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Abstract

A computational approach to functional specialization suggests that brain systems can be characterized in terms of the
types of computations they perform, rather than their sensory or behavioral domains. We contrasted the neural systems
associated with two computationally distinct forms of predictive model: a reinforcement-learning model of the environment
obtained through experience with discrete events, and continuous dynamic forward modeling. By manipulating the
precision with which each type of prediction could be used, we caused participants to shift computational strategies within
a single spatial prediction task. Hence (using fMRI) we showed that activity in two brain systems (typically associated with
reward learning and motor control) could be dissociated in terms of the forms of computations that were performed there,
even when both systems were used to make parallel predictions of the same event. A region in parietal cortex, which was
sensitive to the divergence between the predictions of the models and anatomically connected to both computational
networks, is proposed to mediate integration of the two predictive modes to produce a single behavioral output.
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Introduction

To function effectively in real time, the brain must continually

make predictions of sensory events [1]. To do so, it is hypothesised

that the brain constructs internal models of the environment that

are tuned through a variety of learning algorithms to reflect the

state of the external world [1,2].

Different behavioural scenarios can require predictive models

with dramatically different underlying forms. A lizard attempting

to catch a fly on its tongue must predict the instantaneous position

of the fly based on rapid extrapolation of the current trajectory

under Newtonian physics. By contrast a rat choosing which field to

forage in might predict the probability of finding food based on a

history of discrete learning events (previous forages) with inherent

stochasticity (even if the rat knows for definite that there is a 50%

chance of finding food in a certain place on any given visit, he

can’t know in advance whether he will actually find food on and

particular visit) [3].

From a computational standpoint, functional specialization in

the brain may be defined in terms of the forms of generative models

that can be represented in different brain areas [2,4]. For example,

some brain areas may be specialized for modelling dynamic

systems that are continuous over time; others may model the

stochastic probabilities of discrete events and still others may be

specialized for the categorization of sensory inputs.

It could be argued that the form of the generative model

estimated by a brain system determines the types of sensory

information it can process and the types of behaviours it is useful

for—the lizard and rat in the previous examples would clearly use

different internal models for different behavioural goals. However,

in a richly structured environment (such as the natural world) it is

entirely possible that representations of the environment with

different forms are acquired in parallel. In this case we could ask

two questions. First, is it possible that predictions of the same

event, with different model forms, are represented in parallel in

different brain systems? Second, can the brain combine predic-

tions of different forms to control a single behavioural output?

To investigate these questions, we set up a task in which

observers could learn in parallel about two different types of

structure within a single environment. Participants were asked to

extrapolate the flight path of a moving ‘‘space invader’’ and

specifically to predict where it would intersect a certain line on the

computer screen (its ‘‘landing point’’). Within this behavioural

context, there was structure in both the dynamic behaviour of the

space invader and the stochastic distribution of landing points over

many trials. Hence participants could utilize two different forms of

internal model to make parallel predictions about the same

behaviourally relevant event. We labelled these models statistical

and dynamic and defined them as follows (for summary, see

Table 1).
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Statistical models consist of probability density functions defining

the probability of discrete events—for example, the probabilities

that actions or stimuli will be associated with rewards [5–7] or the

probability of sensory events [8–10]. The central feature of these

statistical models is that predictive representations are built up over

a history of discrete events, each representing a sample from an

unobserved underlying distribution. An important, related feature

is that the predictions made by such models can contain an

intrinsic element of randomness or risk (expected uncertainty [11–

13]). Because the models only capture the probability of different

outcomes, even if the model exactly captures the underlying

distribution, the value of the next sample to be drawn cannot be

predicted deterministically. Behaviourally, statistical models could

be useful for foraging behaviour (in the wild) or gambling tasks (in

the lab).

In contrast, dynamic models use the current state and rate of

change of a dynamical system to extrapolate its future states across

time (as in a differential equation). In these dynamic forward models,

predictions can be computed via explicit reference to known (or

pre-learned) environmental dynamics. In contrast to statistical

models, given a set of parameters for a dynamic model, the state of

the system at each time point predicts its future states determin-

istically, and continuously over time. Hence the form of the model

being estimated is deterministic, even if in practice there is

uncertainty about the model state or parameters that would best fit

with observed data. Dynamic models are central to motor control,

where real-time representations of the predicted results of motor

commands bypass delays associated with sensory feedback.

Similarly, dynamic forward models are needed to predict future

locations of moving objects [14,15].

