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Abstract

Virtual compound screening using molecular docking is widely used in the discovery of new lead compounds for drug
design. However, this method is not completely reliable and therefore unsatisfactory. In this study, we used massive
molecular dynamics simulations of protein-ligand conformations obtained by molecular docking in order to improve the
enrichment performance of molecular docking. Our screening approach employed the molecular mechanics/Poisson-
Boltzmann and surface area method to estimate the binding free energies. For the top-ranking 1,000 compounds obtained
by docking to a target protein, approximately 6,000 molecular dynamics simulations were performed using multiple
docking poses in about a week. As a result, the enrichment performance of the top 100 compounds by our approach was
improved by 1.6–4.0 times that of the enrichment performance of molecular dockings. This result indicates that the
application of molecular dynamics simulations to virtual screening for lead discovery is both effective and practical.
However, further optimization of the computational protocols is required for screening various target proteins.
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Introduction

In early-phase drug development research, new lead com-

pounds are detected by the computational screening of large

compound libraries. Since the goal of computational screening is

basically the same as that of experimental screening, i.e., high-

throughput screening (HTS), it is expected that the integration and

improvement of computational and experimental approaches will

increase the productivity of drug discovery. HTS is currently

widely adopted and is crucial to the generation of lead compounds.

Despite the many successes achieved with HTS [1–5], there

remain some problems regarding the cost, complexity of the assay

procedure, and screening quality [5–8]. Thus, HTS alone may not

improve lead productivity. Hence, computational screening

methods, such as ligand- and structure-based screening, have

become important. With the advancement of computer perfor-

mance and calculation techniques, computational screening has

become faster and less expensive than HTS. However, the ability

of computational screening to enrich hit compounds remains

unsatisfactory and less reliable.

Coupled with a rapidly rising number of structures for target

proteins, structure-based screening has become prominent in drug

discovery. Among the various structure-based computational

methodologies adopted for compound screening, the principal

one is molecular docking. When the three-dimensional structure of

a target protein is available or can be modeled, molecular docking

is often used for the screening of compound libraries. Molecular

docking predicts the conformation of a protein-ligand complex

and calculates the binding affinity. Most docking programs [9–15]

involve two operations: ‘‘docking’’ and ‘‘scoring.’’ The first

involves the generation of multiple protein-ligand conformations,

called ‘‘poses,’’ or the sampling of the ligand’s probable

conformations in the binding pocket of the target protein. Most

of these programs perform flexible ligand-rigid receptor docking,

and some of them are highly capable of predicting poses that

resemble the experimental structure for many target proteins [16].

Since such docking programs enable a fast conformational search

of ligands in a short time, they are very attractive tools for

compound screening. In the second operation, the affinity between

the target protein and the ligand for each pose is calculated by
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using a scoring function. Then, multiple ligands are ranked

according to these calculated binding affinities or docking scores.

Many studies using docking programs have shown that these

screenings have a higher enrichment of hits than random

screening [17,18], but these screenings suffer from false positives

and false negatives and are not sufficiently accurate to grade

compounds according to the binding affinities [19]. This implies

that the compounds with a higher rank include false positives and

false negatives; thus, there is a practical difficulty with using

docking. The problems of molecular docking as a screening tool

have been widely discussed: the scoring functions are inaccurate

and neglect the solvent-related terms, and protein flexibility is

ignored. Furthermore, the docking score corresponding to binding

free energy is less reliable because it is calculated using a single

conformation even though the binding free energy is an ensemble

property.

Molecular dynamics (MD) simulations can treat both proteins

and ligands in a flexible manner, allowing the relaxation of the

binding site around the ligand. In addition, they can directly

estimate the effect of explicit water molecules. Further, more

accurate MD-based computational techniques are available for

estimating the binding free energy. These techniques include

thermodynamic integration (TI) [20], free energy perturbation

(FEP) [20], linear interaction energy (LIE) [21], and molecular

mechanics/Poisson-Boltzmann and surface area (MM/PB-SA)

[22] methods. The most rigorous computational techniques are

the TI and FEP methods, but these are too expensive to be

employed in computational screening. The computational cost of

LIE is moderate, but it requires information regarding the binding

affinities of experimentally known compounds. Hence, we focused

on the MM/PB-SA method because many recent investigations

have revealed that this method is highly capable of predicting the

binding free energy [23]; further, its computational cost is lower

than the computational costs of the FEP and TI methods by at

least 10-fold, and its broad applicability is suitable for compound

screening. In the MM/PB-SA method, the free energy is

calculated using the snapshots of solute molecules obtained from

explicit-solvent MD simulation. At this time, the explicit-solvent is

replaced with implicit models (see Materials and Methods). These

MD-based techniques can provide more accurate binding free

energy, but their computational costs are considerably high, as

compared to molecular docking. Further, the prediction of the

optimal structures for protein-ligand complexes adds to the

computational cost, even with extended-ensemble MD methods.

To solve the problem of molecular docking and MD

simulations, a combination of molecular docking and MD

simulations is effective because it can neutralize each other’s

defects. However, since the application of the MD technique to

screening requires the execution of many MD simulations, the

problem of the high computational cost of MD simulations

remains unresolved. Because of this problem, most of the studies

that have used MD-based computational techniques have reported

only their ability to rank several ligands according to their

experimental binding affinities [23,24]. Further, since the most

important parameter for screening is the ability to distinguish true

active compounds from a large number of inactive compounds,

only a few researches have assessed the ability to enrich active

compounds by virtual screening using MD-based computational

techniques [25,26].

In order to reduce the significant computational cost of MD

simulations, we used a special-purpose computer for MD

simulations, ‘‘MDGRAPE-3,’’ which functions with a high speed

and accuracy [27,28]. In this study, we performed MD simulations

of multiple protein-ligand conformations (multiple poses) rather

than a single protein-ligand conformation (single pose). The

multiple protein-ligand conformations were obtained from the

result of molecular docking. Multiple poses were used so that the

multiple local energy minima in the ligand’s conformational space

within the binding pocket could be sampled in the initial structures

for MD simulations. Then, we performed massive MD simulations

using multiple poses in a practically appropriate time for drug

discovery.

In our screening approach, we adopted molecular docking and

the MM/PB-SA method as the first and second filters for

compound screening; this idea was inspired by the approach

adopted by Kuhn and coworkers [25]. They made some

important discoveries with respect to MD-based screening for

lead generation. Their results showed that the application of the

MM/PB-SA method to an energy-minimized complex structure is

an adequate and more accurate approach than the calculation of

the binding free energy using MD simulation. This is because the

use of MD simulations introduces additional structural uncertain-

ties and the free energy from the MD simulations leads to

inaccuracy. Further, they reported that the strategy of using

multiple poses cannot be recommended in general, and is useful

only if the correct binding mode is contained within the higher-

scored docking conformations but is not captured with a single

pose. Their MD simulations were applied to the protein-ligand

complexes for the top 200 compounds obtained by molecular

docking, and the MD run for each complex was performed for

200 ps (with a time step of 1.5 fs). They concluded that a more

sophisticated MD procedure involving an extended simulation

time improved the results, although this time-consuming approach

would not be of considerable interest as a tool for lead discovery.

