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Abstract

Phototransduction reactions in the rhabdomeric photoreceptor are profoundly stochastic

due to the small number of participating molecules and small reaction space. The resulting

quantum bumps (QBs) vary in their timing (latency), amplitudes and durations, and these

variabilities within each cell are not correlated. Using modeling and electrophysiological

recordings, we investigated how the QB properties depend on the cascade speed and how

they influence signal transfer. Parametric analysis in the model supported by experimental

data revealed that faster cascades elicit larger and narrower QBs with faster onsets and

smaller variabilities than slower cascades. Latency dispersion was stronger affected by

modification of upstream than downstream activation parameters. The variability caused by

downstream modifications closely matched the experimental variability. Frequency

response modeling showed that corner frequency is a reciprocal function of the characteris-

tic duration of the multiphoton response, which, in turn, is a non-linear function of QB dura-

tion and latency dispersion. All QB variabilities contributed noise but only latency dispersion

slowed and spread multiphoton responses, lowering the corner frequency. Using the discov-

ered QB correlations, we evaluated transduction noise for dissimilar species and two

extreme adaptation states, and compared it to photon noise. The noise emitted by the cas-

cade was non-additive and depended non-linearly on the interaction between the QB dura-

tion and the three QB variabilities. Increased QB duration strongly suppressed both noise

and corner frequency. This trade-off might be acceptable for nocturnal but not diurnal spe-

cies because corner frequency is the principal determinant of information capacity. To offset

the increase in noise accompanying the QB narrowing during light adaptation and the

response-expanding effect of latency dispersion, the cascade accelerates. This explains the

widespread evolutionary tendency of diurnal fliers to have fast phototransduction, especially

after light adaptation, which thus appears to be a common adaptation to contain stochasti-

city, improve SNR and expand the bandwidth.
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Author summary

Phototransduction cascades in the rhabdomeric photoreceptors of invertebrates and the

ciliary photoreceptors of vertebrates, while similar in their first stages, differ in their out-

comes and regulation mechanisms. One salient difference is that in the photoreceptors of

many insect species the delay of small responses decreases drastically after light adapta-

tion. Here we performed an in-depth analysis of phototransduction in the insect microvil-

lus and discovered hitherto unknown dependencies between the parameters of the

cascade output, the quantum bump, and the cascade speed, supported by experimental

data. Faster cascades produced faster, larger and narrower quantum bumps with smaller

variabilities than slower cascades. We show that the differences in the cascade speed,

either between species occupying dissimilar visual ecological niches, or between adapta-

tion states, have profound consequences for photoreceptor signaling. Firstly, narrow and

more synchronous bumps produced by fast cascades better transfer higher frequencies

contained in visual signals, increasing the photoreceptor bandwidth. Secondly, a decrease

in the level of noise due to the cascade acceleration compensates for the loss of signaling

accuracy, which occurs when the signal duration decreases. We propose that acceleration

of phototransduction is a powerful mechanism in both evolutionary and situational opti-

mization of photoreceptor signaling.

Introduction

Photoreceptors recode information from a time series of environmental photons into a contin-

uous amplitude-modulated (graded) voltage response and then into many streams of synaptic

vesicles stimulating the second-order visual neurons [1]. Due to the presence of various

sources of noise, information is degraded at each transformation stage. This work is concerned

with the loss of information at the initial stage of light-to-voltage transformation in the rhabdo-
meric photoreceptor caused by (1) the inherently random photon absorption events that can

be described by a Poisson point process, and (2) the stochastic variability in the properties of

elementary electrical responses, the quantum bumps (QB). These two sources of noise, corre-

spondingly the extrinsic photon and the intrinsic phototransduction (or transduction) noises,

change with light intensity and photoreceptor adaptation state, and represent two main deter-

minants of the overall noise in the graded voltage response. They limit information transfer by

the photoreceptor and generally the reliability of motion detection in the visual system [2].

The rate of information transfer by a photoreceptor stimulated with an arbitrary time series

of light intensities representing a “pixel” of the visual scene dynamically sampled by the rhab-

domere can be estimated using the Shannon’s equation [3]:

IR ¼
Z f

f0

log
2

Sðf Þ
Nðf Þ

þ 1

� �

df ð1Þ

where S(f) and N(f) are signal and noise as functions of frequency, f, and their ratio is signal-

to-noise ratio (SNR). The upper boundary of the photoreceptor signaling bandwidth, as mea-

sured by the low-pass corner frequency, is restricted by the characteristic duration of the QB,

which is the widest in the dark-adapted and the narrowest in the light-adapted photoreceptors

[4,5]. SNR in bright light depends as a function 1=
ffiffiffi
n
p

on the number of operational sampling

units, the microvilli. While the number of microvilli in photoreceptors of compound eyes of

visually guided insects can vary from tens of thousands as in Drosophila melanogaster to
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hundreds of thousands and even millions as in Periplaneta americana [4,6], the size of their

operational pool is usually smaller, because a fraction of microvilli is inactivated by preceding

stimulation [4].

The useful frequency range of the photoreceptor is often flexible, with some of the flexibility

traceable to the phototransduction cascade. This is best illustrated by comparing impulse

responses evoked in photoreceptors in different adaptation states. Because Fourier transform

of a momentary “impulse” stimulus contains all frequencies, the impulse response of the recep-

tor contains all frequencies the system can process, i.e. the frequency-response range, and thus

provides characterization of its current state, assuming the system’s stationarity and linearity.

Although photoreceptors are inherently non-linear electrical systems [7], they can be consid-

ered linear when disturbed with stimuli that evoke small responses [8–11]. In a seminal study,

Howard and colleagues [10] compared in vivo voltage impulse responses of dark- and light-

adapted photoreceptors of several insect species. The impulse responses of photoreceptors

after light adaptation accelerated dramatically, with their times to peak and durations decreas-

ing strongly, especially in fast-flying diurnal species. However, a multiphoton voltage impulse

response is a superposition of multiple QBs shifted relative to each other according to their

individual latencies and filtered by the cell membrane. Although both the QB duration and

latency dispersion are determined by the phototransduction, only the former was thought to

be malleable, probably due to acceleration of inactivation of light-activated channels by ele-

vated cytosolic calcium [4,9]. Low-pass filtering is also usually relaxed during light adaptation,

speeding up both the onset and termination of light response because light-adapted cells are

depolarized and their membrane resistance is lower than at rest [12].

This and the consecutive comparative studies [12–15] provided insights into the evolution

of insect vision, by linking the speed of phototransduction cascade through biophysical prop-

erties of the light-insensitive membrane to visual ecology. Thus, in faster diurnal fliers, photo-

transduction is faster, generates smaller and narrower QBs, and adapts to a greater extent than

in slower crepuscular flies. Photoreceptor membranes in the former are also less resistive than

in the latter, preventing excessive low-pass filtering of the relatively fast light-induced currents.

While this paradigm of matched filtering [16] explains evolutionary optimization of the fre-

quency response range, which is the main determinant of information rate (Eq 1), little is

known about mechanisms of noise optimization.

As mentioned above, the noise contained in the photoreceptor voltage response to light

mainly originates from two sources, the variability in the number of absorbed photons when

repetitively stimulated with the same stimulus and the variability in QB properties. These two

dominate over other sources of noise, which include spontaneous activation of rhodopsins

and Gq proteins, stochastic channel openings, noise from feedback synapses and gap junctions

with the neighboring photoreceptors etc. [9,17–20].

Photon noise is discrete and conforms to the Poisson statistics (also referred to as photon

‘shot noise’ or ‘Poisson noise’). The variability it introduces is the largest at low photon counts,

i.e. in dim light, and decreases as a function 1=
ffiffiffi
n
p

of the number of photons in the stimulus.

Depending on the duration and intensity of the stimulus, it can manifest in two extreme

forms. If the stimulus is effectively an instantaneous “flash”, the photon noise will produce

impulse responses comprised of variable numbers of QBs. If the stimulus is continuous and

very dim, it will elicit a series of discrete QBs. The Poisson distribution will then describe the

probability of encountering an impulse response consisting of k QBs in the first case and the

probability for the occurrence of k responses per time interval in the second case.

Variabilities in amplitude, kinetics and timing of QBs that constitute the transduction noise

[21–24] arise from the intrinsic stochasticity of phototransduction reactions and ion channel
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gating in the microvillus, due to the small numbers of molecules involved and small reaction

space, the microvillus membrane area. Differences in biophysical properties or the functional

states of the microvillus, e.g. variability in the expression of transduction proteins between

microvilli or a degree of recovery from the previous excitation [4], may also contribute to vari-

ability. These variabilities degrade information transferred in impulse responses because the

amplitudes and shapes of impulse responses elicited by the same stimulus and comprised of

the same number of QBs will vary from trial to trial depending on the individual QB properties

[17,18,24,25].

The quantitative relations between the transduction and photon noises in the rhabdomeric

photoreceptor were first investigated by Laughlin and Lillywhite [17,18] in the seminal studies

of dark-adapted locust photoreceptors stimulated by short stimuli with variable photon counts.

It was shown that 1) the latency and amplitude dispersions are major components of the trans-

duction noise, and 2) as the photon noise decreases with increasing stimulus intensity, the

transduction noise becomes dominant. In a recent modeling study, Parag and Vinnicombe, by

using an approach based on Bayesian point process (Snyder) filters, found that mean photo-

transduction delay (and not the QB variabilities) is the most important determinant of noise

[26]. The modeling study by Abshire and Andreou suggested, under the assumption of noise

additivity, that intrinsic noise sources tend to dominate over the photon noise in the bright

light [27].

However, it is not known how different components of the transduction noise affect signal-

ing in phototransduction cascades of different invertebrate species, how their contributions

change with stimulation intensity and with changes in the adaptation state. Our previous study

of the role of QB latency and its dispersion in signaling in the dark-adapted Periplaneta ameri-
cana photoreceptors found that as mean photoreceptor QB latency (a proxy for the cascade

speed) decreased, so did the latency dispersion [28], contrary to the established opinion that

latency distribution does not change with mean latency [4,9]. This finding pointed to an addi-

tional mechanism, which could contribute to changes in both bandwidth and SNR during

light adaptation.

The goal of the present work was to investigate as comprehensively as possible how proper-

ties of phototransduction and changes thereof affect signal processing. We therefore explored:

1) how the properties of QBs are connected to the properties of the phototransduction cascade,

2) how transduction noise arises from the stochasticity of the cascade, 3) how the QB proper-

ties and transduction noise influence signal transfer both in silico and in vivo, in different spe-

cies and adaptation states, and 4) how transduction noise relates to the photon noise under

different conditions. We found hitherto unknown correlations between QB parameters and

that phototransduction shapes photoreceptor bandwidth and SNR via complex non-linear

interactions between the characteristic QB duration and three QB variabilities. Our results

suggest that light adaptation-dependent acceleration of phototransduction observed in many

diurnal insect species represents a general adaptation to contain stochasticity and thus increase

the speed and accuracy of photoreceptor signaling.

Results

The Results section is structured as follows. In part 1, we investigate the dependencies of indi-

vidual QB properties on the key events during the cascade. In part 2, we perform a parametric

analysis of the cascade by studying the effects of systematic changes in five main activation

parameters on the statistical properties of QBs. In part 3, we apply the results of the parametric

analyses to the experimental data. In part 4, we explore how QB properties influence the corner

frequency of signal transfer. In part 5, we exploit the discovered correlations between QB
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properties to estimate the transduction noise associated with responses of photoreceptors in

vivo, under different adaptation conditions, and to compare it to the photon noise. Finally, in

part 6, we investigate interactions between the sources of transduction noise and their effects

on information capacity.