Our hypothesis was that the form of generative model estimated

for statistical and dynamic models was so different that different brain

systems would be needed, with neural architectures specialized for

the different forms of model. This would result in parallel

predictions based on two classes of model, even though both

models were used to predict the same observation. It has been

suggested that the cerebellum, and the motor system more

generally, has circuitry suitable for dynamic modelling [16,17],

while the striatum, together with orbitofrontal cortex [18–20], has

mechanisms suited to the computation of statistical probability

density functions over discrete learning events—for example, the

representation of temporally discrete prediction errors [6,7].

To gain experimental control over the computational strategies

used by participants (and hence to identify brain systems

associated with those computations), our experimental design

exploited the Bayesian concept of precision-weighting. Bayesian

logic suggests than when two sources of information are available

(such as current observations of a trajectory and a statistical

distribution over trajectory endpoints acquired through past

experience), they should be weighted according to their relative

precision. Using this framework we developed a novel experimen-

tal design in which external manipulation of the precision with

which two computational mechanisms (statistical and dynamic

modelling) could cause participants to shift between two compu-

tational strategies, within a single task. This allowed us to identify

brain systems associated with each computational mechanism as

those which were up- or down-regulated on a trial–to-trial basis as

each mechanism became more or less behaviourally relevant.

Results

The results are presented in two parts. First, using behavioural

data and modelling, we justify the assumption that human

Table 1. Summary of the characteristics of two classes of predictive model.

Statistical Endpoints Distribution Dynamic Forward Model

Type of data Discrete, iterative Continuous, dynamic

Typical instantiation Vt+1 = Vt + ad d2H/dt2 = f(t)

Type of uncertainty Underlying model is probabilistic, estimate is
probabilistic

Underlying model is deterministic, estimate is
probabilistic

Time period Historical/prior Online

Typical behavioural domain Reward learning Action planning

The equations are typical instantiations of each model class—for the statistical endpoints distribution model, a temporal difference learning rule in which the value of
an item on iteration (Vt+1) is equal to the value on iteration t, plus some proportion of the prediction error (d) times learning rate (a). Dynamic forward models would
typically be captured by a set of differential equations, where the rate of change of some parameters (H), such as position, is a function of time, f(t).
doi:10.1371/journal.pbio.1001662.t001

Author Summary

To interact effectively with the environment, brains must
predict future events based on past and current experi-
ence. Predictions associated with different behavioural
domains of the brain are often associated with different
algorithmic forms. For example, whereas the motor system
makes dynamic moment-by-moment predictions based on
physical world models, the reward system is more typically
associated with statistical predictions learned over discrete
events. However, in perceptually rich natural environ-
ments, behaviour is not neatly segmented into tasks like
‘‘reward learning’’ and ‘‘motor control.’’ Instead, many
different types of information are available in parallel. The
brain must both select behaviourally relevant information
and arbitrate between conflicting predictions. To investi-
gate how the brain balances and integrates different types
of predictive information, we set up a task in which
humans predicted an object’s flight trajectory by using
one of two strategies: either a statistical model (based on
where objects had often landed in the past) or dynamic
calculation of the current flight trajectory. Using fMRI, we
show that brain activity switches between different
regions of the brain, depending on which predictive
strategy was used, even though behavioural output
remained the same. Furthermore, we found that brain
regions involved in selecting actions took into account the
predictions from both competing algorithms, weighting
each algorithm optimally in terms of the precision with
which it could predict the event of interest. Thus, these
distinct brain systems compete to control predictive
behaviour.

Probabilistic and Dynamic Predictions in the Brain
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observers shift the relative weight given to statistical and dynamic

estimates of the landing point, according to the relative precisions

of the two information sources. The relative weighting given to

each predictor shifts proportionally to their relative precision, in

accordance with Bayesian theory. Second, we show using

functional magnetic resonance imaging (fMRI) that as participants

shift between strategies, two separate brain networks (the brain’s

motor and reward-learning systems) up- and down-regulate their

activity in accordance with the behavioural relevance (precision) of

probabilistic and dynamic information. Hence we identify a

dissociation between two neural systems in terms of the form of

generative model calculated therein (dynamic modelling versus

estimation of environmental statistics), even when both systems are

used to make parallel predictions in a single behavioural context.