In our study, we attempted to investigate whether a combina-

tion of molecular docking and massive-scale MD simulations

would be effective in screening compound libraries. Furthermore,

we evaluated which protocols for the MM/PB-SA method were

effective for compound screening. In the basic MD strategy for our

compound screening, a 700-ps MD simulation (with a time step of

Author Summary

Lead discovery is one of the most important processes in
rational drug design. To improve the rate of the detection
of lead compounds, various technologies such as high-
throughput screening and combinatorial chemistry have
been introduced into the pharmaceutical industry. How-
ever, since these technologies alone may not improve lead
productivity, computational screening has become impor-
tant. A central method for computational screening is
molecular docking. This method generally docks many
flexible ligands to a rigid protein and predicts the binding
affinity for each ligand in a practical time. However, its
ability to detect lead compounds is less reliable. In
contrast, molecular dynamics simulations can treat both
proteins and ligands in a flexible manner, directly estimate
the effect of explicit water molecules, and provide more
accurate binding affinity, although their computational
costs and times are significantly greater than those of
molecular docking. Therefore, we developed a special
purpose computer ‘‘MDGRAPE-3’’ for molecular dynamics
simulations and applied it to computational screening. In
this paper, we report an effective method for computa-
tional screening; this method is a combination of
molecular docking and massive-scale molecular dynamics
simulations. The proposed method showed a higher and
more stable enrichment performance than the molecular
docking method used alone.

MD-Based Screening in Drug Design
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0.5 fs) for each complex was performed for the top 1,000

compounds obtained by docking. With regard to the time

resolution, simulation time, and number of protein-ligand complex

structures, our MD runs were more massive and elaborate than

those of previous MD-based screenings [25].

Overview of Our Approach
In our screening approach, we adopted molecular docking and

the MM/PB-SA method based on MD simulations as the first and

second filters, respectively. First, we performed molecular docking

by using the conformations of a target protein and the compounds

contained in the compound library. Additionally, the results of

molecular docking were applied to the post-processing for the

selection of successfully docked compounds and the classification

of multiple binding poses (see Materials and Methods). Next, all of

the conformations obtained from the molecular docking were

energy-minimized using molecular mechanics (MM) force-field

(hereafter we call this MM calculations). MD simulations were

then applied to multiple conformations of the protein-ligand

complexes. The binding free energies were calculated by the MM/

PB-SA method using the coordinate sets obtained from the MM

calculations and MD simulations. Finally, we assessed the

enrichment of active compounds by using ranked lists of

compounds graded on the basis of their binding free energies.

Results

To evaluate the ability of the MM/PB-SA method to act as a

filter after molecular docking, we performed MD-based compound

screening for four target proteins (trypsin, HIV-1 protease (HIV

PR), acetylcholine esterase (AChE), and cyclin-dependent kinase 2

(CDK2)). These targets have been widely evaluated in structure-

based computer-aided drug design [26,29–34]. For each target

protein, we first assessed the enrichment of 12 types of binding free

energies (Table 1). These 12 types of binding free energies were

classified into four categories. G01–G03 in category 1 were the

energies calculated from the MM calculations. The other

categories 2–4, which contained the energies calculated from the

MD simulations, were classified according to the combination of

coordinate sets used for the enthalpy calculations; G04–G06,

G07–G09, and G10–G12 belonged to categories 2, 3, and 4,

respectively (a detailed explanation is given in the Materials and

Methods section.). Analyses of the Receiver Operating Charac-

teristic (ROC) curves [35] are given in Table 2. An ROC curve is

closely related to an enrichment curve but is not exactly equivalent

to it. This curve describes the tradeoff between sensitivity and

specificity. Sensitivity is defined as the ability of the classifier to

detect true positives, while specificity is the ability to avoid false

positives. The area under an ROC curve, i.e., the ROC value,

indicates the quality of enrichment. The ROC value of a random

classifier is 0.5, while that of an excellent classifier is greater than

0.9.

Table 2 shows the ROC values for all of the target proteins.

From these values, we can observe three common features for

three of the target proteins (trypsin, HIV PR, and AChE),

excluding CDK2. It is obvious that the ROC values for all of the

binding free energies (G01–G12) of multiple poses are higher than

those of a single pose, suggesting that docking and its post-

processing can sample potentially correct docking poses of active

compounds. This implies that the potentially correct binding mode

is contained within the top 10 highest-scored docking poses but is

not always the highest-scored docking pose. In our study, after

docking and post-processing, MD simulations were applied to an

average of 5–6 docking poses for each compound in order to

increase the efficiency of the sampling of a ligand’s conformations.

Although MD simulations of multiple poses are expensive, they are

necessary for improving enrichment.

The second common feature is that the highest ROC value for

each target protein was obtained for the energies calculated from

the MD simulations, rather than for those calculated from the MM

calculations. This implies that the introduction of protein flexibility

and the effect of water molecules facilitated the refinement of the

protein-ligand interactions and that the MD-based MM/PB-SA

method provided a more reliable binding free energy. These two

Table 1. Computational strategies of 12 binding free energies.

Category DGbind HCOMPLEX HPROTEIN HLIGAND TSCOMPLEX TSPROTEIN TSLIGAND

1 G01 MMCOMPLEX MMCOMPLEX MMCOMPLEX – – –

G02 MMCOMPLEX MMCOMPLEX MMLIGAND – – –

G03 MMCOMPLEX MMPROTEIN MMLIGAND – – –

2 G04 MDCOMPLEX MDCOMPLEX MDCOMPLEX TSCOMPLEX TSCOMPLEX TSLIGAND

G05 MDCOMPLEX MDCOMPLEX MDCOMPLEX TSCOMPLEX TSPROTEIN TSLIGAND

G06 MDCOMPLEX MDCOMPLEX MDCOMPLEX – – –

3 G07 MDCOMPLEX MDCOMPLEX MDLIGAND TSCOMPLEX TSCOMPLEX TSLIGAND

G08 MDCOMPLEX MDCOMPLEX MDLIGAND TSCOMPLEX TSPROTEIN TSLIGAND

G09 MDCOMPLEX MDCOMPLEX MDLIGAND – – –

4 G10 MDCOMPLEX MDPROTEIN MDLIGAND TSCOMPLEX TSCOMPLEX TSLIGAND

G11 MDCOMPLEX MDPROTEIN MDLIGAND TSCOMPLEX TSPROTEIN TSLIGAND

G12 MDCOMPLEX MDPROTEIN MDLIGAND – – –

We performed MM calculations (MM energy minimization) or MD simulations of a complex, a protein, and a ligand, and evaluated 12 types of binding free energies by
combining the respective coordinate sets. The enthalpy contributions of Gprotein and Gligand in equation 2 were calculated in the following two ways: (1) by using the
coordinate sets of a protein (or ligand) obtained from the MD simulations (or MM calculations) of the protein (or ligand) and (2) by using the coordinate sets extracted
from the MD simulation of a complex. Similar to the enthalpy contribution, the entropy contribution was also calculated by combining the respective MD coordinate
sets. H indicates the sum of ,EMM., ,GPB., and ,GSA. in equation 3, and TS indicates the entropy term in equation 3. MD COMPLEX (TSCOMPLEX), MDPROTEIN (TSPROTEIN),
and MDLIGAND (TSLIGAND) denote the use of MD coordinate sets for a complex, protein, and ligand, respectively. Similarly, MMCOMPLEX, MMPROTEIN, and MMLIGAND denote
the use of MM coordinate sets for a complex, protein, and ligand, respectively.
doi:10.1371/journal.pcbi.1000528.t001
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common features were clearly seen in the results for the active