Stochasticity in the phototransduction cascade

Three factors can contribute to the variability of QBs recorded from the same photoreceptor:

the intrinsic stochasticity of the cascade, differences between microvilli, and differences in the

functional states of microvilli in the rhabdom. The contributions of the first two factors cannot

be easily separated because dispersions of QB amplitudes, durations and latencies arising from

simulations of single microvillus responses match very well the dispersions found in record-

ings from individual photoreceptors [29]. Furthermore, recordings of QB trains originating

from presumably the same microvilli in D. melanogaster cam mutant characterized by dis-

rupted microvillus inactivation yielded amplitude and latency dispersions indistinguishable

from those in wild-type flies [30]. The third factor depends on the degree of recovery of the

microvillus from previous activation and can be considered negligible when dark-adapted

photoreceptors are stimulated at frequencies of<2 Hz using flashes of light that evoke QBs

with<50% probability.

We therefore hypothesized that analysis of stochasticity using a mathematical model of QB

could provide testable insights into the causes of QB parameter dispersions and possible corre-

lations between them. We used a model that was originally developed by Nikolic et al. ([31])

for D. melanogaster and modified in the previous study to reproduce P. americana QBs [29].

All parameters used to produce the “normal” (henceforth “control”) cockroach current bump

that deviate from the parameters of the original fly model are listed in S1 Table. In each experi-

ment the computations were iterated 200 times, eliciting about 190 bumps. The results of one

run showing dynamics of the activated Gq protein (Gα), activated phospholipase C (Gα-PLC),

accumulation of diacylglycerol (DAG) and QB current are presented in Fig 1A. Due to sto-

chasticity, the time-courses and amplitudes of the parameters varied strongly from run to run.

We investigated if the times to peak and the maximal values (Nmax) of Gα, Gα-PLC and DAG

correlate with the latency, amplitude and duration of the resulting QBs. Because the maxima

of Gα and Gα-PLC can persist for some time and even be double-peaked, we used the times of

the first observed maxima.

Fig 1B demonstrates the methodology of determining the QB parameters used in this study,

including the 10% latency (t1), half-width (t2), and 20–80% rise (t3) and decay (t4) times. Fig

1C and 1D show dependencies of QB amplitudes and latencies during each run on Nmax for

Gα, Gα-PLC and DAG and Fig 1E and 1F on the corresponding times of Nmax. QB amplitudes

were correlated with the Nmax values (Fig 1C) but not with the times of Nmax (Fig 1E). (In most

simulations, the maximum number of activated channels was <50% of the maximal number

of channels available, twenty five, preventing saturation-related artifacts.) In contrast, QB

latencies were correlated with the times of Nmax (Fig 1F) but not with Nmax (Fig 1D). Interest-

ingly, the strength of correlations in Fig 1C and 1F increased with the proximity of the cascade

stage to the QB, indicating that the intrinsic randomness of molecular encounters and interac-

tions tends to uncouple signal transfer and disrupt amplification.

One could expect that stronger amplification characterized by higher Nmax values might be

associated with longer times to Nmax, manifesting in a positive correlation between QB latency

and amplitude. However, no such correlations could be detected in our simulated (Fig 1G) or

experimental data. Plots of times to Nmax against the respective Nmax values for the three mole-

cules (Fig 1H) explained the lack of such correlations as the strengths of correlations decreased

PLOS COMPUTATIONAL BIOLOGY Speed of phototransduction and photoreceptor performance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008427 November 16, 2020 5 / 37

https://doi.org/10.1371/journal.pcbi.1008427


consistently from the strong correlation for Gα to the statistically insignificant correlation for

DAG. DAG is the immediate precursor of channel opening in the cascade, and so the absence

of a correlation between Nmax for DAG and the respective times to Nmax predates the absence

Fig 1. Speed, amplification and stochasticity in the “normal” P. americana cascade. The parameters of the model were adjusted to elicit current bumps closely

resembling on average the in vivo P. americana current bump from the previous study [28]. Here and in all following simulations, the model was run 200 times,

eliciting from ~130 to 198 bumps (depending on the parameter modification) that exceeded an amplitude threshold (here -7 pA). (A) Results of a single run of the

model illustrate time-dependencies of Gα, Gα-PLC, DAG molecules and QB current; the DAG number and QB current were divided by 10 and -10, respectively, for

presentation purposes. (B) Schematics of determining the following QB parameters: t1 (red) for 10% latency, t2 (blue) for half-width, t3 (green) for 20–80% rise and t4

(green) for 80–20% decay times. (C) Dependence of bump amplitudes on the maximal numbers (Nmax) of activated Gq proteins (Gα), or Gα-PLC complexes, or DAG

molecules. Here, and in all following figures, unless stated otherwise, the first number in the title denotes the SROCC and the P-value is in the parentheses. (D) Bump

latencies did not correlate with the maximum numbers of the precursor molecules; n/s stands for “non-significant” correlation. (E) Similarly, bump amplitudes either

correlated weakly (for Gα-PLC) or did not correlate with the times of Nmax. (F) Correlations between the times of Nmax and bump latencies. (G) Correlation between

bump latencies and amplitudes. (H) Correlations between the Nmax and times of Nmax of Gα, Gα-PLC and DAG. (I, J) Bump half-widths correlated weakly or

insignificantly with Nmax (I) and the times of Nmax (J) of Gα, Gα-PLC and DAG. (K, L) QB half-widths did not correlate with QB latencies (K) and amplitudes (L).

https://doi.org/10.1371/journal.pcbi.1008427.g001
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of the correlation between QB latency and amplitude. The third QB parameter, duration, can

be approximated by the QB half-width. We explored correlations between the QB half-widths

and other parameters (Fig 1I–1L). However, no significant correlations could be found.

Parametric analysis of the cascade model

Next, we investigated how changes in five main activation parameters would alter timing,

amplitude and duration of the QBs on average. The parameters were: (1) the time of guanosine

diphosphate (GDP) to guanosine-50-triphosphate (GTP) exchange by Gα, which we varied in

1 ms steps from 1 to 8 ms per event and presented in terms of rate in the remainder of the text;

(2) the availability of Gq protein varied in steps from 300 to 10%; (3) the concentration of PLC

varied similarly to Gq; (4) phosphatidylinositol 4,5-bisphosphate (PIP2) breakdown time by

Gα-PLC mainly varied in 0.2 ms intervals from 0.1 to 2 ms per event and was also converted to

rate; and (5) the sensitivity of light-activated channels to DAG, which we varied from 0.15 to

0.8. In this analysis we did not investigate the effects of changes in diffusion rates of Gαβγ, Gα
and PIP2, because we found that such changes produce only minor effects [29].

The left panel in Fig 2A shows evolutions in time of average numbers of Gα, Gα-PLC and

DAG molecules and also the QB current during the cascade under control conditions. The

data were obtained by averaging all runs of the model that resulted in bumps, in this case 190

(a typical run is shown in Fig 1A) without alignment. The right panel of Fig 2A shows normal-

ized curves to visualize the relative positions of the peaks.

Median latencies, mean amplitudes and mean half-widths were obtained from the simu-

lated QB sets. Fig 2B and 2D demonstrates complex dependencies of median QB latency and

mean amplitude, respectively, on the maximal numbers of Gα, Gα-PLC and DAG obtained

from the peaks of the corresponding average time-dependencies. In general, increases in Gq

and PLC concentrations, GDP to GTP exchange and PIP2 breakdown rates, and channel sensi-

tivity to DAG were associated with faster, higher and more narrow bumps, and vice versa. It

follows from the data that Nmax values change robustly in response to changes in the upstream

activation parameters but are relatively weakly affected by changes downstream. For example,

the Gα Nmax values in Fig 2B do not change in response to modifications in the downstream

PIP2 breakdown rates and channel sensitivity to DAG; however, they increase as GDP to GTP

exchange rate and Gq concentration increase. Moreover, as the concentration of PLC that

works as a sink for Gα decreases, the Gα Nmax increases drastically, indicating that at low PLC

levels Gα diffusion becomes a limiting factor.

Dependencies of median latencies and amplitudes on the times of Nmax are shown in Fig

2C and 2E, respectively. Again, the character of scatter plots resembled that observed in the

correlations between the times of Nmax and latency in the analysis of individual simulations in

control (Fig 1F), with random variability increasing with distance of the molecular stage in

question from the QB. However, in contrast to the weak positive correlations found between

QB amplitudes and the times of Nmax for Gα and Gα-PLC in control (Fig 1E), the correlations

between times of Nmax and mean amplitudes after parametric modifications were strong and

negative (Fig 2E). The variability in mean half-widths was relatively small and its patterns

resembled those for median latency (Fig 2B and 2C) but with less significant correlations.

QB properties in the model and experiments

Variability in QB parameters and their dispersion. In our previous studies of P. ameri-
cana photoreceptors we discovered that QB latency dispersion is proportional to the mean

latency of the photoreceptor and appears to be a major factor restricting the signaling band-

width [28]. It was therefore necessary to investigate in the model (1) how latency dispersion
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depends on the activation parameters of phototransduction and (2) how it relates to another

bandwidth-limiting factor, the QB duration.

Fig 3A and 3B shows plots for median QB latency and its scatter for: (1) the results of simu-

lations of P. americana current bumps involving changes in five activation parameters (Fig

3A); (2) P. americana voltage bumps obtained in intracellular recording experiments under

three conditions (control, Gαkd and PLCkd [29], Fig 3B); and (3) voltage bumps from the

blow fly Protophormia terraenovae (Fig 3B). Results of the modeling show that: 1) simulations

can reproduce the whole range of experimental variability in median QB latency and latency

dispersion for P. americana (and also for P. terraenovae, with minor modifications); and 2)

changes in the upstream cascade activation parameters are associated with stronger changes in

latency dispersion than changes downstream.

When the experimental data were fitted by linear equations, the fitting lines (blue for P. ter-
raenovae and red for all P. americana data pooled together) crossed the x-axis within 6 ms

from zero (Fig 3B). However, when all data from the fly and the cockroach were combined

and fitted, the fitting line crossed the intercept (thick dark green trace in Fig 3B). This impor-

tant observation indicates that the variability in latency decreases linearly with median latency.

In the model, all lines fitting the individual data sets (Fig 3A) crossed the x-axis at>0 ms, with

the best approximation to the experimental data achieved for the modifications in the down-

stream activation parameters (PIP2 breakdown rate and TRP sensitivity to DAG).

Dispersions of two other key QB parameters, the half-width and amplitude, were also pro-

portional to the respective mean parameters (Fig 3C–3F). Fig 3C shows a dependence of half-

width standard deviations on mean half-widths in the model and Fig 3D in the experiments.

All correlations were very strong. Fig 3E shows a dependence of amplitude dispersion on

mean amplitude in the model and Fig 3F in the experiments. However, instead of a linear

trend as found for QB latencies and half-widths in Fig 3A–3D, Fig 3E demonstrates a saturat-

ing function, caused by approaching the maximal number of channels present in the microvil-

lus (25 in these simulations) as the cascade accelerated. This has consequences for the

estimation of the amplitude component of phototransduction noise, because fast cascades elic-

iting large QBs caused by opening of the majority of available channels will be characterized by

lower amplitude noise than the relatively slow cascades. However, no evidence of saturation

was detected in the experimental data (Fig 3F).