We devised a dynamic modeling task in which participants

could use a nondynamic, statistical model of the environment to

resolve their uncertainty. Participants had to predict the curved

flight trajectory of a ‘‘space invader,’’ judging the horizontal

coordinate at which it would intersect a horizontal line near the

bottom of the screen (see Figure 1). They observed the first part of

the trajectory, but the final section was occluded. To predict where

the space invader would ‘‘land’’ at the end of its trajectory (the

horizontal coordinate at which it would emerge from the occluded

zone), participants had to extrapolate the occluded part of the

trajectory. They responded by placing a cursor at the predicted

horizontal coordinate of the landing point. The motion of the

space invader was governed by a constant acceleration equation in

the horizontal dimension, but the acceleration and starting point

of the space invader were different on every trial, so in order to

predict the trajectory endpoint, participants had to estimate these

parameters jointly (or equivalently estimate the shape of the

emerging trajectory). The fact that both start point and

acceleration had to be estimated jointly means that the task was

truly a dynamic modeling task in the sense that participants

literally had to estimate the entire equation of motion of the space

invader, or equivalently a set of differential equations governing its

motion, from a series of sequentially presented data points.

Estimating the start point or acceleration alone would have been

insufficient, because a given start point could result in many

possible landing points, if combined with different values of

acceleration.

The accuracy with which participants could estimate the

equation of motion of the space invader on any given trial was

manipulated by adding Gaussian noise to the trajectory—

participants were instructed that their ‘‘radar equipment’’ was

noisy, but that they should try to guess the underlying trajectory of

the space invader as best they could. In noisier trials, trajectory

extrapolation was more difficult and hence the precision of the

extrapolated trajectory estimate was expected to be lower. In these

cases we expected participants to rely more on their a priori

estimate of the statistics governing landing points.

Participants were able to use statistical knowledge, because the

trajectory endpoints were not uniformly distributed but followed a

Gaussian distribution. This statistical model takes the role of a

Bayesian prior in our task, because the model consists of a

probability density function representing how likely each possible

endpoint is a priori, without reference to the actual trajectory

observed on the current trial. Note that participants could learn a

statistical distribution over the space invaders’ landing points

entirely independently of their ability to estimate the parameters of

the trajectories per se, because they were given feedback about the

actual endpoint of each trajectory at the end of each trial.

Furthermore, the endpoints were the only environmental statistic

that could be predicted. This was the case because both the

starting point and curvature of trajectories varied from trial to

trial, such that although they jointly were selected to give an

endpoint following the generative distribution, neither starting

point nor curvature alone was predictable from trial to trial, or

predictive of the current endpoint. Therefore, learning about

environmental statistics could be effectively reduced to learning

the statistics over endpoints.

In order to predict the space invader’s landing point on any

given trial, the Bayes’ optimal solution would be to use all available

information, combining a dynamic modeling prediction (estimate of

the equation of motion) with a prediction from the statistical

endpoints distribution, and to weight these strategies according to

their relative precisions (Figure 2). We hypothesized that if

different brain systems are responsible for the two different types

of prediction, activity in each system should be higher when that

prediction is behaviorally relevant. Hence we identified areas

involved in each strategy as those in which the fMRI signal tracked

the relative precision of the prediction from either the dynamic or

statistical model.

The relative precision of dynamic and statistical predictions was

manipulated on a trial-by-trial basis in two ways:

First, the variance of the Gaussian noise added to each

trajectory changed on each trial—making the dynamic prediction

Figure 1. The prediction task. (A) On each trial, participants see a
target ‘‘space invader’’ moving down the screen. The target appears at a
series of locations in rapid succession (shown here as dots,
simultaneously, for illustration) to give the impression of motion. The
bottom part of the trajectory is occluded (grey box). Participants must
predict where the trajectory will emerge from the occluder (trajectory
endpoint). They indicate their response by moving a cursor; after they
finalise their response by a button-press, feedback is given, as the
target appears at its true endpoint. Trajectories are parabolic, but the
start point and curvature are changed randomly on each trial. (B) The
participant’s estimate of the trajectory was modelled as a quadratic
curve. The ‘‘best estimate’’ trajectory is shown here as a solid blue line;
the regions indicated by the three levels of blue shading indicate the
range of trajectories falling within 1, 2, and 3 standard errors from the
best estimated trajectory. (C) This results in a Gaussian probabilistic
estimate of the trajectory endpoint (blue bell curve). (D) The trajectory
endpoints over many trials (represented by the red histogram) follow a
Gaussian distribution (red bell curve), which gives some statistical
information a priori about where the endpoint will be. This information
can be used to reduce uncertainty in noisy trajectories. The mean and
variance of this underlying distribution change periodically and must be
learned using a statistical model.
doi:10.1371/journal.pbio.1001662.g001