compounds. A typical successful example of MD simulations using

multiple poses is shown in Figure 1. In the crystal structure of

trypsin complexed with an inhibitor [36], the amidine group of the

inhibitor (Figures 1 and S1; active compound (13) of trypsin)

formed hydrogen bonds with the important residue Asp-180 in the

binding pocket. Further, the highest-scored docking pose was so

inaccurate that no important interactions were observed at all, but

the 7th ranked docking pose was similar to that of the crystal

structure. In addition, the application of the MD simulation to the

7th ranked docking pose appropriately improved the key hydrogen

bonds and the position of the naphthalene group and G06 value of

the 7th ranked docking pose was the lowest in all the poses.

The last common feature was that the binding free energies with

no entropy terms (i.e., G06, G09, and G12), which were obtained

by using the trajectories of the MD simulations, showed the

highest ROC values in the respective energy categories (2–4).

Thus, the introduction of entropy terms tended to reduce

enrichment. This is probably due to the difficulty of computing

entropy values for the MM-PB/SA energy function. We will

further discuss this problem in the Discussion section. Our MD

simulations encouraged conformational relaxation, and the

binding enthalpy from the MM-PB/SA method could satisfacto-

rily increase the enrichment performance. However, the treatment

of binding entropy terms involves certain unsolved problems.

Here, we performed a statistical analysis using data on the ROC

values to evaluate the differences between key classifiers, G01

(multiple poses), G06 (multiple poses), and molecular docking

(Table 3). The program DBM MRMC version 2.1 was used in this

analysis [37–41]. From this analysis, it was obvious that the

differences in the ROC values between G06 and docking, and

those between G06 and rescoring (docking), were statistically

significant for trypsin and HIV PR, but the difference in the ROC

values between G06 and docking for AChE was not statistically

significant. On the other hand, the differences in the ROC values

between G01 and docking were not statistically significant for

trypsin, HIV PR, and AChE. An examination of the entire data

set indicated that the binding free energies of multiple poses,

especially G06, which was obtained from the MD trajectories of

just the protein-ligand complexes with no entropies, showed a high

and stable ability to enrich the active compounds.

This paper provides a detailed account of the ability of our

approach to discriminate active compounds from inactive ones.

Figure 2 shows the ROC curves for the respective target proteins.

Figure 1. Successful example of MD simulations using multiple
poses. The color codes for the stick models are as follows: yellow,
conformation of the inhibitor in the crystal structure; purple, 7th-ranked
docking pose; and pink, conformation of the 7th-ranked docking pose
after the MD simulation. In addition, the highest-scored docking pose is
shown by the wireframe model. The highest-scored docking pose
(wireframe model) is inaccurate, but the 7th-ranked docking pose is
similar to that of the crystal structure. MD simulation of the 7th-ranked
pose improved the key hydrogen bonds and the position of the
naphthalene group and G06 value of the 7th ranked docking pose was
the lowest in all the poses.
doi:10.1371/journal.pcbi.1000528.g001

Table 2. Area under ROC curves.

DGbind Trypsin HIV PR AChE CDK2 CDK2(l)

G01 0.754 (0.318) 0.775 (0.696) 0.655 (0.597) 0.719 (0.685) 0.719 (0.685)

G02 0.651 (0.323) 0.561 (0.550) 0.719 (0.627) 0.595 (0.652) 0.595 (0.652)

G03 0.491 (0.283) 0.538 (0.492) 0.747 (0.554) 0.586 (0.604) 0.586 (0.604)

G04 0.623 (0.321) 0.789 (0.435) 0.527 (0.409) 0.597 (0.599) 0.659 (0.627)

G05 0.539 (0.291) 0.775 (0.425) 0.506 (0.436) 0.565 (0.585) 0.636 (0.614)

G06 0.765 (0.391) 0.979 (0.550) 0.831 (0.603) 0.558 (0.568) 0.624 (0.558)

G07 0.543 (0.300) 0.514 (0.373) 0.509 (0.413) 0.625 (0.623) 0.647 (0.638)

G08 0.486 (0.265) 0.528 (0.383) 0.513 (0.435) 0.586 (0.606) 0.635 (0.626)

G09 0.694 (0.388) 0.778 (0.471) 0.843 (0.645) 0.606 (0.610) 0.622 (0.616)

G10 0.431 (0.369) 0.336 (0.373) 0.654 (0.458) 0.667 (0.615) 0.614 (0.606)

G11 0.422 (0.327) 0.326 (0.389) 0.678 (0.464) 0.653 (0.604) 0.605 (0.602)

G12 0.526 (0.406) 0.516 (0.352) 0.735 (0.541) 0.631 (0.605) 0.612 (0.606)

This table lists the ROC values obtained when the active compounds in the top 1,000 compounds are all considered to be as true positive. The values in parentheses
denote the ROC values of a single pose, while the others denote those of multiple poses. The underlining indicates the highest ROC values in the respective categories.
CDK2(l) indicates the values of longer MD simulations (1.4 ns) of CDK2.
doi:10.1371/journal.pcbi.1000528.t002

MD-Based Screening in Drug Design
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Table 3. Statistical comparisons of ROC values.

