other

studies [27,28], and underpins the importance of a multifaceted

approach to sRNA identification

Transcription of 32 of the 75 identified candidate sRNAs were

tested by Northern blot analysis, of which 16 gave a hybridizing

signal (Figure 2 and Table S1). The absence of a Northern

hybridizing signal does not necessarily imply that a candidate

sRNA is a false-positive. For example, the sRNA transcript level

could be below the limit of detection of our Northern protocol, or

there could be an absence of inducing signal for sRNA

transcription prior to RNA isolation.

The 75 candidate GAS sRNAs show variable presence and

conservation in the dozen publically available GAS genome

sequences (Table S4). While 62 candidate sRNAs were present in

all of the sequenced genomes tested, 13 were absent from at least

one genome. Of the variably present sRNAs five were bacterio-

phage-encoded, with acquisition or loss of prophage being the most

common mechanism explaining the variable presence of these

sRNAs. Given that phage-encoded sRNAs have the potential to

regulate host chromosomal genes [37], and that GAS are commonly

lysogenized by multiple prophage [41], phage-encoded sRNAs may

play important roles in modulating GAS gene expression.

Only minor intra-serotype variability in sRNA transcript

abundance was observed in the nine serotype M1 strains analyzed

by Northern blot (Figure 6A), namely a 2–3 fold higher level of

SR195750 transcripts in strains MGAS5005 and MGAS294.

Interestingly, MGAS5005 and MGAS294 contain natural muta-

tions within the gene encoding the sensor kinase CovS, a protein

that in conjunction with its cognate response regulator CovR,

negatively regulates ,15% of the genes in the GAS genome

including many virulence factors [11,42–45]. The CovR/S-

Table 2. Candidate riboswitches and other small RNAs identified by bioinformatic and tiling microarray approaches.

RNA name Left nucleotide Right nucleotide Size (nt) Orientation Information and/or adjacent genes

RNA190950 190950 191010 60 . Putative SRP RNA

RNA319780 319780 319900 120 . Putative riboswitch

RNA484784 484784 484936 152 , Putative vitamin B1 riboswitch

RNA501950 501950 502050 100 . Putative pacL riboswitch

RNA772970 772970 773110 140 , CRISPR - 1

RNA849201 849201 849250 49 . Putative purine riboswitch

RNA964800 964800 964850 50 . Putative glycine riboswitch

RNA983400 983400 983800 400 . Putative tmRNA

RNA1083000 1083000 1083250 250 , Putative metK2 riboswitch

RNA1239700 1239700 1240020 320 , CRISPR - 2

RNA1320100 1320100 1320500 400 , Putative RNase P

RNA1439100 1439100 1439200 100 . Putative serS riboswitch

RNA1660600 1660600 1660800 200 . Putative 6S RNA

Nucleotide coordinates and gene designations are relative to the publically available MGAS5005 genome sequence [17].
doi:10.1371/journal.pone.0007668.t002

Analysis of GAS sRNAs

PLoS ONE | www.plosone.org 7 November 2009 | Volume 4 | Issue 11 | e7668



mediated repression of SR195750 transcription would be

consistent with the known ability of this system to repress the

downstream transcription factor-encoding gene rivR [46].

In contrast to intra-serotype variation in sRNA transcript

abundance inter-serotype variation was more pronounced

(Figure 6B). The significant variation in FASX and SR195750

Figure 2. Northern blot verification of candidate sRNAs. Northern blots were performed using RNA isolated from strain MGAS2221 at 4
growth phases and probed for the presence of candidate sRNAs. The name or genome location (in nucleotides, relative to the published MGAS5005
genome) of candidate RNAs is displayed to the left of each blot. The approximate size in nucleotides of detected transcript/s is displayed to the right
of each blot. Below each blot is a graph representing the normalized signal intensity of each hybridizing band. Signal intensities were generated
using the Quantity One software package version 4.6.1., and normalized to signal detected for the housekeeping RNA 5S RNA (a representative 5S
RNA blot is shown in figure 3). Normalized signal intensities are plotted relative to the most highly expressed time-point.
doi:10.1371/journal.pone.0007668.g002

Analysis of GAS sRNAs

PLoS ONE | www.plosone.org 8 November 2009 | Volume 4 | Issue 11 | e7668



transcript levels among serotypes was not due to differences in

sequence identity, and hence probe hybridization kinetics, as there

was no correlation between percent sequence identity and

Northern hybridization intensity (Table S3). Given that FASX

enhances expression of the secreted virulence factors streptokinase

(Ska) and streptolysin S (SLS), and reduces expression of several

extracellular matrix binding proteins, the variation in FASX

transcript levels among clinical isolates may impact their virulence

potential [15].

Published data both supports [13,14] and contradicts [47,48]

a role for PEL in regulating GAS virulence gene expression.

While serotype-specific phenotypes have been described in GAS

this cannot be the case for PEL due to the common use of

serotype M1 GAS strains in these previous studies. We identified

no differentially expressed genes between strains MGAS2221

and 2221DPEL during exponential and stationary growth other

than the PEL-encoded gene sagA and the downstream gene sagB

(Figure 7B). As transcripts previously described as being PEL-

regulated were unchanged following PEL mutation in three

additional M1T1 GAS isolates (Figure 7C), our data is consistent

with PEL having no regulatory activity in isolates of the globally

disseminated M1T1 clone [17,18], at least not under the

conditions tested. Our data however must be reconciled with

that from Li and colleagues who found a regulatory phenotype in

an M1T1 strain transduced with a PEL transposon mutation

[14]. As the transposon was transduced into the M1T1 strain

from an M49 strain it is possible that sequences adjacent to the

transposon were also transduced, and that these sequences are

responsible for the observed phenotype. Possible support for this

hypothesis is that the passage of a pel transposon mutant through

mice resulted in restoration of pel transcription even though the

transposon remained inserted upstream of pel [49]. If PEL-

mediated regulation does occur in M1T1 GAS in a strain-

specific manner then only one or a small number of genetic

changes must account for whether PEL has regulatory activity as

M1T1 GAS strains have highly similar genomes (e.g. M1T1

strains MGAS5005 and MGAS2221 have only 20 genetic

differences [mostly single nucleotide polymorphisms] between

them despite being isolated on different continents eight years

apart [11]).