Probabilistic and Dynamic Predictions in the Brain
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more or less precise. We defined trajectory precision (1/sd
2) as the

inverse variance of the estimate of the horizontal landing point,

where that estimate was obtained by least-squares fitting of a

second order polynomial to the actual observed data points (sd is

the standard error of the estimate of landing point based on the set

of observed data points from the current trajectory). This defines

an upper bound on the precision with which participants could

have predicted the trajectory endpoint from data observed on the

current trial alone.

Second, the statistical endpoints’ distribution could be made

more or less precise because trajectory endpoints were drawn from

a series of Gaussian distributions with different variances. The

precision of the statistical distribution (1/ss
2) on trial i was defined

as the inverse variance of the statistical distribution of endpoints

that an ideal observer would believe to be in force at the beginning

of trial i. Again, this defined an upper bound on the precision with

which participants could have predicted the landing point, this

time using the statistical, nondynamic model.

Ideal observer. In the case of the statistical model, it was

particularly important to account for participants’ incomplete

knowledge of the environment, because occasionally (every 20–40

trials), the endpoints’ distribution moved to a new position in space

or changed its variance. This manipulation, which was introduced

to allow us to sample different levels of variance in the underlying

distribution and hence the statistical model, meant that partici-

pants could never know the true statistics of the environment, but

had to learn these over the course of several trials. To account for

this incomplete knowledge, we constructed a Bayesian ideal

observer model that returned the best estimates of the statistical

distribution of trajectory endpoints in force on each trial, given the

trials observed so far. Details of the ideal observer model are given

in the Methods section and supplementary information (Text S1).

We used an ordinary least squares (OLS) fit of a quadratic curve

to generate a prediction based on the trajectory. Although OLS

appears rather different from the dynamic processes we are

proposing are engaged in the brain, it provides equivalent

predictions (about trajectory endpoint) to dynamic estimation of

the parameters of a differential equation governing motion. The

full dynamic version of the trajectory model and a demonstration

of its equivalence in terms of endpoint prediction are presented in

Text S1.

To reiterate, throughout the article, all references to parameters

of distributions refer to the best estimate an ideal observer could

make, given the actual data. These estimated parameters give an

upper bound on the accuracy with which participants could

perform the task; all modelling of behavioural and fMRI data used

these optimal estimates rather than the true parameters of the

generative distribution, which only a clairvoyant subject would

know. Hence parameters of the statistical model (ms, ss) used in all

equations refer to what our Bayesian ideal observer would believe

the statistical distribution to be, and parameters of the dynamic

model (md, sd) refer to the best least-squares estimate of the current

trajectory from the data points actually shown. However, note that

where the relative weighting given to the two models was

important, we have included free parameters in our models to

allow for the possibility that the precision of estimates was

suboptimal for one or both types of predictive estimate.

Regarding notation, parameters of the dynamic, statistical, and

combined models are denoted by subscripts d, s, and sd,

respectively. Throughout the main text, the parameters ms, ss,

md, sd, msd, and ssd refer to the mean and standard deviation of

estimates obtained from the optimal models (the ideal Bayesian

observer’s estimate of the statistical distribution, the optimal least-

squares-fit quadratic trajectory, and the combination of the two as

defined in equations 1a–c). These were the parameters used in the

modelling of behavioural and fMRI data. The only place in which

the true parameters of the generative model are considered (in

Text S1) is stated clearly in the text.