Trypsin HIV PR AChE CDK2

G01# 0.754 (0.010) 0.775(0.054) 0.655(0.117) 0.719 (0.064)

G06# 0.765 (0.092) 0.979(0.004) 0.831(0.135) 0.558 (0.065)

GOLD/Rescore# 0.476(0.099)/0.477(0.081) 0.621(0.102)/0.636(0.117) 0.614(0.159)/0.268(0.098) 0.679 (0.067)/0.530 (0.038)

P values(G01/Docking) 0.054 0.542 0.922 0.915

p values(G01/Rescore) 0.055 0.320 0.019* 0.102

p values(G06/Docking) 0.045* 0.039* 0.330 -

p values(G06/Rescore) 0.046* 0.014* 0.001* 0.712

This analysis was analyzed by the program DBM MRMC 2.1 [37–41]. This program uses a jackknife method [37] to assess the statistical significance of the observed
difference between two classifiers. The p-value (G06/Docking) in CDK2 is not shown because the ROC value of G06 was less than that of Docking. This analysis indicated
that the differences between G01 and G06 were not statistically significant (data not shown). The analyses were performed using results of multiple poses. ‘‘Rescore’’
indicate the result of rescoring approach (docking) (see Materials and Methods).
#These values are ROC values. Standard errors are shown in parentheses.
*Differences are considered statistically significant at p,0.05.
doi:10.1371/journal.pcbi.1000528.t003

Figure 2. ROC curves for the four target proteins. Each graph shows the sensitivity versus 1-specificity. These indicate the ROC curves obtained
when the active compounds in the top 1,000 compounds are all considered to be as true positive. The black dashed, sky blue solid, and sky blue
dashed lines indicate random screening, molecular docking and rescoring (docking), respectively. For trypsin, HIV PR, and AChE, the ROC curves of
the binding free energies (multiple poses) with the highest ROC values in the respective categories are shown. For CDK2, the curves of G01 (single
and multiple poses), G04 (single pose), G07 (multiple poses), and G10 (multiple poses) are shown. (s) and (m) indicate single pose and multiple poses.
doi:10.1371/journal.pcbi.1000528.g002

MD-Based Screening in Drug Design
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The ROC curves of the binding free energies, with the highest

ROC values in the respective categories, were observed for

trypsin, HIV PR, and AChE. Table 4 shows the information on

the enrichment factors to allow the abilities of the classifiers to be

understood clearly.

For trypsin, 10 active compounds (out of 21) were ranked in the

top 1,000 compounds (Figure S1). No significant difference was

observed in the results of molecular docking and random screening

for these top 1,000 compounds. Considerable improvement was

observed in the results of the MM calculations and MD

simulations. G01 and G06, in particular, showed high enrichment

performances, and the enrichment factors for the top 100

compounds were 5.00 and 4.00, respectively (see Table 4).

Furthermore, G06 detected no less than nine active compounds

in the top 300.

For HIV PR, 6 active compounds (out of 8) were ranked in the

top 1,000 compounds (Figure S2). A slightly better enrichment was

achieved by docking than by random screening. As seen in the

curves, we found drastically improved enrichment by G06. It

detected 6 active compounds in the top 100 compounds, and the

enrichment factor for the top 100 was 10.0 (Table 4).

For AChE, 7 active compounds (out of 14) were detected in the

top 1,000 compounds (Figure S3). We found that the enrichments

of G06 and G09 were considerably better than that of molecular

docking, although the difference in the ROC values between G06

(or G09) and docking was not statistically significant. Because there

was only a slight difference between G06 and G09, both of them

detected five active compounds in the top 100.

For CDK2, the ROC curves of the following representative

binding free energies were drawn: G01 (single and multiple

poses), G04 (single pose), G07 (multiple poses), and G10

(multiple poses). Seventeen active compounds (out of 26) were

ranked in the top-scoring 1,000 compounds (Figure S4). The

G01 of single and multiple poses as obtained from the MM

calculations showed higher enrichment than random screening;

however, there was no statistically significant difference between

the results of G01 and molecular docking (see Table 3). The G01

of single and multiple poses detected 10 active compounds in the

top 300 and showed only slightly higher enrichment factors than

molecular docking (Table 4). In contrast, G04, G07, and G10,

which were obtained from the MD simulations, remained

unchanged or worsened as compared to docking, although they

identified 6 or 7 active compounds in the top 200. Over all, the

enrichments for CDK2 were not at all improved as mentioned

above.

The ROC values for CDK2 showed a different tendency as

compared to those for the other three proteins (Table 2). Among

the 12 types of energies, the G01 of single and multiple poses

showed the highest values (0.685 and 0.719, respectively), which

implies that the enrichments of the MM calculations were better

than those of the MD simulations. Moreover, for 7 types of

energies (out of 12), the single pose results showed higher

enrichment than those of multiple poses. In addition, the binding

free energies with entropy terms showed slightly high enrich-

ment performances in the respective categories (2–4), which

were calculated from MD simulations. In particular, G04, G07,

and G10, which included the binding entropy effects of the

ligands, showed the highest ROC values in their respective

categories.

We monitored the mobility of ligand molecules in MD

simulations of CDK2. Figure 3 shows the cumulative percentages

of positional displacements of ligand molecules relative to each

protein between the docking and final MD structures. From this

figure, it is clear that the docked ligands for CDK2 did not move

very much in the MD simulations, as compared to the other target

proteins, which implies that the protein-ligand interactions were

not fully relaxed. Such insufficiency in conformational relaxation/

refinement directly influences protein-ligand interactions. Partic-

Table 4. Enrichment factors for top 1,000 compounds.

Trypsin HIV PR AChE CDK2

EF (10%) 5.00 (G01) 3.33 (G01) 4.29 (G03) 1.76 (G01)

4.00 (G06) 10.0 (G06) 7.14 (G06) 1.76 (G04)

3.00 (G09) 3.33 (G09) 7.14 (G09) 1.43 (G07)

0.00 (G12) 0.00 (G12) 4.29 (G12) 2.14 (G10)

1.00 (Docking) 5.00 (Docking) 4.29 (Docking) 2.35 (Docking)

0.00 (Rescoring) 1.67(Rescoring) 0.00 (Rescoring) 0.00 (Rescoring)

EF (30%) 2.33 (G01) 2.22 (G01) 1.90 (G03) 1.96 (G01)

3.00 (G06) 3.33 (G06) 2.85 (G06) 1.17 (G04)

2.00 (G09) 2.78 (G09) 2.85 (G09) 1.67 (G07)

0.66 (G12) 0.55 (G12) 2.38 (G12) 1.90 (G10)

1.00 (Docking) 2.78 (Docking) 1.43 (Docking) 1.76 (Docking)

0.33 (Rescoring) 1.67 (Rescoring) 0.48 (Rescoring) 0.19 (Rescoring)

The enrichment factor (EF) can be defined as:

EF~(a=n)=(A=N)

where a is the number of active compounds in the n top-ranked compounds and A is the number of total N compounds. In this table, the n for EF (10%), n for EF (30%),

and N were 100, 300, and 1,000, respectively. For the respective proteins, A, n for EF (10%), and n for EF (30%) indicate the numbers of active compounds in the top

1,000, top 100, and top 300, respectively. All of the EF values calculated from the result of screening using multiple poses. ‘‘Rescoring’’ indicate the result of rescoring

approach (docking) (see Materials and Methods).
doi:10.1371/journal.pcbi.1000528.t004
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ularly for active compounds, the binding modes obtained by MD

simulations were some different from those of experimental

structures (refer to Figures S5 and S6). These data suggested that

the use of MD simulations for CDK2 led to structural

uncertainties for active compounds. In addition, the interactions

of the inactive (decoy) compounds would not be refined fully in

MD simulations. We think that such low mobility for ligand

molecules and the improper conformational dynamics are due to

an improper MD setup. This would be the reason why the

enrichments of the MD simulations using multiple poses were

worse than those of the MM calculations for CDK2.