Cascade speed and QB duration. Next, we investigated relations between the speed of

phototransduction cascade as approximated by median QB latency and other QB parameters.

The QB is the fastest photoreceptor response and thus its duration sets the upper limit of

frequencies that a photoreceptor can transfer. But because QBs in a multiphoton impulse

response are shifted relative each other according to their latencies, the photoreceptor’s

Fig 2. Parametric analysis of the cascade. (A) Left: average time-dependencies of Gα, Gα-PLC, DAG and quantum

bump currents in the “normal” P. americana cascade from Fig 1; DAG and bump currents were divided by 10 and -10,

respectively, as in Fig 1; data obtained in each run were averaged without alignment, hence the “composite QB current”

term is used for consistency with the composite responses studied in next sections. Right: the normalized averaged time-

dependencies. (B) Dependencies of median latency on the numbers (Nmax) of Gα, Gα-PLC or DAG molecules at the

peak of the corresponding average curves as in A, upon incremental changes in five activation parameters. Here and

elsewhere, GDP to GTP exchange rate was altered in the range from 125 to 1000 s-1 (control at 333 s-1); Gq and PLC

concentrations from 10 to 300% (control at 100%); PIP2 breakdown rate by Gα-PLC from 500 to 10000 s-1 (control at

1428 s-1); sensitivity of light-activated channels to DAG from 0.15 to 0.8 (control at 0.34); here and in all following

figures, color-coded “H” and “L” letters denote correspondingly the higher and lower limits of the parameter ranges in

terms of either concentrations for Gq and PLC, or rates for GDP to GTP exchange and PIP2 breakdown, or sensitivity of

the channels. (C) Dependencies of median latencies on the times of Nmax of Gα, Gα-PLC or DAG curves. (D)

Dependencies of mean bump amplitudes on the Nmax of Gα, Gα-PLC or DAG curves. (E) Dependencies of mean

amplitudes on the times of Nmax of Gα, Gα-PLC or DAG.

https://doi.org/10.1371/journal.pcbi.1008427.g002
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Fig 3. QB latency, half-width and amplitude and their dispersions. (A, B) Correlations between median latencies

and latency scatter values for the current bumps obtained in the parametric analysis of activation parameters (A) and
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bandwidth must necessarily be influenced by the interaction between QB duration and latency

dispersion. The possible scenarios range from a situation when summation of wide bumps

characterized by small latency dispersion makes variability in latency inconsequential, to a sit-

uation when brief but widely dispersed bumps form a broad response that filters out fast

signals.

Fig 4A shows dependencies of mean QB half-widths on median latencies for the simulated

P. americana current bumps with parameter modification and Fig 4B for the voltage bumps

from P. terraenovae and P. americana. All correlations were statistically significant (Fig 4A

and 4B and Table 1).

The differences in group-average half-widths between the voltage bumps and the simulated

current bumps were due to the low-pass RC-filtering by the membrane of the dark-adapted

photoreceptors. The voltage bumps were recorded from cells that varied widely in membrane

resistance and capacitance, and this might explain some of the large data spread along the y-

axis (Fig 4B). The ranges of latency variation for voltage and simulated current bumps for P.

americana matched well, suggesting that the moderate parameter modification in the model

was sufficient to describe the experimental variation in vivo. Regarding a putative mechanism

of this dependence, we hypothesized that as smaller latencies are associated with smaller times

to peak of DAG concentration and vice versa (Fig 2C), the rate of DAG increase in faster pho-

toreceptors must also be higher than in slower cells (Fig 4M and 4N), causing more concerted

and synchronous activation of phototransduction channels that would result in narrower

bumps.

Cascade speed and QB amplitude. A rapid and strong increase in DAG concentration

can be expected to activate more transduction channels than a slow increase, and this would

manifest in a negative correlation between median QB latencies and amplitudes. We tested

this hypothesis in Fig 4C and 4D. In the model, we found a very strong negative correlation

between median QB latencies and mean amplitudes (Fig 4C). As illustrated by the values that

denote the average peak numbers of open TRP channels associated with the high or low

extremes of the activation parameter ranges, high mean amplitudes were caused by opening of

more channels at the peak of the QB.

We found an experimental conformation for the relation between mean QB latency and

amplitude in the data from P. terraenovae (Fig 4D). The negative correlation was statistically

significant. However, no similar correlation was found in P. americana, where mean QB

amplitudes instead correlated weakly positively with median QB latencies (Fig 4D). While

these findings could reflect genuine differences between the phototransduction cascades of the

two dissimilar species, the weak cockroach correlation was unreliable and possibly caused by

high intrinsic variability between the photoreceptors [32].

Because mean QB half-widths correlated positively with median latencies, we also tested the

correlations between amplitudes and half-widths. A strong correlation was found in the model

(Fig 4E) and a weak correlation in the experimental P. terraenovae data (Fig 4F).

Cascade speed and onset kinetics. We hypothesized that changes in the rate of DAG

increase (Fig 4M and 4N) could be linked to changes in the TRP activation rate, which would

manifest in a negative correlation between the latencies and QB onset rates. This hypothesis

for voltage bumps from intracellular recordings from P. americana and P. terraenovae (B); data were fitted by linear

functions as indicated by the equations and lines of matching colours (in A); in B, the red line is the linear fit of all P.

americana data, the blue line of P. terraenovae data, and the dark green line of P. americana and P. terraenovae data

pooled together; in the legends, n is the number of cells. (C, D) Correlations between mean QB half-widths and half-

width standard deviations for the simulated (C) and experimental (D) data. (E, F) Correlations between mean

amplitudes and amplitude standard deviations for the simulated (E) and experimental (F) data.

https://doi.org/10.1371/journal.pcbi.1008427.g003
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Fig 4. Dependencies of QB properties on the cascade speed and each other. (A, B) Correlations between median latencies and mean half-widths for the simulated

current (A) and experimental voltage (B) QB data. (C) Correlations between median QB latencies and amplitudes for the simulated current (C) and experimental voltage

(D) QB data; in C, numbers denote average peak numbers of open TRP channels associated with the extreme data points for each activation parameter modification

range. (E, F) Correlations between mean QB half-widths and amplitudes for the simulated (E) and experimental (F) data. (G, H) Correlations between median latencies

and mean 20–80% QB rise slopes for the simulated current (G) and experimental voltage (H) data. (I, J) Correlations between mean QB half-widths and mean rise slopes
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was supported both in the model and experiments (Fig 4G and 4H and Table 1). Fig 4G and

4H show statistically significant negative correlations between median QB latencies and onset

rates measured as normalized 20–80% rise slopes. Consistent with the above-described corre-

lations between latencies, amplitudes and half-widths, the rise slopes also correlated negatively

with mean half-widths (Fig 4I and 4J), and positively with amplitudes in the model (Fig 4K)

but not experiments (Fig 4L).

Table 1 summarizes our analysis of QB properties. Correlation coefficients are provided for

various pairs of QB parameters and their dispersion measures, with the emphasis on the

dependencies on the cascade speed. Because dispersions of QB latencies correlated very

strongly positively with median QB latencies, we did not give the almost duplicate correlations

between the latency scatter and other QB parameters. It should be understood that whenever a

statistical QB property correlates significantly with the mean or median QB latency, it also sim-

ilarly correlates with a measure of latency dispersion (the standard deviation or scatter values).

The correlations in Table 1 show that cell-to-cell variabilities in the main QB properties found

in the experiments or cascade-to-cascade variabilities in the model correlate with each other

and are largely dependent on the speed of phototransduction. The overall best fit with the model

predictions was achieved for P. terraenovae.

QB properties and signaling bandwidth

In the previous sections we investigated the properties of single QBs in experiments and in the

model. However, any multiphoton impulse response is a superposition of multiple bumps

for the simulated (I) and experimental (J) data. (K, L) Correlations between mean QB amplitudes and mean rise slopes for the simulated (K) and experimental (L) data.

(M, N) Time dependencies of DAG accumulation in a fast (M) and slow (N) cascades; 20 examples are shown in each panel; QB parameters and DAG 20–80% rise

slopes are provided in the legends.

https://doi.org/10.1371/journal.pcbi.1008427.g004

Table 1. Summary of correlations between statistical properties of QBs obtained in the parametric analysis of the model and electrophysiological experiments. Val-

ues are SROCC ρs with P given in parentheses. P. americana correlations are based on the pooled data from control, Gqαkd and PLCkd experiments. Symbols in the col-

umn “Fit” indicate the degree of consistency between the correlations in the model and experiments, with the first symbol referring to P. americana and the second to P.

terraenovae results; “+” stands for the consistent, “0” for the non-significant, and “–” for the significant but opposite correlation. Because latency dispersion correlated with

median latency nearly perfectly, no specific correlations between latency scatter and other parameters were included; s.d., standard deviation.

Parameter 1 Parameter 2 Model P. americana P. terraenovae Fit

1. Dispersion-related correlations

amplitude amplitude s.d. 0.7 (10−6) Fig 3E 0.9 (10−6) Fig 4F 0.93 (10−6) Fig 4F + +

half-width half-width s.d. 0.74 (10−6) Fig 3C 0.74 (10−7) Fig 3D 0.83 (10−7) Fig 3D + +

latency latency scatter 0.91 (10−6) Fig 3A 0.63 (10−6) Fig 3B 0.86 (10−6) Fig 3B + +

latency amplitude s.d. -0.73 (10−6) 0.29 (0.002) -0.55 (10−3) – +

latency half-width s.d. 0.90 (10−6) 0.33 (10−3) 0.5 (10−3) + +

latency latency CV 0.55 (10−4) 0.34 (10−3) 0.42 (0.005) + +

latency amplitude CV 0.9 (10−6) 0.24 (0.013) -0.19 (0.19) + 0

latency half-width CV 0.59 (10−4) 0.13 (0.2) 0.38 (0.009) 0 +

2. Correlations between QB parameters

latency amplitude -0.96 (10−6) Fig 4C 0.2 (0.02) Fig 4D -0.61 (10−5) Fig 4D – +

latency half-width 0.79 (10−6) Fig 4A 0.42 (10−6) Fig 4B 0.43 (0.002) Fig 4B + +

amplitude half-width -0.72 (10−6) Fig 4E 0.16 (0.06) Fig 4F -0.30 (0.04) Fig 4F 0 +

latency rise slope -0.55 (10−5) Fig 4G -0.23 (0.01) Fig 4H -0.31 (0.03) Fig 4H + +

rise slope half-width -0.57 (10−4) Fig 4I -0.79 (10−6) Fig 4J -0.76 (10−6) Fig 4J + +

rise slope amplitude 0.57 (10−4) Fig 4K 0.06 (0.49) Fig 4L 0.16 (0.26) Fig 4L 0 0

https://doi.org/10.1371/journal.pcbi.1008427.t001
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shifted relative each other due to variations in latency. In the following, we refer to the experi-

mentally obtained responses to flash stimulation (here 1 ms pulses) as impulse responses,

while calling their simulated analogs the “composite” responses. To obtain average bumps, we

carefully aligned the rising phases of individual bumps (at ~10% of bump amplitudes) and

then averaged. Because of latency dispersion, an impulse response is always wider and has a

slower onset than the average QB, causing additional low-pass filtering of the signal.