The ability of GAS to cause a wide variety of diseases is in part

due to the coordinate expression of specific subsets of virulence

Figure 3. Northern blot verification of riboswitches and other
small RNAs. Northern blots were performed using RNA isolated from
strain MGAS2221 at 4 growth phases. The name of the candidate RNA
molecules are shown to the left of each Northern. To the right of each
Northern is the approximate size in nucleotides of the transcript/s. The
5S RNA served as a loading control.
doi:10.1371/journal.pone.0007668.g003

Figure 4. Analysis of candidate sRNA transcriptional start sites,
terminators, and promoter regions. The transcriptional start sites
of candidate sRNAs FASX, SR195750, SR914400, SR1251900, SR1719800,
and SR1754950 were determined by 59 RACE. The identified transcrip-
tional start site is colored red, the deduced sRNA sequences are colored
black, and the final base of the terminator hairpin is colored blue. The
putative 210 and/or 235 promoter sequences are underlined and
putative rho-independent (intrinsic) terminators are highlighted by
inverted arrows.
doi:10.1371/journal.pone.0007668.g004
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factors in response to microenvironment-dependent stimuli.

While not yet proven, the discovery of sRNA transcripts

transcribed throughout the genome raises the possibility that

sRNA-mediated regulation has a greater role in controlling GAS

gene expression than previously recognized. Based upon the

estimated number of sRNAs within bacterial genomes a total of

75 candidate sRNAs places GAS in the middle of those bacteria

analyzed, with approximately an order of magnitude less sRNAs

than E. coli and an order of magnitude more than Borrelia

burgdorferi [27,28,50]. The data presented in this manuscript

provides a significant resource for future investigations of sRNAs

and their role in regulating the virulence of GAS and related

pathogens.

Supporting Information

Table S1 Distribution across discovery method for candidate

sRNAs selected for Northern analysis. Thirty two candidate

sRNAs were selected for Northern analysis. Selected sRNAs were

originally identified by our tiling microarray approach (M) and/or

a previous bioinformatic approach (L) [22].

Found at: doi:10.1371/journal.pone.0007668.s001 (0.06 MB

DOC)

Table S2 Primers and probes used in this study.

Found at: doi:10.1371/journal.pone.0007668.s002 (0.14 MB

DOC)

Table S3 Percent identity between strains of probes used in the

serotype Northern blots.

Found at: doi:10.1371/journal.pone.0007668.s003 (0.07 MB

DOC)

Table S4 Percent conservation of candidate sRNAs across the

12 sequenced GAS strains. We report percent conservation as a

measure of percent identity multiplied by the percent coverage.

Found at: doi:10.1371/journal.pone.0007668.s004 (0.20 MB

DOC)

Table S5 Serotype M1 GAS strains studied.

Found at: doi:10.1371/journal.pone.0007668.s005 (0.07 MB

DOC)

Figure 5. Northern blot analysis of sRNA stability. Aliquots of
mid-exponential or late stationary phase cultures of strain MGAS2221
were harvested prior to (T = 0) and following (T = 5, 10, 20, 30, 45, 60,
90 min) rifampicin treatment to inhibit new RNA synthesis. 8 mg of
extracted RNA from each time-point was subjected to Northern blot
analysis, probing for PEL, FASX, SR195750, SR914400, SR1251900,
SR1719800, and SR1754950 transcripts. Note that as the exposure time
of each Northern blot varied no comparison of band intensities
between blots should be made.
doi:10.1371/journal.pone.0007668.g005

Figure 6. Northern blot analysis of intra- and/or inter-
serotype variation in sRNA transcription. (A) Intra-serotype
variation. Transcript abundance of sRNAs PEL, FASX, SR195750,
SR914400, and SR1251900 were assayed in 9 different serotype M1
GAS strains. The M1 GAS strains were isolated from several different
countries over a greater than 10 year period (Table S5). Northern
blots were made using RNA isolated from exponential phase
cultures. Note that an air bubble, and not a lack of transcript, was
responsible for the apparent lack of signal for SR914400 in the SF370
sample. The housekeeping 5S RNA was used as a loading control. (B)
Inter-serotype variation. Transcript abundance of sRNAs PEL, FASX,
SR195750, SR914400, SR1251900, and SR1754950 were assayed in
strains representing 8 GAS serotypes. Northern blots were made
using RNA isolated from both exponential and early stationary phase
cultures of the serotype M1 strain MGAS2221, the serotype M2 strain
MGAS10270, the serotype M3 strain MGAS315, the serotype M4
strain MGAS10750, the serotype M6 strain MGAS10394, the serotype
M12 strain MGAS2096, the serotype M18 strain MGAS8232, and the
serotype M28 strain MGAS6180. The housekeeping 5S RNA was used
as a loading control.
doi:10.1371/journal.pone.0007668.g006
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