Discussion

We evaluated the ability to enrich active compounds for four

target proteins: trypsin, HIV PR, AChE, and CDK2. Our

screening approach could improve the molecular docking results

for all of the proteins except CDK2. For trypsin, HIV PR, and

AChE, our results indicated that the use of multiple poses

improved the enrichments of all the MM calculations and MD

simulations. In addition, the binding free energies calculated from

the MD simulations showed higher and more stable enrichments

than those of the docking and MM calculations. In particular, the

G06 using multiple poses was considered to be effective. This

energy contained no entropy components. Further, the enthalpy

components were calculated using the coordinate sets extracted

from the MD simulation of a complex.

Kuhn and coworkers [25] reported that for the MM/PB-SA

values of MM calculations, the strategy of using multiple poses

could only show a high enrichment when the correct binding

mode was contained within the higher-scored docking conforma-

tions, but was not captured with a single pose. In our study, we

carefully selected multiple docking poses by the post-processing of

docking results and used an average of five to six docking poses for

each compound. As a result, the correct binding modes or

potentially correct modes that could be refined by the MD

simulations were sampled within the selected multiple docking

poses, which did not often correspond to the top-scored pose.

Therefore, the results using multiple poses showed a higher

enrichment than those obtained using a single pose.

In addition, Kuhn et al. [25] showed that the use of MD

simulations often leads to structural uncertainties and an

inaccurate estimation of the binding free energy. The MM/PB-

SA energies of the MM calculations and MD simulations in their

study corresponded to G01 and G04 in our study. A comparison

between G01 and G04 indicated that the enrichment of G04 was

lower than that of G01, which is consistent with the results of

Kuhn and coworkers [25], although there were large differences in

the MD setup, MM/PB-SA setup, and target proteins. G01

contained only the enthalpy components that were calculated

using the coordinate sets derived from the MM calculation of a

complex. G04 contained the binding entropy effect of the ligand.

Further, the enthalpy components were calculated using the

coordinate sets from the MD calculation of a complex. The

difference between G04 and G06 was the presence of the entropy

effect. Therefore, we consider that for trypsin, HIV PR, and

AChE, the structural refinement/relaxation by longer and higher

time resolution MD simulations and the relatively accurate

estimation of binding free energy (enthalpy) by the MM/PB-SA

method led to increased enrichment, but the introduction of the

entropy values induced an uncertainty in the binding free energies.

On the other hand, we think that the use of MD simulations for

CDK2 led to structural uncertainties and then an inaccurate

estimation of the binding free energy (Figures S5 and S6). This

would be due to an improper MD setup, as Kuhn and co-workers

suggested in their paper [25].

Basically, it is well-known that it is difficult to calculate entropy

values properly. In our work, the entropy values were calculated

by principal component analysis (PCA). These values are sensitive

to the data sampling frequency [42,43] and are likely to be

overestimated [44]. Therefore, we believe that the entropy values

were slightly unstable and not completely reliable. An alternative

computational method is normal mode analysis. This may be

stable to some extent, but it is known that conformations at

different local energy minima provide rather similar entropy

values even though there are differences in the finite temperature

[42]. Moreover, the computational cost is significantly high to use

for the calculation of many structures. Thus, even if we were to use

normal mode analysis, the entropy values would induce an

uncertainty in the binding free energies. Therefore, in order to

achieve further improved enrichment, it is necessary to improve

the calculations for the entropy terms.

Our strategy could not significantly improve the molecular

docking results for CDK2. It is well known that, as compared to

the binding pockets of the other three proteins, the binding pocket

of CDK2 is more flexible and hydrophobic. We compared the

binding pockets in two different X-ray crystal structures of CDK2

[45,46] (Figure 4). This figure indicates that the shape of the

binding pocket is very flexible and that the hydrophobic region

covers the surface of the binding pocket. In addition, a study on

molecular docking using different CDK2 crystal structures

reported that the volume (flexibility) of the binding site is a key

factor for predicting docking poses [29]. Although only one CDK2

structure was used in this study, we applied MD simulations to

protein-ligand structures obtained from molecular docking to

facilitate the relaxation of protein-ligand interactions. Unfortu-

nately, our MD simulations were insufficient to relax the protein-

ligand conformations in the binding pockets (see Figure 3). Such

insufficiency is believed to be due to the MD setup. To improve

Figure 3. Mobility of ligand molecules in MD simulations. This
graph indicates cumulative percentage graph of positional displace-
ments of ligand molecules relative to the respective proteins between
docking structures and final MD structures. The blue, green, orange,
and red solid lines indicate cumulative curves for trypsin, HIV PR, AChE,
and CDK2, respectively. The broken line indicates a curve for longer MD
simulations (1.4 ns) of CDK2. From the red solid line, it is clear that the
docked ligands for CDK2 did not move in the MD simulations since the
positional displacements of approximately 50% of the ligand confor-
mations were less than 2.0 Å.
doi:10.1371/journal.pcbi.1000528.g003
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the insufficient relaxation, we applied the MD simulations for

1.4 ns to each configuration; this simulation time was twice that of

the initial MD simulation time. These MD simulations effected

some relaxation/refinement of the ligand conformations (Figure 3);

the enrichments of the multiple poses were found to be higher than

those of the single pose (Table 2). Despite this, G04–G09 showed

only small improvements in the enrichment performance. These

results suggest that further improvement of the MD setup was

necessary. To obtain information about how to improve the MD

setup, we attempted to maximize the ROC values by using an

approach based on the linear response (LR) [47] and MM/PB-SA

methods (LR-MM/PB-SA approach [48]) The LR-MM/PB-SA

equation was derived from equations 2–4 (see Materials and

Methods):

DGbind~aDEintzbDEelezcDEvdW zdDGPBzeDGSA{fTDSð1Þ

where a, b, c, d, e, and f are weighting factors ranging from 0.5 to

1.5. The terms on the right side of equation 1 represent the energy

difference between the complex and protein plus ligand. This

approach is usually used for estimating the binding affinity by

combining an empirical MM/PB-SA energy calculation with an

LR optimization of coefficients against the experimental binding

affinities of several compounds. The optimized free energy model

is used for interpreting the binding model and predicting the

binding affinity of unknown molecules. In our study, we optimized

the weighting factors to maximize the ROC value, that is, the

enrichment performance, using a genetic algorithm (GA). We

applied the LR-MM/PB-SA approach to the G10 of multiple

poses obtained from the initial MD simulations, because G10

showed the highest ROC value among those of the binding free

energies calculated from the MD simulations (Table 2). As a result,

when the weighting factors of a–f were 1.12, 0.91, 1.47, 1.01, 0.87,

and 1.49, respectively, a maximum ROC value of 0.812 was

obtained (Figure 5). This result suggested that the LR-MM/PB-SA

approach was effective at improving the enrichment performance,

and these weighting factors indicated an improvement plan for the

MD setup. The weighting factor of the entropy term, 1.49, would

contribute to dilute the percentage of inactive (decoy) compounds.