As we showed above, the QB latency dispersion, mean half-width and onset kinetics can be

lowered by speeding up the cascade. In vivo, differences in the cascade speed are observed

between insect species with dissimilar compound eye morphologies and visual ecologies [10],

and they can manifest in two forms, as the differences in QB latency distributions between the

dark-adapted photoreceptors (Fig 3B), and in the character of cascade acceleration during

light adaptation or absence thereof [10]. Therefore, given the multifaceted effects of the cas-

cade speed on QB properties, it was important to investigate how it influences the signaling

bandwidth.

QB duration, latency dispersion and signaling bandwidth

In the parametric analysis above we obtained many QB sets characterized by different latency,

duration and amplitude distributions (Figs 3 and 4). Fig 5 demonstrates that the composite

responses produced by averaging the QB sets also vary in their duration and kinetics. How can

these differences affect the signal transfer in the absence of other variabilities and sources of

noise? To investigate, we modeled the frequency response functions using the average QBs

and the associated composite responses (Fig 5A). Although both the average QBs and compos-

ite responses were based on of>150 traces, and the residual variability arising from the cas-

cade stochasticity was small, it was still not negligible, especially when slower cascades were

concerned. Therefore, we fitted the waveforms using a lognormal function and used the fitted

curves to estimate noise-free frequency response functions.

The functions were constructed in the following way. The same traces were shifted relative

to each other by 5, 10, 20, 40, 80, or 200 ms (corresponding to frequencies of 200, 100, 50, 25,

12.5 and 5 Hz) and summed, imitating responses to series of instantaneous flashes of incre-

menting frequency (a flickering stimulus). Then a signal was obtained at each frequency by

subtracting the minimal amplitude from the maximal one and dividing the difference by the

maximal absolute amplitude (Fig 5A inset). The signals were then plotted against frequency.

Such frequency-dependencies are usually best fitted by a Hill equation. The examples in Fig

5A and 5B show modeled flickering-frequency response functions for the average QB in con-

trol and the associated composite response, with the dotted drop lines denoting 3 dB corner

frequencies (f3dB).

We obtained corner frequencies for 46 average QB-composite response pairs from the

parametric analysis. Corner frequencies plotted against half-widths of average QBs and com-

posite responses revealed a non-linear correlation (Fig 5C). To explore a broader range of the

dependence of the corner frequency on the characteristic duration of the response, we con-

structed a number of composite responses by using arbitrary QBs and latency distributions

(Fig 5G–5I), determined the corner frequencies and introduced the data to the plot (blue dia-

monds). Consistently with the previous theoretical predictions [5], the best fit of all composite

responses was achieved using a first-order reciprocal equation y = 730/x (Fig 5C).

Corner frequencies associated with the data from the parametric analysis simulations also

correlated strongly negatively with median QB latency (Fig 5D, indicating that slow photo-

transduction cascades characterized by high latency dispersion can poorly transmit higher fre-

quencies, and vice versa.
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Fig 5. QB statistics and signaling bandwidth. (A) Examples of simulated flickering-frequency response functions constructed by summation of lognormal fits of

average bumps and composite responses at different frequencies of stimulation; QB sets were from the parametric analysis; composite responses were obtained by

averaging all bumps evoked during the 200-trial runs of the model as they appeared, without alignment. Subtracting the local minima from the maxima and then

dividing by the amplitude at each frequency as indicated in inset gave the signal amplitudes. (B) Dependencies of signal amplitudes from A on frequency; plots were

fitted by a Hill equation; dotted lines denote corner frequencies (f3dB). (C) Dependencies of corner frequencies on half-widths of average bumps and composite

responses; blue diamonds represent 25 composite responses obtained in separate simulations, with ten examples shown in I. (D) Dependencies of corner frequencies on

median QB latencies. (E) Plots of half-widths against median QB latencies; white triangles are the sums of average QB half-widths with the corresponding latency scatter

values; regression lines are plotted for composite responses (red), sums of average QB half-widths and latency scatter values (black) and average QB half-widths (gray);

data set in the ellipse represents a cascade characterized by a seven-fold acceleration of PIP2 breakdown rate (not included into the fitted set). (F) Plots of average QB or

composite response half-widths against latency scatters. (G-K) Investigation of the dependence of the composite response half-width on the QB half-width and latency

dispersion. (G) Five QB-like lognormal waveforms. (H) Five latency distributions comprised of 1000 values each. (I) Two sets of composite responses constructed by

combining the QBs from G with five latency distributions from H. (J) A relation between the sum of QB half-width and latency standard deviation divided by the half-

width of the corresponding composite response and the ratio of QB half-width to latency standard deviation; data were fitted with an exponential rise to maximum

equation; straight grey lines provide reference. (K) A rearranged relation suitable for easy extraction of the QB half-width from the composite responses to an

instantaneous stimulus when latency standard deviation is known.

https://doi.org/10.1371/journal.pcbi.1008427.g005
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Importantly, we found that the composite response half-width in the model can be reliably

approximated by summing the half-widths of the average QB with the latency scatter values of

the associated median latencies (Fig 5E and 5F). The red, black and gray regression lines in Fig

5E and 5F describe, correspondingly, the composite responses, the sums of average QB half-

widths with the latency scatter values, and the average QBs. All lines crossed the y-axis at ~10

ms, denoting the lower limit of both the QB and composite response durations for the simu-

lated P. americana phototransduction cascade in the absence of modifications to QB

termination.

It should be noted that because the latency scatter estimate was very similar value-wise to

the latency standard deviation, the two could be used interchangeably to predict the mean QB

half-widths from impulse responses and vice versa. For instance, since calculation of the

latency scatter depends on a lognormal fitting of the latency distribution, the scatter measure

can be used when the sample is large, consisting of many hundred data points. Otherwise,

standard deviation might be a measure of choice.

Because developing a method to extract statistical information about QBs directly from

impulse responses is important, we tested in separate simulations how the composite response

duration is affected by both mean QB half-widths and latency scatter. We used five QB-like

waveforms, from a very narrow with a half-width of 4 ms to a comparatively wide with a half-

width of 12 ms (Fig 5G) together with five latency distributions (Fig 5H). By combining all

QBs with all latency distributions, we generated 25 composite responses, with ten examples

shown in Fig 5I. The corner frequencies associated with these composite responses are shown

in Fig 5C (blue diamonds).

To investigate the relations between the QB half-width and latency standard deviation, on

the one hand, and the composite response half-width, on the other hand, we plotted the ratios

of the predicted composite response half-width (the sum of QB half-width “x” and latency

standard deviation “a”) to the actual composite response half-width (“b”) against the ratios of

QB half-width to latency standard deviation x/a (Fig 5J). The non-linear saturating depen-

dence indicates that when latency dispersion is large compared to QB half-width, their sum

progressively underestimates the composite response half-width. However, when the x/a� 4,

the ratio (x + a)/b becomes constant. By plotting x/a against b/a and then fitting the depen-

dence with a polynomial equation (Fig 5K), it is possible to determine the mean QB half-width

when both the impulse response half-width and latency dispersion are known. This method

was used below to estimate QB properties from experimental impulse responses.

Comparison to experimental data

Thus far, we found a suite of several QB properties needed for transmission of higher frequen-

cies by composite responses, including small median (or mean) latency, low latency dispersion

and small half-width. As we showed above, these properties all depend on the speed of photo-

transduction. How do the results of our QB experiments and simulations correspond to the

experimental impulse responses? For a test, we used average impulse responses triggered by 1

ms flashes in light- and dark-adapted photoreceptors from six insect species [10]. The wave-

forms of average impulse responses were reconstructed using the lognormal fitting parameters

provided in the article. Fig 6A shows six pairs of impulse responses, all showing drastic

changes in the timing, duration and kinetics as a result of light adaptation. We then obtained

their 10% latencies, half-widths and estimated the corner frequencies as in Fig 5A and 5B.

Fig 6B shows the half-widths of the experimental impulse responses and the half-widths of

the composite responses from our parametric simulations plotted against their latencies. The

group differences visualized with the linear fitting curves are due to membrane filtering, which
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is absent in the current QB-based simulated composite responses. Membrane filtering strongly

expands the impulse responses of the dark- but not light-adapted photoreceptors because

membrane resistance is usually much higher in the dark- than a light-adapted photoreceptor

state. Similar differences between the in-silico current and in-vivo voltage bumps can be seen

by comparing Fig 4A and 4B. Therefore, the observed differences in the impulse response

durations can only partly be attributed to the differences in the cascade speed, with the rest

accounted by dissimilarities in the extent of membrane filtering and QB termination kinetics.

Correlations between the impulse response half-width and the corner frequency (Fig 6C)

and between the impulse response latency and the corner frequency (Fig 6D) are consistent

with the composite response modeling in Fig 5. It should be noted that although the depen-

dence of the signaling bandwidth and thus information capacity on the impulse response dura-

tion is well-known [5], their mechanistic connections to the cascade speed have not been

studied in the past.

Transduction and photon noises

In the previous section, we investigated the limits imposed on one aspect of signal transfer, the

bandwidth, by differences in the speed of phototransduction between cascades in the simula-

tions. However, the information-carrying capacity of a channel under the assumption of lin-

earity of input and Gaussian noise depends on both the bandwidth and signal-to-noise ratio

[3]. Therefore we next investigated how the intrinsic variabilities in QB properties generate

noise and how this noise can alter signal transfer under various conditions.

Fig 6. Comparison of impulse responses in different insect species. (A) Reconstructed average impulse responses of light- and dark-adapted (LA and DA,

respectively) photoreceptors from six species: locust Locusta migratoria, bush cricket Tympanophora pellucida, praying mantis Tenodera australasiae,
dragonfly Hemianax papuenis, drone fly Eristalis tenax, house fly Musca domestica, as indicated; in the original study [10] the waveforms were fitted by

lognormal functions, the parameters of which we used for the reconstructions. (B) Plots of half-widths of in vivo voltage impulse responses and in silico
composite responses comprised of current bumps against the response latencies determined at the 10% amplitude level; the data were fitted by linear

functions. (C, D) Dependencies of the corner frequency on the half-width (C) and 10% response latency (D) of the impulse responses; in C, the same

reciprocal equation y = 730/x was used as in Fig 5C.

https://doi.org/10.1371/journal.pcbi.1008427.g006
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Variabilities in QB properties

The parametric space of our variability analysis was narrowed by the finding that all main QB

properties are interlinked when one compares average bumps elicited by different cells in

experiments or by different cascades in the model. Thus we showed that the mean QB half-

width and its dispersion increased with the rising latency (Fig 4A and 4B and Table 1), that the

mean QB amplitude increased with the decreasing latency (Fig 4C and 4D and Table 1), and

that the mean QB amplitude and half-width correlated negatively (Fig 4E and Table 1).

Changes in median QB latencies, mean half-widths and amplitudes were accompanied by lin-

ear changes in the associated dispersions (Fig 3), with the exception of mean QB amplitude in

the model where a saturating function was found (Fig 3E).

There is an important distinction between variabilities in QB amplitudes and half-widths,

on one hand, and variability in latencies, on the other hand: while the first two are measures of

the actual QB properties, the latter is a measure of QB timing. Thus, while the noises intro-

duced by variabilities in amplitudes and half-widths were proportional to the respective coeffi-

cients of variation (CVs), the noise caused by the variability in latency was proportional to

latency standard deviation itself. Dependencies of all CVs on the speed of phototransduction

are presented in Table 1. Out of nine correlations (three for the model and six for the experi-

ments), seven were statistically significant and positive, indicating that all measures of QB noise
increase when the cascade slows down and vice versa.