This would be related to the fact that the ligands in the binding

pocket of CDK2 could not move largely (Figure 3). In addition, it

is conceivable that the weighting factor of DEvdW, i.e., 1.47,

enriched the active compounds because they include a hydropho-

bic region and formed comparatively strong hydrophobic

interactions with the binding pocket (See Figure S4). As the

binding modes obtained through MD simulations were some

different from the experimentally observed binding modes, the

conformational refinement was considered insufficient or improp-

er to accurately predict the binding free energy. This information

also suggests that fully conformational relaxation/refinement is

required to improve the enrichment performance. In this study,

the ligand, water molecules, and protein residues around the

binding pocket were allowed to move, but other protein residues

were restrained to the X-ray structure in all of the MM

calculations and MD simulations (a detailed explanation is given

in the Materials and Methods section). Hence, to achieve the

Figure 4. Binding pockets in two different X-ray crystal structures for CDK2. The left figure indicates the binding pocket in the CDK2-
Oxindole inhibitor complex (PDB Id: 1FVV). This structure was used in our study. The right figure indicates the binding pocket in the CDK2-NU2058
inhibitor complex (PDB Id: 1H1P). The hydrophobic regions in the binding pocket are drawn in blue, and the hydrophilic regions are drawn in red.
From this figure, it is clear that large hydrophobic regions were located in both binding pockets. In contrast, the shapes of the two binding pockets
were considerably different, which means that the binding pocket of CDK2 was flexible.
doi:10.1371/journal.pcbi.1000528.g004

Figure 5. ROC curves of the LR-MM/PB-SA approach for CDK2.
This graph shows the sensitivity versus 1-specificity. This indicates the
ROC curves obtained when the active compounds in the top 1,000
compounds are all considered to be as true positive. The black dashed,
sky blue solid, and sky blue dashed lines indicate random screening,
molecular docking and rescoring (docking), respectively. The G01(m),
G01(s), molecular docking and rescoring(docking) are the same as in
Figure 2. G10 (opt) is the ROC curve of G10 (multiple poses) obtained by
the LR-MM/PB-SA approach. The ROC value is 0.812.
doi:10.1371/journal.pcbi.1000528.g005
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conformational relaxation of the binding pocket of CDK2,

allowing wider protein residues to move in MD simulations and

longer MD simulations are required. The former is an especially

important parameter for improving the enrichment performance,

although it would increase the computational cost. In our next

study, which will focus on the extent of the mobility of protein

residues, along with simulation time and force-field parameters for

organic small molecules, we will attempt to optimize the MD setup

using a recent widely used dataset of decoy compounds [49].

The computational screening of large compound libraries

involves the use of hierarchical multiple filters, such as ligand-

and structure-based approaches. Molecular docking plays the

primary role in these filters. With advancements in computer

performance and computational chemistry, docking programs

have become more accurate, but their ability to enrich hit

compounds remains unsatisfactory. In order to improve the

enrichment performance of molecular docking, we attempted to

use the MM/PB-SA method [50] as a post-molecular docking

filter. The basis of our approach was to perform massive MD

simulations of protein-ligand conformations obtained from

molecular docking, aim at the refinement/relaxation of protein-

ligand conformations after docking, and predict more accurate

binding free energies using the MM/PB-SA method in a practical

time for lead discovery. Combining molecular docking and MD

simulations basically allows each of them to neutralize the other’s

defects, but certain problems remain even with MD simulations,

particularly with regard to compound screening applications. The

major drawback of MD simulations is insufficient sampling due to

the significant computational cost involved. To solve this problem,

we performed MD simulations using various docking conforma-

tions obtained by molecular docking. However, the computational

cost of this technique was approximately five to six times that of

MD simulations using single docking conformations, such as the

top-scored docking conformation. The enormous computational

time needed for MD simulations is a serious problem. Here, we

solved this problem by accelerating most of the time-consuming

operations of the MD simulation using a high-performance

special-purpose computer for MD simulations, ‘‘MDGRAPE-3’’

[27,28]. Accordingly, our approach could be performed in a

practical time (about a week) for lead discovery. The evaluation in

this study provides valuable information on in-silico drug design.

Further, a more rigorous MD-based filter is under consideration

for further improving the enrichment performance. This tech-

nique will also be applied to the lead optimization stage of drug

development research.

In conclusion, our approach could improve the enrichment of

virtual screening by molecular docking. Among the 12 types of

binding free energies, G06, which was obtained from the MD

simulations using multiple poses, showed the highest and most

stable ability to enrich the active compounds. The strategy of

multiple poses can be used to sample the potentially correct poses

of active compounds; thus, it increases the enrichment perfor-

mance. Since the G06 enrichment factors for the top 100

compounds ranged from 4 to 10 (see Table 4), which indicates

approximately 1.6–4.0 times higher values than the enrichment

performance of molecular docking, with the exception of CDK2, it

is obvious that a stable and high enrichment can be achieved after

molecular docking. In addition, G06 is suitable for compound

screening because its computational cost is the least among those

of the other MM/PB-SA energies obtained from the MD

simulations. We also confirmed that G01, which was obtained

from the MM calculations, showed good enrichment ability

despite its low computational cost. This result agreed with that of

the previous study [25]. The ability of G01 to enrich active

compounds was lower and less stable than that of G06, but we

believe that G01 acted as an effective filter between molecular

docking and the MD-based MM/PB-SA method. From this study,

we conclude that the application of MD simulations to virtual

screening for lead discovery is effective and practical, but that

further optimization of the MD simulation protocols is required

for the screening of various target proteins, including kinases.

Materials and Methods

Preparation of the Target Protein
We applied our approach to four target proteins: trypsin, HIV

PR, AChE, and CDK2. These structures with crystallographic

resolutions of less than 3.0 Å, were retrieved from the Protein

Data Bank (PDB) because the conformations of residues in the

binding pocket affect the molecular docking results (PDB Id: 1C5S

(trypsin) [51], 1HWR (HIV PR) [52], 1E66 (AChE) [53], and

1FVV (CDK2) [46]). All of the bound crystal water molecules,

ligands, and other organic compounds were removed from each

protein. Hydrogen atoms were added, and energy minimizations

on the hydrogen atoms were performed using the Molecular

Operating Environment (MOE) program (Chemical Computing

Group Inc. [54]).