Signal-to-noise ratios

To investigate how the noise emitted by the phototransduction cascade affects photoreceptor

signaling, we had to first develop a measure of SNR. The methodology used to create noise-

containing composite responses is illustrated in Fig 7.

First, we constructed composite responses by summing QBs randomly selected from a sim-

ulated control P. americana QB set (Fig 7A). Several composite responses consisting of 5 QBs

with variable latencies, amplitudes and half-widths are shown in hues of green in Fig 7B, with

the thick red trace representing the average of 120 such responses. By subtracting the average

“signal” trace from each of the original composite responses, a set of noise traces could be

Fig 7. Construction of noise-containing composite responses. (A) 20 simulated control P. americana QBs with variable amplitudes, latencies and durations; QBs

were divided by the average bump amplitude (-70.8 pA). (B) 20 composite responses (thin traces in hues of green) each comprised of 5 randomly selected QBs and

their average (thick red trace); the traces were divided by the amplitude of the set average. (C) The average “signal” was subtracted from each of the traces from B

yielding “noise” traces (thin traces in hues of blue). (D) The noise traces were reconstructed by taking absolute values from B; thick green line is the average absolute

deviation; the thick blue trace is the standard deviation. (E) Distribution of areas under the noise curves from D; red line indicates the area under the average composite

response. The noise distribution was fit with a normal and lognormal equations as indicated.

https://doi.org/10.1371/journal.pcbi.1008427.g007
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obtained (Fig 7C, in hues of blue). There are several approaches to estimate the SNR of a com-

posite response. These include using the ratios of the signal peak to either the peak of the stan-

dard deviation or average absolute deviation traces (Fig 7D), or the ratios of the areas under

the signal and noise curves. We considered the ratio of areas to be a more robust measure than

the ratio of peak amplitudes because the area under the average “signal” curve is invariant to

the waveform stretching or shortening. However, before using the parametric statistics, its

applicability had to be tested. The distribution of absolute areas under the individual rectified

noise traces (Fig 7E) was fitted with both Gaussian and lognormal equations, revealing a nor-

mal-like distribution. We therefore selected the area under the standard deviation curve to

serve as a convenient measure of noise (Fig 7D). Because each SNR estimate was based on

about 100 composite responses, the SNR was not very sensitive to the influence of outliers.

Transduction noise in the normal P. americana cascade

First, we tested how the transduction noise alters signaling accuracy by using the simulated P.

americana control QBs (Fig 8). Fig 8A–8D compares the effects of several combinations of QB

variabilities on the composite responses as indicated (with the exception of separate variabili-

ties in half-widths and amplitudes). The left subpanels show QBs before their random recom-

bination into composite responses consisting of 5 and 100 QBs. Fig 8E shows the effects of all

three QB variabilities combined. Fig 8F shows dependencies of SNR on the number of QBs in

the response and Fig 8G the corner frequencies at the 100 QB summation level (estimated

using the fitting equation in Fig 5C). It can be seen that introduction of latency dispersion

with a standard deviation of 5.2 ms strongly reduced both SNR and corner frequencies. The

effect of variability in latency alone on SNR appeared to be stronger than the effects of variabil-

ities in QB half-width and amplitude combined (Fig 8F). When in addition to latency, either

half-width or amplitude, or both, were varied, SNR decreased further by <20% (Fig 8C–8F).

While this could suggest that the variabilities in QB amplitudes and half-widths contribute rel-

atively little to the overall noise, the lack of substantial differences in SNR between different

combinations of variabilities was in fact due to non-additivity and complex mutual dependen-

cies of the three noise sources as we show below.

Quantum bump statistics from impulse responses

One of the goals of this work was to determine how adaptive changes in the phototransduction

cascade alter the photoreceptor signaling. However, such analysis requires comprehensive

information about the statistical properties of QBs elicited by the light-adapted cascade, which

cannot be obtained directly because individual light-adapted QBs are too small to be

measured.

In the previously published analysis, the average shapes and statistics of QBs were derived

from the macroscopic responses [9]. However, the estimated QB shapes were not lognormal as

they should be, and, crucially, the accompanying latency distributions were stationary, indicat-

ing that the cascade did not accelerate with light adaptation. Such findings in the highly-visual

D. melanogaster are not only counterintuitive but also inconsistent with the still earlier

reported differences between impulse responses of dark- and light-adapted photoreceptors of

dissimilar species (Fig 6A), which point to a dramatic acceleration of both the QB onset and

termination in the light-adapted state [10].

To estimate the QB statistics from the impulse response data for different species and under

different adaptation states, we performed a five-stage analysis by using the correlations

between the QB and composite response parameters discovered and described above.
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First, we predicted median QB latencies from the impulse responses. We plotted the 10%

latencies of the composite responses from our parametric simulations against the median

latencies of the constituent QBs. Fig 9A shows the resulting linear correlation, which we fitted

by a linear equation (thick gray line). The intercept was almost exactly at zero, as would be

expected because in the absence of QB latency dispersion the composite response approxi-

mates the average of the aligned constituent QBs. Then we positioned the 10% latencies of the

experimental impulse responses from Fig 6 on the fitting line and obtained the expected

median latencies for the QB sets comprising the impulse responses.

Next, we obtained the latency dispersion estimates from the linear dependencies of latency

scatter on the median latency (Fig 3A and 3B) by pooling together all available experimental

data and fitting them by a linear function (Fig 9B). In the same way we also obtained the mean

QB latencies and latency standard deviations, the latter nearly identical to the latency scatter

values.

Then we used the derived latency standard deviation values and the half-widths of the

experimental impulse responses to estimate mean QB half-widths (Fig 9C). We used the

empirical relation obtained during modeling of QB summation into composite responses (Fig

5G–5K).

At the fourth stage, we estimated the half-width dispersions in terms of standard deviations

(Fig 9D). Again, we had two distinct sets of experimental data characterized by dissimilar

regression trend lines. However, when all in-vivo data were pooled together and fitted, the

resulting regression line (dark green) coincided nearly perfectly with the fitting line fixed at

the origin (green).

Finally, using the correlation between median QB latencies and amplitude CVs from the

simulations, we estimated the amplitude CVs (Fig 9E). All equations describing the fitting

lines used in these approximations are given in the corresponding panels.

Transduction noise, photon noise and light adaptation in the house fly and

locust

Figs 10A and 11A show the estimated mean QB half-widths (left, relative to the duration of the

associated impulse responses), latency distributions (center-left), half-width distributions

(center-right) and normalized amplitude distributions (right) for the dark- and light-adapted

photoreceptors of the house fly and locust. The house fly represents the most visually-guided

species characterized by the fastest phototransduction in our sample, whereas the locust is the

slowest species. The left sub-panels of Figs 10A and 11A indicate that the impulse response

durations are mainly determined by the average QB duration. Importantly, all three transduc-

tion-related variabilities decreased significantly with light adaptation (Figs 10A and 11A, three

right sub-panels). If latency dispersion would not decrease during light adaptation, it can be

Fig 8. Transduction noise in the dark-adapted P. americana cascade. SNR functions were constructed to study the

separate components of the transduction noise associated with the normal modeled P. americana current QBs and

their combinations. A through E: examples of QBs are shown to the left, composite responses comprised of 5 QBs in

the center and comprised of 100 QBs to the right; normalized amplitudes were derived: for QBs, by dividing values in

each group by the amplitude of the group-average trace, and for the composite responses, by additionally dividing the

obtained QB sums by 5 or 100, respectively. (A) Effects of variation in latency; to produce composite responses, the

average QBs were shifted relative to each other and then summed. (B) Effects of variation in QB half-widths and
amplitudes; aligned individual QBs from the modeled set were used. (C) Effects of variation in QB latencies and
amplitudes; average QBs were multiplied by the amplitudes and shifted by latency values from the modeled set. (D)

Effects of variation in QB latencies and half-widths. (E) Effects of the combined variations in QB latencies, amplitudes

and half-widths. (F) Dependencies of the maximal SNRs on the QB summation level for different combinations of QB

variabilities. (G) Corner frequencies at 100 QB summation level obtained using the fitting curve in Fig 5C; letters in the

x-axis tick label refer to the panels of this figure; H-W, half-width.

https://doi.org/10.1371/journal.pcbi.1008427.g008
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Fig 9. Extraction of QB statistics from impulse responses. (A) Step 1: determining median latencies from the

latencies of composite or impulse responses. Equations in the figure describe the curves used in the estimation of QB

parameters. Correlation between median QB latencies and 10% latencies of the composite responses for the modeled

data was fitted by two linear functions, one without (thick gray trace) and another (black) with intercept fixed at 0. To

cover a larger range, in addition to the previously computed single-parameter modification QB sets, we generated two

more sets of QBs by combining stimulating modifications of several activation parameters. These QB sets were

characterized by small median latencies (crosses under the LA house fly and cricket data points). Median QB latencies

describing the QB sets underlying the in-vivo impulse responses from Fig 6A were derived by plotting the 10% impulse

response latencies over the black trend line; the y-axis drop lines denote the resulting median QB latencies. In addition

to median QB latencies we similarly obtained mean latencies. (B) Step 2: determining the latency scatter values. By

using the correlations between the median QB latencies and the latency scatter values from all in-vivo data pooled

together, we similarly derived QB latency scatter values for the impulse response data; here and in D, the dark green
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expected to expand the impulse responses of the light-adapted photoreceptor to a much

greater extent than it was observed.

The derived QB parameters were used to evaluate transduction noise generated by the

dark- and light-adapted photoreceptors of the house fly and locust (Figs 10B–10G, 11B and

11C). Fig 10B and 10D shows examples of QBs and composite responses describing responses

of dark- (Fig 10B) and light-adapted (Fig 10D) house fly photoreceptors, respectively (notice

time scale differences). Right sub-panels demonstrate composite responses comprised of 100

QBs, which match well the original impulse response (crosses). The variability between the

responses caused by the differences in the transduction noise level decreased as the number of

QBs in composite responses increased.

To model the effects of the photon noise, we constructed three Poisson distributions with

means of 5, 30 and 100 and then randomly picked from them values to be used as the number

of QBs in individual composite responses. For example, instead of the fixed 100 QBs as the

composite responses in right sub-panels of Fig 10B and 10D, the new composite responses

contained variable numbers of QBs: 107, 103, 92, 105, 90, 97. . . etc. (Fig 10C and 10E). Addi-

tion of photon noise strongly increased the variability in composite responses and decreased

SNR. Figs 10F and 11B show reciprocals of SNR values from Fig 10G, which thus denote rela-
tive noise levels. (Absolute noise levels were not compared because dark-adapted QBs are

much bigger than the light-adapted QBs, and so the noise is proportionally higher.) Notice

that in these simulations we used two QB amplitude variability coefficients for each light-

adapted cascade, one from the model (0.13 in Fig 10F and 0.19 in Fig 11B) and another (0.3)

equaling the group-average amplitude CV of P. terraenovae bumps. This was done to account

for the discrepancy between the model and experiments in regard to the dependency of ampli-

tude CV on QB latency (Table 1).

There were four aspects to the results. Firstly, the noise levels decreased as the number of

QBs in the composite response increased. Secondly, there were non-trivial differences between

the overall relative noise levels of dark- and light-adapted states. In the locust, the overall noise

decreased by about one-third at all summation levels after light adaptation (Fig 11B). In con-

trast, in the house fly the transduction noise increased (Fig 10F). As we show in the next sec-

tion (Fig 12), the increase in the transduction noise level in the house fly can be explained by a

more than 6-fold decrease in the mean QB half-width but only about 3-fold decrease in latency

dispersion, whereas in the locust latency dispersion decreased to a greater extent than the

mean QB half-width (also see Discussion). Thirdly, in the house fly, in both adaptation states,

the transduction noise significantly exceeded the fraction of noise that was added when photon

noise was introduced, especially in the light-adapted state (Fig 10F), whereas in the locust the

differences were more ambiguous (Fig 11B). Fourthly, in the light-adapted house fly simula-

tion, the change in the amplitude CV from 0.13 to 0.30 had very small effect on the transduc-

tion noise (Fig 10F), whereas a substantial increase can be seen in the locust (Fig 11B). These

differences can be explained by non-linear interactions between the noise sources as discussed

below (Fig 12).

line denotes the regression of the combined cockroach and fly data and the green line of the combined cockroach and

fly data with intercept fixed. Latency standard deviation values were obtained using a nearly identical correlation

between mean QB latencies and latency standard deviations. (C) Step 3: determining mean QB half-widths from the

relationships established in Fig 5K by using the polynomial fitting curve as indicated; notice that x in the equation

stands for b/a. (D) Step 4: determining half-width standard deviations by using the regressions for the combined

cockroach and fly experimental data as in B. The thick red line denotes the regression for P. americana data, the blue

line for P. terraenovae data. (E) Step 5: obtaining amplitude CV values from the modeled data; a similar procedure as

in A was used; color coding as in A.

https://doi.org/10.1371/journal.pcbi.1008427.g009
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Fig 10. Transduction and photon noise in the house fly. (A) To the right: lognormal fits of the experimental impulse responses from the house fly (Fig 6A) and the

estimated mean QBs obtained with the algorithm presented in Fig 9; the timing of the impulse response traces is authentic; the average QBs were placed so that their

10% latencies were correct. Center-left through right sub-panels: the distributions of derived QB latencies, half-widths and normalized amplitudes describing the dark-

and light-adapted house fly Musca domestica photoreceptors. (B, D) Left subpanels: examples of reconstructed dark- (B) and light-adapted (D) house fly QBs. Center

subpanels: random sums of 5 QBs. Right subpanels: random sums of 100 QBs fitted by the original house fly impulse response from A (crosses); all composite

responses in this figure and Fig 11 were additionally divided by the set-average amplitudes for presentation purposes. (C, E) The same as in B and E but with random

variation in the number of QBs in each composite response in accordance with Poisson distributions characterized by appropriate means (5 and 100, and also 30 for

data presented in F and G); notice differences in time scales between B and C, and D and E. (F) Three sets of normalized noise values associated with a dark- and light-

adapted phototransduction cascades, without (black) and with photon (gray) noise at different summation levels constructed using the composite responses from B, C,
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Fig 10G summarizes the SNRs and Fig 10H the corner frequencies. Because corner fre-

quency depends only on mean QB duration and latency dispersion, only one value for each

adaptation state is shown in Fig 10H. Although the SNRs of the light-adapted house fly photo-

receptors were relatively low (Fig 10G), the associated very high corner frequency of>140 Hz

(Fig 10H) ensures that its expected information capacity if estimated using the Shannon–Hart-

ley theorem (see below) would be much higher than that of both the dark-adapted house fly

and the light-adapted locust photoreceptors (Fig 11C and 11D).

It should also be noted that situations when a fully dark-adapted photoreceptor is stimu-

lated with a bright stimulus eliciting impulse responses consisting of�100 QBs or a fully light-

adapted photoreceptor is stimulated with a dim-light stimulus evoking a ~5 QBs response are

not typical. Thus, to properly compare “typical” noise levels associated with these adaptation

states, it might be more pertinent to contrast the 100 QB summation level for the light-adapted

photoreceptors with the 5 QB summation levels for the dark-adapted photoreceptors (Figs 10F

and 11B).

D and E; notice that we compared not the absolute but relative levels of noise because QBs evoked in the dark-adapted photoreceptor are much bigger than the light-

adapted QBs, and so the noise is proportionally higher; therefore, the noise values in F (arbitrary units, a.u.) are simply reciprocals of SNR. (G) Dependencies of SNR

on the QB summation level under different conditions. (H) Corner frequencies associated with dark- and light-adapted photoreceptors at 100 QB summation level

obtained using the fitting curve in Fig 5C.

https://doi.org/10.1371/journal.pcbi.1008427.g010

Fig 11. Transduction and photon noise in the locust. (A) To the right: lognormal fits of experimental impulse responses from the locust together with the

estimated mean QBs. Center-left through right sub-panels: distributions of derived QB latencies, half-widths and normalized amplitudes for the dark- and

light-adapted locust Locusta migratoria photoreceptors. (B) Three sets of noise values associated with a dark- and light-adapted phototransduction cascades,

without and with photon noise at different summation levels; as in Fig 10F the values are reciprocals of SNR. (C) Dependencies of SNR on the QB

summation level under different conditions. (D) Corner frequencies associated with dark- and light-adapted photoreceptors.

https://doi.org/10.1371/journal.pcbi.1008427.g011
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Interactions between the sources of transduction noise and information

capacity

Interactions between the sources of noise. It followed from the analysis of transduction

noise in three species (Figs 8F, 10F and 11B) that either some sources of noise, e.g. latency dis-

persion, dominate over others, or that different sources produce non-additive noise, as was

suggested in previous studies [18,26]. We therefore performed a systematic analysis of interac-

tions between the mean QB half-width and the three variabilities by constructing composite

responses using various combinations of QB durations and dispersions. The general parameter

space of such simulations is very extensive because any imaginable combination of the param-

eters can be implemented. Therefore, we limited our modeling by, firstly, using only the pairs

of mean QB half-width/half-width standard deviation situated on the green regression line in

Fig 9D, which fits the experimental data. All such QB sets were characterized by a CV of 0.23.

Secondly, we used only two amplitude CVs, 0 and 0.3.

Several QB sets covering the range of half-widths from below 4 to over 32 ms were con-

volved with five latency distributions shown in Fig 5H, giving 25 unique data sets (Fig 12A–

12D; in Fig 12B and 12H 64 data sets based on 8 QB sets and 8 latency distributions were

used). The contour plots in Fig 12A–12D describe dependencies of the composite response

SNR at the 100 QB summation level: (1) on the latency and half-width dispersions in the

absence of variation in QB amplitude, by using bumps with varying shapes but same ampli-

tudes (Fig 12A); (2) on the latency and amplitude dispersions in the absence of half-width vari-

ability, by using set-average QBs (Fig 12B); (3) on all three dispersions (Fig 12C); and (4) on

the latency dispersion alone (Fig 12D). Mean QB half-widths and latency standard deviations

estimated for the experimental data were added to these contour plots to visualize the “natural”

range of parameter changes.

Because the signal in the SNR equaled the area under the average composite response and

because in these stimulations the QB areas were kept the same, the SNR values are simply

reciprocals of the noise estimates. The most important conclusion stemming from these fig-

ures (Fig 12A–12D) is that the mean QB duration is a SNR-boosting factor that offsets the

noise produced by QB variabilities. It can be seen that in the presence of all three QB variabili-

ties the noise-suppressing effect of QB duration was non-linear (Fig 12C and 12F).

When we introduced variabilities in half-width or amplitude in addition to the latency dis-

persion, the effects were surprisingly similar (Fig 12A, 12B and 12D). The SNR-suppressing

effect of amplitude dispersion at CV 0.3 (Fig 12B) was slightly smaller than the effect of half-

width dispersion at CV 0.23 (Fig 12A), suggesting that per unit of CV the amplitude noise is less
significant than the normal variability in QB duration. Notice that for the DA locust photore-

ceptor (grey upside-down triangle) the SNR was ~14.8 (Fig 12C), i.e. higher than SNR 10.0 at

amplitude CV 0.48 (Fig 11C). Importantly, because there was a broad variability both in QB

half-width and amplitude dispersion measures for any fixed mean value (Fig 3D and 3F) the

actual relative contributions of these two variabilities can vary from cell to cell. Moreover, for a

Fig 12. Interaction of noise sources and information capacity. (A-D) SNR as a function of variable mean QB half-width and latency dispersion in the presence of

either half-width variability (A), or amplitude variability (B), or both the half-width and amplitude variabilities (C), or in the absence of any additional variability (D).

Plots in A and C are based on 25 data points, and plots in B and D on 64 data points. (E) The relative contribution of noise due to variability in QB half-width in the

absence of amplitude variability; the values were obtained by factoring out the noise in the absence of half-width dispersion (D) from the noise in the presence thereof

(A). (F) Examples from Fig 12C of non-linear dependencies of SNR on the mean QB half-width at different latency standard deviations as indicated (i.e. horizontal

sections of the plot), and the dependence of the corner frequency on the half-width of composite responses from Fig 5C; dual labeling on x-axis refers to mean QB half-

width for the SNR functions and to the composite response half-width for the corner frequency function. (G) Corner frequency as a function of mean QB half-width

and latency dispersion. (H-K) Information capacities for data in A-D, respectively, were obtained by multiplying the common corner frequency values from G by the

logarithmically transformed values from A-D (see Eq 2); to illustrate the changes, numbers in white denote approximated information rates associated with light-

adapted dragonfly photoreceptors.

https://doi.org/10.1371/journal.pcbi.1008427.g012
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given QB half-width, photoreceptors of P. terraenovae were generally characterized by a larger

half-width dispersion than photoreceptors of P. americana (Fig 3D), indicating that the half-

width dispersion is a more significant source of transduction noise in the fly than in the

cockroach.

When a third dispersion was added to the data displayed in Fig 12A or 12B, the SNR was

suppressed to dissimilar extents in different regions of the plot: by about one-third in the

region of wide QBs and small latency dispersions (lower right corner of the plot) vs. virtually

no change in the region of narrow QBs and large latency dispersions (upper left corner, Fig

12C). This implies that high latency dispersion subdues noise from two other QB sources.

Next, we determined the relative contributions of the latency and half-width dispersions to

the total noise by comparing the noise levels between Fig 12A and 12D. Fig 12E shows that

noise caused by variability in QB duration dominated, as expected, in the region of large half-

width and small latency dispersions. Interestingly, the experimental data were clustered in the

relatively narrow diagonal region of the plot, where the latency-derived noise was clearly

predominant.

Corner frequency and information capacity. So far, we have shown that increased QB

half-width, on the one hand, improves SNR, but, on the other hand, decreases corner fre-

quency. As Fig 12F shows, these effects are non-linear and partly mutually exclusive. It was

therefore important to evaluate how these two non-linearities shape the information capacity.

We used a straightforward approach based on the Shannon-Hartley theorem with an assump-

tion of linearity of the input and linearity and stationarity of the signal-transferring channel.

Then the information capacity (IC) is simply:

IC ¼ B log
2
ðSNRþ 1Þ ð2Þ

where B is corner frequency. We obtained corner frequencies associated with the composite

responses for values presented in Fig 12A–12D and plotted them as functions of mean QB

half-width and latency dispersion in Fig 12G. The plot shows that high corner frequencies are

sharply concentrated near the origin where both mean QB half-widths and latency dispersions

are small.