Seeded Compound Library for Docking
For each target protein, we prepared a test set of compounds

that included 10,000 randomly selected compounds, or decoys,

from the Maybridge library of compounds and experimentally

known active compounds. It was confirmed that 95.5% of the

selected decoy compounds obeyed the Lipinski rule of 5 [55]. The

active compounds, which had binding affinities (Ki, Kd, or IC50)

below 30 mm, were selected from the PDBbind database [56,57]

and by referring to the literatures [26,58]. Most of the active

compounds also obeyed the Lipinski rule of 5. The numbers of

active compounds selected for each of the respective target

proteins was as follows: 21 (trypsin), 8 (HIV PR), 14 (AChE), and

26 (CDK2) (see Figure S1, S2, S3, S4). For each compound of the

test set, a 3D conformation was generated, ionized, and energy

minimized using LigPrep (Schrödinger Inc. [59]), assuming a pH

of 7.0.

Docking
Molecular dockings were performed using the Genetic Optimi-

sation of Ligand Docking (GOLD) version 3.1 [9,10]. This

program employs a GA to explore the possible binding modes.

The standard default settings for the GA parameters were used.

The binding site radius was 12 Å. We performed the docking run

three or four times using the GoldScore or ChemScore function

for each target protein and selected the result that showed the best

enrichment. GoldScore (default settings) was used as the scoring

function for trypsin and HIV PR. In contrast, ChemScore (default

settings) was used for AChE and CDK2 because docking runs

using GoldScore can detect few of the successfully docked active

compounds for AChE and CDK2. For AChE alone, the torsional

rotations of Phe-330 (chi1 and chi2) were treated as flexible in the

docking process. For each docking run, the 10 highest-scoring

docking poses were saved to obtain a variety of binding modes.

Post-processing of the Docking Results
First, among the 10 highest-scoring docking poses saved for

each compound, those in which the compound did not occupy the

binding pocket or did not interact with the important residues

were removed. The latter was used only for trypsin and HIV PR.

The important residues were Asp180 for trypsin and Asp24 in
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each monomer for HIV PR. These treatments had the effect of

reducing the false positives for molecular docking. The docked

compounds were then arranged in descending order from the

highest score with respect to the multiple docking poses, and the

top 1,000 compounds were selected from the test set. Finally, for

the top 1,000 compounds, the docking poses of each compound

were clustered using the root mean square deviation of 0.9 Å

(complete link method [60]). After post-processing, approximately

6,000 docking poses were selected for the 1,000 compounds, which

were then used as the initial conformations for MD simulations.

Some active compounds were not ranked in the top 1,000. The

numbers of active compounds in the top-scoring 1,000 were 10, 6,

7, and 17 for trypsin, HIV PR, AChE, and CDK2, respectively. In

addition, the compounds in the top-scoring 1,000 were rescored

with ChemScore (trypsin and HIV PR) or GoldScore (AChE and

CDK2) because it is known that the rescoring approach increases

the enrichment performance [61]. Furthermore, we analyzed

ROC curves using molecular weight as classifier (Figure S7). From

statistical analysis, it is obvious that the differences in the ROC

values between G06 and molecular weight were statistically

significant for trypsin, HIV PR, AChE.

MD Simulation Protocols
We performed MD simulations of each complex (ligand-bound

protein), protein, and ligand to obtain various types of binding free

energies (see the following subsection). The active sites of the

protein-ligand complexes were immersed in an approximately 28–

30 Å sphere of transferable intermolecular potential 3 point

(TIP3P) water [62] molecules. The radius of the water droplet was

selected such that the distance of the atoms of all the docked

compounds from the water wall was greater than 15 Å (see

Figure 6). The total number of atoms in the respective systems was

approximately 8,000–12,000. On the solvent boundary, a half-

harmonic potential (1.5 kcal/mol-Å2) was applied to prevent the

evaporation of the water molecules. The ligand, water molecules,

and protein residues that were approximately 12 Å of the active

center were allowed to move, but other protein residues were

restrained to the X-ray structure by the harmonic energy term

(1.5 kcal/mol-Å2) in all of the MM calculations, namely the MM

energy-minimization, and MD simulations. For the simulations of

the ligands, each ligand was immersed in a water droplet, and this

structure was used as the initial structure for the MD simulation of

the ligand. In addition, the simulation of each protein (trypsin,

HIV PR, AChE, and CDK2) was performed in the same manner

as that of the complex.

All of the simulations were performed using AMBER 8.0 [63]

modified for MDGRAPE-3 [27,28]. The ff03 force field [64] was

adopted, and the time step was set at 0.5 fs. To carefully consider

the motion of hydrogen atoms in the interactions between the

ligands and protein residues, no bond length constraint was applied

to solute atoms. The temperature of each system was gradually

increased to 300 K during the first 25 ps, and additional MD

simulations were performed for 700 ps for equilibration. The

temperature was maintained at 300 K by using the method

described by Berendsen et al. [65], and the system was coupled to

a temperature bath with coupling constants of 0.2 ps. The

parameters and charges for the ligands were determined using the

antechamber module version 1.27 of AMBER 8.0 [63] by utilizing the

general atom force field (GAFF) [66] and the AM1-BCC charge

method [67,68]. Although the computational cost of the AM1-BCC

charge method is low, a some difference between the charge and

that of ff03 was noticeable. Since the original GAFF parameters

were insufficient to cope with the parameters of all the ligands, we

filled the missing parameters on the basis of the information on

regarding atom types, bonds, valences, angles, and dihedrals by

using an in-house program (see Text S1). (Note: these parameters

for proteins and small organic molecules are very important to

calculate the binding free energies between proteins and ligands)

Our MDGRAPE-3 system is a cluster of personal computers,

each equipped with two MDGRAPE-3 boards. Each board

contains 12 MDGRAPE-3 chips and has a peak speed of

approximately 2 Tflops. The computations of non-bonded forces

and energies for MD simulations were accelerated by

MDGRAPE-3, and the other calculations were performed by

the host central processing unit (CPU). In this study, we used 50

host computers equipped with 100 MDGRAPE-3 boards. The

calculations for an MD simulation and the estimation of the

binding free energies by the MM/PB-SA method were performed

simultaneously. The average computational time for a single

protein-ligand complex was 2.5 h, and the computations for

approximately 6,000 protein-ligand conformations obtained by

docking for each protein were completed in a week. The total

simulation time for each protein was 4 ms, which corresponded to

an 8-ms MD simulation with a standard time step of 1 fs. A single

MD simulation for the system (Figure 6), without using

MDGRAPE-3, requires more than 10 times the abovementioned

computational time. Thus, in the current state, it would be quite

difficult to use our screening approach without the MDGRAPE-3

system in a practically appropriate time for lead discovery.

Therefore, our study can provide important information for MD-

based screening.

Calculation of Binding Free Energy by the MM/PB-SA
Method

The production MD trajectory was collected for the last period

of 210 ps. In the calculation of the binding free energies by the

Figure 6. System for MD simulation of trypsin. The protein is
shown by the space-filled model, and the ligand is colored blue. The
peripheral residues around the active center (red region), a ligand, and
water molecules were allowed to move in the MD simulation. The
protein residues (grey) were restrained to the X-ray structure by a
harmonic energy term. Similar systems were used for the other target
proteins.
doi:10.1371/journal.pcbi.1000528.g006
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MM-PB/SA method, the water molecules were replaced with

implicit solvation models. The binding free energy was calculated

by the following equations.