By multiplying corner frequency values from Fig 12G by log2(SNR+1) values we obtained

four sets of information capacity estimates (Fig 12H–12K). It can be seen that because of the

logarithmic transformation, the information capacity is mainly determined by the corner fre-

quency. As an example, the approximated information capacities of the light-adapted dragon-

fly photoreceptors (yellow diamond) are shown in the figure. All changes were in a 15% range,

from about 270 bits s-1 when all three QB variabilities were present to about 310 bits s-1 when

noise was solely due to latency dispersion.

Discussion

In this study we first investigated how the phototransduction cascade in each microvillus

shapes the QB properties and dispersions thereof, then studied the effects of QB duration and

latency dispersion on the composite responses and their associated frequency-response func-

tions, and finally explored how variabilities in QB latency, amplitude and duration produce

noise and influence signal transfer.

Insights from the parametric analysis

Using a model of a phototransduction cascade, we investigated relations between three main

stages of the cascade and the properties of resulting QBs. A positive correlation between QB

latency and amplitude can be expected in an amplifying cascade because more time is needed
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for greater amplification to take place. We found that while the times to peak for Gα, Gα-PLC

and DAG indeed correlated positively with QB latencies (Fig 1F), and the Nmax values for Gα,

Gα-PLC and DAG correlated with QB amplitudes (Fig 1C), but not vice versa (Fig 1E and 1D),

such correlations decreased progressively as the number of cascade stages between the corre-

lated parameters increased. This was apparently due to the gradual “accumulation of stochasti-

city”, which, as a source of noise, destroys information describing deterministic relations

between upstream and downstream parameters. Consequently, the correlations between the

Nmax and the corresponding times to Nmax decreased similarly, from a fairly high correlation

for Gα to the insignificant one for DAG (Fig 1H). Because ion channels open still downstream

to DAG and also stochastically, this would further diminish any remaining causative connec-

tion. Plausibly, if the cascade was shorter by one or two stages, then a positive correlation

between QB amplitude and latency could be observed.

However, as we demonstrated at the next stage of the analysis by varying the average proper-
ties of the cascade, a correlation that emerged between the median QB latencies and mean

amplitudes for the different cascades in the model and different cells in the experiments was

actually the opposite to that expected for an amplifying cascade, as greater amplitudes were

associated with shorter latencies and vice versa (Fig 4C and 4D). We suggested that the rela-

tively high QB amplitudes and small half-widths associated with faster cascades both in the

model and experiments were due to more synchronous opening of more channels as a result

of faster DAG accumulation (Fig 4M and 4N). This was supported by positive correlations

between the latencies and half-widths (Fig 4A and 4B) and negative correlations between: half-

widths and amplitudes in the model and P. terraenovae (Fig 4E and 4F), latencies and rise

slopes (Fig 4G and 4H), and half-widths and rise slopes (Fig 4I and 4J).

QB properties and signaling bandwidth

In our previous studies [28,32] we discovered a large variability in mean QB latencies and their

dispersions in the normal photoreceptors of P. americana. Here we confirmed the findings for

P. terraenovae and then investigated how median latency and its dispersion influence signal

transfer (Fig 5). A consequence of the linear dependence of latency dispersion on median

latency was inferior processing of higher frequencies by relatively slow photoreceptors due to

the increased integration time of composite responses (see theoretical considerations in [5]).

Therefore, if similar dependencies exist in other species, then, for instance, fast flyers would

need to evolve mechanisms that lower both median latency and its dispersion. Indeed, our

data on the variability in the fast fly P. terraenovae (Fig 3B) support this hypothesis. Its group-

average median latency was 20.4 ± 5.3 ms (average of median latencies ± average latency scat-

ter), substantially smaller than the P. americana’s 29.6 ± 6.6 ms. Although the differences in

mean QB latency scatter values between the dark-adapted fly and the cockroach photorecep-

tors appear to be small, the fly phototransduction can speed up dramatically during light adap-

tation (Fig 6), with a decrease in all variabilities (Fig 10).

Using the model, we investigated how changes in activation parameters affected the median

latency and its dispersion. We found that the more upstream was a parameter, the stronger

was the effect of its change on latency dispersion (Fig 3A). Therefore, speeding up the cascade

by modifying its activation upstream could be an evolutionary strategy to lower the latency dis-

persion. However, the slopes of the trend lines fitting the experimental values (Fig 3B) were

more similar to the slopes of lines fitting values obtained by modifying two downstream activa-

tion parameters. Of these, the basal PLC activity cannot be increased but only suppressed

resulting in longer latencies, whereas the TRP sensitivity to the gating factor(s) can probably

be only sped up via calcium-dependent mechanisms resulting in faster QBs [31]. Thus
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elevation of intra-microvillar [Ca2+] during light adaptation, or physiological variability in

[Ca2+] between different photoreceptors, or even some artificial damage-related variability

during recordings, could contribute to the observed experimental variation.

Our finding that faster cascades, in addition to smaller latency dispersion, tend to generate

slightly narrower QBs than slower cascades (Fig 4A and 4B) might have consequences for sig-

nal transfer (Fig 5C). Previous studies of macroscopic responses showed that QB duration

decreases during light adaptation in D. melanogaster [9], and is generally shorter in the photo-

receptors of species characterized by faster phototransduction and vice versa [4]. However, the

differences were attributed to the accelerated QB termination. In contrast, here we demon-

strated directly that faster cascades (or photoreceptors in experiments) produce QBs with

faster onsets and intrinsically smaller half-widths than slower cascades (Fig 4). However, the

decrease in mean QB half-widths associated with acceleration of phototransduction can

account only for a small fraction of the QB narrowing observed during light adaptation (Fig

6A). The rest of the QB narrowing is likely due to acceleration of QB decay kinetics, which

requires a global increase of a modulating factor, probably calcium [4]. For example, the QB

termination kinetics could be accelerated in the model to the level observed in the light-

adapted impulse responses of the house fly by a hundred-fold increase in PKC activity, which

is Ca2+-dependent.

A method to extract QB statistics from impulse responses

We exploited the intrinsic correlations between the QB properties discovered during data anal-

ysis and modeling by developing an algorithm to predict the main statistical properties of QBs

from the properties of arbitrary multiphoton impulse responses to instantaneous stimuli (Fig

9).

The stages of the algorithm are: 1) prediction of median QB latency from the latency of the

impulse response using the data from the parametric analysis; 2) prediction of latency scatter

using the trend from the experimental data and the estimated median QB latency; 3) extraction

of the mean QB half-width from impulse responses by using a non-linear dependence between

the half-widths of the impulse response and QB latency standard deviation; 4) prediction of

the half-width dispersion using the estimated mean QB half-width and the trend from the

experimental data; and 5) prediction of the amplitude dispersion using the derived median

latency and the modeled amplitude data.

There were two problems with the method, one concerning the dependence of latency scat-

ter on median latency and another the amplitude CV. Because experimental data did not cover

the interval from 0 to ~11 ms on the x-axis of Fig 3B, it was not clear if the latency dispersion

was not eliminated before the median latency reached zero, i.e. if the phototransduction cas-

cade at some point did not become deterministic. However, there are several arguments

against such scenario. First, the correlation based on ~180 cells was very strong and regressed

precisely onto the origin. Second, the simulations involving multiple activation parameter

modifications produced median latencies of ~10 ms characterized by latency scatters consis-

tent with the experimental trendline (Fig 9B). Third, the estimated group-average median

latency of light-adapted house fly photoreceptors was 9.3 ms, not much smaller than the short-

est median QB latency of P. terraenovae photoreceptors that equaled 11.8 ms. It is not likely

that latency dispersion would collapse precipitously immediately outside of the experimentally

determined latency range. Fourth, to eliminate or reduce the latency dispersion, the photo-

transduction process must cease being stochastic, that is, both the number of involved mole-

cules and the reaction volume must increase drastically, which is clearly inconsistent with the

situation in the microvillus. One could even argue that as the phototransduction cascade
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speeds up, it becomes more stochastic because presumably fewer Gα, Gα-PLC and DAG mole-

cules are generated prior to channel opening.

The second problem was related to determining the QB amplitude CV in the light-adapted

photoreceptors. Although we found a strong positive correlation in the model, the experimen-

tal data were only partly consistent (Table 1). Therefore, in our analysis of transduction noise

in the light-adapted house fly and locust photoreceptors, in addition to the amplitude CVs,

estimated from the relation established in the model (Figs 5J, 5K and 9C), we used CV of 0.3,

the mean amplitude CV from P. terraenovae. It can be seen from Figs 10G and 11C that the

differences in SNR were substantial, up to 40% in the case of the house fly photoreceptor.

However, when the photon noise was added, the differences disappeared almost completely.

Despite these shortcomings, the proposed method allows reliable determination of median

latencies, their scatter, and mean QB half-widths from small voltage impulse responses. This is

particularly important in the study of elementary responses of photoreceptors in the fast-flying

insect species characterized by very low membrane resistances, small membrane capacitances

and small voltage QBs, which cannot be reliably isolated due to large surrounding membrane

noise [14]. An experiment relying on our algorithm could involve stimulation of a dark-

adapted photoreceptor with 1 ms or shorter pulses of light of decreasing intensity, until bump-

like responses disappear in most of the trials. Averaging multiple recordings acquired at such

intensity will reduce noise and reveal the hidden signal, a “pseudo-impulse response”, which

then can be analyzed.

QB properties and signaling accuracy in the model and in vivo

Several studies addressed the question of noise sources in the past. In the study of transduction

and photon noises associated with impulse responses of dark-adapted locust photoreceptors

[18], Laughlin and Lillywhite found that the relative contribution of photon noise decreased as

the number of QBs in the impulse response increased and that the variabilities in QB latencies

and amplitudes were major sources of the transduction noise. However, the noise due to vari-

ability in QB duration was not investigated.

In the study by Abshire and Andreou [27], the general conclusion on the quantitative

dynamic relationships between the photon and transduction noise sources was consistent with

both our and the Laughlin and Lillywhite study’s conclusions but QB variability was not

explicitly researched.

In a recent modeling study, Parag and Vinnicombe concluded that mean phototransduc-

tion delay itself, and not the QB variabilities, was the most important source of noise [26],

which appears to be inconsistent with our results. The study investigated introduction of noise

at two signal processing stages: from a stimulus sequence to the actual absorbed photon

sequence and then from the latter to the QB sequence. Essentially, this approach, although

based on the minimum mean squared error distortion function, resembles that for determin-

ing information rate from coherence between input and output using a cross-correlation func-

tion [33]. The time delay term that emerges in both approaches as an information-destroying

factor represents a well-known problem [34]. However, in the current study we focused exclu-

sively on the deterioration of isolated impulse responses by the variabilities in the QB proper-

ties and numbers and not on the comparison of time series of inputs and outputs, and thus

evaded the problem of time delay. Importantly, acceleration of phototransduction during light

adaptation decreases the time delay and therefore would reduce its contribution to the distor-

tion function. Such a decrease can be as large as four-fold, from over 40 ms for the dark-

adapted D. melanogaster photoreceptors to ~10 ms for the light-adapted photoreceptors of

house and drone fly species as we estimated in Fig 9A.
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Here, our analysis of transduction noise demonstrated that all three variabilities are signifi-

cant and non-additive sources of noise, and that their effect on SNR depends on the duration

of the QB. The sources are non-additive because their recombination in our simulations did

not result in proportional changes in the total level of noise (Fig 12A–12D).

As shown in Fig 12E, the contribution of half-width dispersion is clearly a function of the

magnitude of the accompanying latency dispersion. Due to the linear dependence of latency

dispersion on mean latency, 11 out of 12 experimental values from six species occupy a diago-

nal region in the plot, within which the relative contribution of half-width dispersion varies

from 20 to 35% (Fig 12E). However, since these data represent voltage impulse responses, their

estimated QB durations exceed those of the underlying current QBs, and this increases the rel-

ative role of half-width dispersion. Because membrane filtering increases QB duration but not

the half-width CV, it can easily be envisioned that an increase in membrane resistance, e.g.

caused by membrane hyperpolarization, could shift the distribution of the values in Fig 12E to

the right and thus increase the noise-generating effect of the half-width dispersion. Therefore,

the noise sources arising from the variabilities in QB latency and duration can interact dynam-

ically and their relative contributions are situational.

Compared to two other QB variabilities, the unique feature of the latency dispersion was

that it also decreases the corner frequency, by expanding the composite response. This effect

was the stronger, the smaller was the ratio of mean QB half-width to a measure of latency dis-

persion (latency standard deviation or scatter) (Fig 5J). If during modeling of macroscopic

responses, one would decrease the QB half-width while leaving the latency distribution intact

[9], this will lead to underestimation of both the SNR and corner frequency, with possibly

severe underestimation of information capacity. The complex interactions between QB dura-

tion and latency dispersion can be illustrated by the increase in the overall level of transduction

noise after light adaptation in the house fly (Fig 10F) but not the locust (Fig 11B). In the house

fly, the ratio of mean QB half-width to latency scatter decreased from 4.0 in the dark-adapted

to 1.6 in the light-adapted photoreceptor. Despite the accompanying decrease in QB amplitude

CV, the transduction noise increased (Fig 10F, center and right subpanels). In contrast, in the

locust the ratio of mean QB half-width to latency scatter actually increased from 3.6 in the

dark-adapted to 4.1 in the light-adapted photoreceptor. This, together with a decrease in the

amplitude CV, caused a substantial decrease in the level of transduction noise (Fig 11B).

The contribution of the genuine QB amplitude noise also depends on the presence of other

variabilities, including the photon noise. In fact, the latter could be considered as a greatly

magnified form of the QB amplitude noise. Importantly, while the overall noise decreased as a

function of 1=
ffiffiffi
n
p

, SNR even at the high summation level of 100 QBs did not exceed 10 when

all sources of transduction noise and the photon noise were present (Figs 10G and 11C). This

is consistent with the data from P. americana [28] and blow fly [33]. In order to improve SNR

further by 10-fold, the number of QBs in the impulse response should increase by 100-fold, to

the very high level of 10,000. If the stimulus lasts 1 ms, this rate would correspond to 107 QBs

per second. This is an extremely high response rate, and no photoreceptor can probably main-

tain it for over a fraction of second. Therefore, it cannot be expected that SNR can be further

improved by simply increasing the number of QBs in the impulse response in still brighter

light.

Arguably, the roles of the two noise sources, transduction and photon, in downstream sig-

nal processing have to depend on both the illumination level and the extent of signal summa-

tion. In the dim light both the transduction and photon noises will manifest in the variable

shapes and sizes of individual impulse responses or QB averages in LMCs. It is unlikely that

such variability could matter for the accuracy of vision until the responses to isolated pulses of
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light begin merging into a continuous graded voltage response. This, however, happens at dif-

ferent effective light intensities in diurnal and nocturnal species. For instance, integration of

photoreceptor signals in diurnal flies appears to be limited by superposition of signals from six

photoreceptors in neighboring facets, with the threshold of behavioral optomotor responses

observed at ~1.7 QBs s-1 at the photoreceptor level [35]. In contrast, in the cockroach, the

optomotor responses were observed at light levels corresponding to QB rates of ~0.1 QBs s-1

per photoreceptor [36], indicative of a much more extensive signal pooling than in the fly. As

soon as the responses merge, the noise begins affecting the accuracy of visual perception. For

instance, lowering the background light level markedly slows the speed of flying and changes

the pattern of aerial maneuvers [37].

It should be noted that much of our signaling accuracy analysis is based on the linear system

and additive Gaussian noise assumptions, e.g. we inferred SNRs from averages and subtractive

noise estimates. While this approach seems to be adequate for comparison of noise sources

that introduce irregularities to composite responses, such approximations can affect the “noise

floor” of the cascade when compared to non-linear and Poisson approximations [26].

Conclusions

The main conclusions of our study are the following:

1. Main QB parameters, when compared between cascades in the model and between individ-

ual photoreceptors in the experiments, are correlated and inherently depend on the cascade

speed.

2. The QB duration and variabilities in QB latency, duration and amplitude determine the sig-

naling bandwidth and contribute to SNR. The corner frequency is a reciprocal function of

the impulse response duration, which, in turn, is a non-linear function of mean QB half-

width and latency dispersion. The noise emitted by the cascade is also a reciprocal non-lin-

ear function of mean QB half-width.

3. It followed that to radically improve information capacity, e.g. to improve vision during

day time, the mean QB half-width must decrease, at the cost of increased noise. Decrease in

QB duration produces a sharp increase in corner frequency, which is a direct multiplier in

the Shannon-Hartley’s information capacity equation. The accompanying decrease in SNR

results in a less than proportional effect because of the logarithmic transformation.

4. In contrast, to reliably detect weak light signals in dim light the QB duration increases, at

the expense of bandwidth. This is consistent with our previous observations [14].

5. To offset the increase in noise associated with narrowing of the QB, and decrease the

impulse response-expanding effect of latency dispersion, the cascade accelerates. This

decreases both latency and half-width dispersions, and possibly also the amplitude

variability.

6. Our findings thus suggest that the widespread tendency of diurnal fliers to have fast photo-

transduction appears to be a general adaptation for the stochasticity containment, SNR

improvement and bandwidth expansion.

In general, our results emphasize the principal differences in phototransduction cascade

plasticity and light adaptation between the rhabdomeric photoreceptors of invertebrates and

ciliary photoreceptors of vertebrates. In the latter, current response onsets do not accelerate

with increasing stimulation, i.e. the rising phases of the light-induced current coincide at all

intensities [38]. This is because the light response is initiated by the closing of transduction
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channels upon a decrease in the cytosolic cGMP, which keeps the channels open when cooper-

atively bound. While the times to peak of the ciliary photoreceptor photoresponse decrease

with light adaptation, this is exclusively due to the progressively faster reopening of the chan-

nels, i.e. faster response termination. In essence, the phototransduction cascade in the ciliary

photoreceptors is as fast as it can be and cannot be sped up. In contrast, photoresponses of

insect photoreceptors do accelerate truly [10], and, as we showed here, this leads to a global

improvement of performance.

Methods

Electrophysiology

We used P. americana data from the intracellular recording and patch-clamp datasets obtained

in our previous studies [28,29]. We also acquired in vivo data from northern blow fly Proto-
phormia terraenovae. The flies were caught in Oulu and kept at 22–24˚C under a 18 h light/6 h

dark regime. Young, 1–11 days post-eclosion females were used in intracellular recordings.

Fly preparation was done as follows. The animal was fixed and immobilized with wax. The

reference electrode (Ag/AgCl wire) was inserted through a small cut in the thorax. A small

hole for the recording electrode was made in the dorsal part of the left eye and sealed with sili-

con grease to prevent dehydration. Aluminosilicate microelectrodes (Harvard Apparatus)

were manufactured using a laser puller (P-2000; Sutter Instruments) and filled with 2 M potas-

sium acetate solution; microelectrodes had resistances in the range of 120–170 MΩ. Microelec-

trodes were inserted into the retina using a micromanipulator (SMX-model, Sensapex Oy,

Oulu, Finland). Amplifier SEC-05L (NPI, Germany) was used for recordings with a custom

MATLAB (MathWorks, Natick, MA, USA) acquisition software. Electrode capacitance was

compensated. All recordings were made from the broadband green-sensitive photoreceptors.

Photoreceptors were stimulated with 1 ms flashes of a green LED with a peak wavelength of

525 nm. The light source was aligned with the photoreceptor’s optical axis. In the range of

light intensities used for stimulation, dependence of LED light output on the driving current

was linear. Light intensity was attenuated using a series of neutral density (ND) filters (Kodak,

New York, NY, USA). Experiments were performed at room temperature 22–24˚C. All cells

used for analysis had resting potentials of< -45 mV and responded robustly to light.

Model

To simulate QBs, we used a model created for D. melanogaster by Nikolic et al. [31,39] and

modified in our previous study [28]. The model was run in the stochastic mode. A brief over-

view of the model is given in S1 Text and all changes to procure the control P. americana QB

with brief rationales are provided in S1 Table.

Data and statistical analysis

QBs were evoked by 1 ms flashes of low intensity light applied at a rate of 1 or 2 Hz. Stimulus

intensity was adjusted to evoke single bumps with a probability between 0.09 and 0.56. QBs

were detected and analyzed using a custom MATLAB script (by Paulus Saari) based on a tem-

plate-matching algorithm. Every software-detected QB was checked manually. Dubious QBs

or voltage responses apparently containing more than one QB were excluded. Amplitude, half-

width and latency were estimated from individual fits using template-matching algorithm.

Latency was measured as the interval between the stimulus and the moment the QB reached

10% of its maximum value. To control for the accuracy of bump detections and probability
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estimates, we first averaged all traces where no QBs were detected. If any residual signal was

present in the mean response, the data were excluded from the analysis.

Both in simulations and experiments, QB latency distributions were best described by a

probability density function of the lognormal distribution, although as mean latency

decreased, the shape of the distribution approached the normal distribution. We fitted the

latency distributions with lognormal equations and determined the medians and measures of

scatter. The scatter interval can be defined as:

scatter ¼
½m� es � m=es�

2

where μ is the median and σ the standard deviation of the variable’s natural logarithm obtained

from the distribution fitting. The scatter as presented above is analogous to the standard devia-

tion of a normally-distributed variable in the sense that the [μ/σ, μ�σ] interval for the lognor-

mal and [μ-σ, μ+σ] interval for the normal distribution both contain approximately 2/3 of the

probability. In our experiments, the standard deviations computed for the lognormally-distrib-

uted latencies differed little from the scatter values (the differences were in most instances

within 10%). Because of the negligible differences between the two dispersion measures and

for the sake of convenience, we used standard deviations in the various composite response

reconstruction experiments presented.

In contrast, amplitude distributions obtained in simulations were characterized by variable

skewness. For instance, as the cascade slowed the shape of the amplitude distribution evolved

from a pronounced positive to negative skew. This did not allow using a lognormal distribu-

tion to describe the amplitude statistics. In the experiments, we observed both clearly lognor-

mal and normal amplitude distributions. However, the former were caused by a loss of smaller

amplitudes during QB detection since reliable separation of voltage bumps from the mem-

brane noise of similar amplitude was usually impossible. Therefore, here we used mean values

and standard deviations to describe the QB amplitude statistics. Likewise, the QB half-width

and 25–75% rise slope distributions were generally normal and thus described using means

and standard deviations.

Spearman’s rank order correlation coefficient (SROCC, ρ) was used in analyses of correla-

tions. The data presented in figures can be found in the supporting S1 Data file.
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