DGbind~Gcomplex{(GproteinzGligand ) ð2Þ

G~vEMMwzvGPBwzvGSAw{TS ð3Þ

EMM~EintzEelezEvdW ð4Þ

GSA~cAzb ð5Þ

In the above equations, , . denotes the average for a set of 30

conformations along an MD trajectory. Eint includes the bond,

angle, and torsional angle energies; Eele and EvdW represent the

intermolecular electrostatic and van der Waals energies, respec-

tively. GPB was calculated by solving the PB equation with the

DelPhi program [69,70], using the PARSE radii [71,72] and

AMBER charges. The grid spacing used was 0.5 Å. The dielectric

constants inside and outside the molecule were 1.0 and 80.0,

respectively. In equation 5, which calculates the nonpolar

solvation contribution, A is the solvent-accessible surface area that

was calculated using the Michael Sanner’s Molecular Surface

(MSMS) program [73], and c and b are 0.00542 kcal/mol-Å2 and

0.92 kcal/mol, respectively. The probe radius was 1.4 Å. The

conformational entropy term of the solute, TS, was approximated

by a combination of a classical statistics expression and PCA [74],

using the PTRAJ module of AMBER 8.0 [63]. In the PCA

calculation, the last 210 ps (3,000 conformations) of each

production trajectory were used.

The analysis of the binding free energy involved the calculation

of the energies for conformations obtained from the MM (namely,

energy-minimized) coordinates or MD trajectories. When the MM

calculations or MD simulations of a complex, protein, and ligand

were performed, we could obtain various types of binding free

energies by combining the respective coordinate sets. The

enthalpy contributions of Gprotein and Gligand in equation 2 were

calculated in the following 2 ways: (1) by using the coordinate sets

of a protein (or ligand) obtained from the MD simulations (or MM

calculations) of the protein (or ligand) and (2) by using the

coordinate sets extracted from the MD simulation of a complex.

Similar to the enthalpy contribution, the entropy contribution was

calculated by using the MD trajectories. When the entropy

contributions of Gcomplex, Gprotein, and Gligand were calculated by

using the MD trajectory of only the complex, we considered the

entropy contribution of DGbind to be zero because the energy

components were almost cancelled. In this study, in order to

thoroughly investigate which MM/PB-SA energies were suitable

for compound screening, we adopted 12 binding free energies,

G01–G12, to manage the entropy contributions independently of

the enthalpy contributions (see Table 1). It should be noted that

the coordinate sets for calculating the entropy contributions were

not always consistent with those for calculating enthalpy

contributions. Table 1 shows the enthalpy and entropy terms for

computing of Gcomplex, Gprotein, and Gligand in equation 2. We

classified the 12 binding free energies into four categories.

Category 1 contained the energies obtained by the MM

calculations, and categories 2, 3, and 4 contained those obtained

by MD calculations. These categories were classified according to

the combination of coordinate sets used for enthalpy calculations:

G01–G03, G04–G06, G07–G09, and G10–G12 belonged to

categories 1, 2, 3, and 4, respectively. Each binding free energy of

a ligand adopts the minimum energies from among the energies of

multiple poses. Thus, by gathering and arranging their energies,

we were able to assess the enrichment performance of the

screening approach.

Supporting Information

Figure S1 Active compounds of trypsin. The structural formulae

and PDB ids of active compounds used in the seeded compound

library are shown in the following figures. The asterisks represent

the active compounds in top-scoring 1,000.

Found at: doi:10.1371/journal.pcbi.1000528.s001 (0.08 MB

DOC)

Figure S2 Active compounds of HIV PR. The structural

formulae and PDB ids of active compounds used in the seeded

compound library are shown in the following figures. The asterisks

represent the active compounds in top-scoring 1,000.

Found at: doi:10.1371/journal.pcbi.1000528.s002 (0.53 MB

DOC)

Figure S3 Active compounds of AChE. The structural formulae

and PDB ids of active compounds used in the seeded compound

library are shown in the following figures. The asterisks represent

the active compounds in top-scoring 1,000.

Found at: doi:10.1371/journal.pcbi.1000528.s003 (0.06 MB

DOC)

Figure S4 Active compounds of CDK2. The structural formulae

and PDB ids of active compounds used in the seeded compound

library are shown in the following figures. The asterisks represent

the active compounds in top-scoring 1,000. Compounds 1 and 19

were selected by referencing literatures.

Found at: doi:10.1371/journal.pcbi.1000528.s004 (0.11 MB

DOC)

Figure S5 Number of correctly docked conformations in top-

scored active compounds. These indicate the number of correctly

docked conformations in the top-scoring poses for active

compounds obtained from molecular docking, G01, and G06.

The red and blue bars indicate the number of poses within the

root mean square deviations (RMSDs) of 2.5 and 3.5 Å from those

of the experimental structure, respectively. The active compounds

in the top 1,000 were investigated. In G06, the final MD structure

was used.

Found at: doi:10.1371/journal.pcbi.1000528.s005 (0.10 MB

DOC)

Figure S6 Minimal RMSD values of computed poses from

experimental poses for active compounds. The horizontal axis

indicates the index number of active compounds in the top 1,000

shown in Figures S1, S2, S3, S4 and the vertical axis indicates the

minimal RMSD among all the poses. For each protein, the poses

obtained from molecular docking, G01, and G06 were investigat-

ed. In G06, the final MD structure was used. The red bars indicate

the pose within the top-three scoring. For trypsin, HIV PR, and

AChE, it was found that MD simulations could improve the

binding modes and predict better binding free energies. For

CDK2, however, it is suggested that MD simulations lead to

structural uncertainties and an inaccurate estimation of the

binding free energy.

Found at: doi:10.1371/journal.pcbi.1000528.s006 (0.24 MB

DOC)

Figure S7 ROC curves using molecular weight as classifier. This

graph shows the sensitivity versus 1-specificity. This indicates

MD-Based Screening in Drug Design
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ROC curves when the active compounds in the top 1,000

compounds are considered as total the true positives. ROC curves

for trypsin, HIV PR, AChE, and CDK2 were drawn in blue, red,

yellow, and orange, respectively. These ROC values for trypsin,

HIV PR, AChE, and CDK2 are 0.454, 0.674, 0.462, and 0.430.

From statistical analysis, it is obvious that the differences in the

ROC values between G06 and molecular weight were statistically

significant for trypsin, HIV PR, AChE. The differences in the

ROC values between molecular docking and molecular weight

were not statistically significant for all proteins.

Found at: doi:10.1371/journal.pcbi.1000528.s007 (0.08 MB

DOC)

Text S1 Assignment of missing force field parameters. We filled

in the following missing parameters on the basis of the information

on regarding atom types, bonds, valences, angles, and dihedrals by

using an in-house program.

Found at: doi:10.1371/journal.pcbi.1000528.s008 (0.06 MB

DOC)
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