Making a Combined Prediction From the Dynamic and
Statistical Models

We hypothesized that participants would use precision-weight-

ing (the Bayes’ optimal solution) to combine the two predictive

Figure 2. Weighted (Bayesian) combination of predictions. (A
and B) On each trial, we hypothesised that participants would make a
probabilistic estimate of the trajectory endpoint, using the dynamic
forward model (the best estimate of the trajectory and the distribution
of possible trajectories is shown by the blue descending line; the
corresponding distribution of possible endpoints is shown by the blue
Gaussian curve), and that participants have a statistical model of the
underlying Gaussian distribution of endpoints over many trials, which is
also probabilistic (red Gaussian curve). The optimal way to combine
predictions is by precision-weighting (purple). When the trajectory has
relatively little noise, (A) the combined estimate of trajectory endpoint
is more strongly influenced by the prediction from the dynamic forward
model than the statistical model, and vice versa (B). (C) Actual data from
a single human participant. Each data point is one trial. On the x-axis is
displacement of the true trajectory endpoint (x) from the mean of the
statistical distribution (ms). On the y-axis, displacement of the
participant’s response (r) from the true trajectory endpoint (x), towards
the mean of the statistical distribution (ms). If participants relied only on
the statistical distribution over many trials, then r would be equal to ms,
and hence all points would lie on the line x = y (marked ‘‘r =ms’’). In
contrast, if participants disregarded the statistical model, then
responses would simply be centred around the true trajectory endpoint
x, and hence all points would be distributed about the x-axis (y = 0).
Data points are binned by dynamic model noise level. Responses are
more influenced by the statistical distribution (closer to the line x = y
and further from the line y = 0) when the observed trajectory is most
noisy and therefore the dynamic model is least informative. (D) This
effect is significant across the group: bars show mean regression line
slope (b) for each bin of trials; error bars are s.e.m. Open circles
represent the regression slope for the responses made by the optimal
Bayesian observer (weighted combination of predictions with optimal
weighting) for the trials in each bin. In a repeated-measures ANOVA for
the group of 22 participants, there was a significant linear effect of
trajectory noise bin on displacement of the response towards the mean
of the statistical distribution (p = 0.02). All slopes were significantly
above zero (p,1027). The slope for sd med is significantly higher than
for sd low (p = 0.0046, paired samples t test) and the slope for sd high is
significantly higher than for sd med (p,0.00005, paired samples t test).
doi:10.1371/journal.pbio.1001662.g002

Probabilistic and Dynamic Predictions in the Brain
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strategies. On each trial, a participant using precision-weighting

would combine the prediction from the dynamic forward model

with the estimate of the underlying statistical distribution, weighting

each estimate according to the precision of its prediction (the

inverse variance). The consequence of such a weighted combination

model is that participants’ predictions on each trial should not rely

solely on data observed on the current trial; rather, predictions

should be somewhere between the prediction that would be made

based on the current trial alone, and the mean a priori expected

endpoint. More weight would be given to the a priori expectations

(the statistical model) when the variance of the dynamic trajectory

model was high and vice versa (Figure 2a and b).

It was important to verify that participants did indeed use

precision weighting, because in the fMRI experiment reported

below, we used manipulation of the precision (and hence

relevance) of the two information sources to gain experimental

control over the relative weighting of the computational models on

each trial—hence, the fMRI experiment was premised on the

assumption that precision-weighting was used.

Inspection of the data (Figure 2c and 2d) suggests that

participants did indeed use precision weighting; grouping trials

into bins with high, medium, and low levels of trajectory (dynamic

model) noise, the dependence of responses on the statistical model

increased significantly as trajectory noise increased (p = 0.02,

repeated measures ANOVA on regression lines for all participants,

for regression of (true trajectory endpoint minus response) on (true

trajectory endpoint minus prediction of the statistical model, ms)).

To test the precision-weighting hypothesis formally, we

constructed a weighted combination model that generated a set of

idealised responses based on a precision-weighting strategy with

Gaussian response noise. We compared this model to two

alternative models for how the two information sources should

be combined: a model that weighted the statistical and dynamic

predictions in a fixed ratio, ignoring the fluctuations in their

relative precisions (un-weighted combination model), and a model that

simply chose to act according to the most informative source of

information, rather than combining information on each trial

(weighted, no combination model). The three models are illustrated in

Figure 3.

We performed a formal model comparison in which each model

was fit to the participants’ behavioral data (using individually

determined maximum likelihood parameters), and the fits were

compared in terms of the model log likelihoods and the Bayesian

Information Criterion (BIC).

The three models were defined in terms of how predictions of

the statistical model and dynamic model were combined to get a

single prediction msd. The three cases can be written as follows,

where ms, md are, respectively, the mean predictions based on the

statistical and dynamic models individually on the trial in question

[elsewhere referred to as ms(i) etc. for trial i, but here we omit the i

for clarity], s2
s and s2

d are the variance of these estimates, and b

and M are the free parameters: b is a constant allowing for spatial

bias to the left or right, and M is a ‘‘mixing factor,’’ which accounts

for any bias to overweight predictions from either the statistical or

dynamic model.

msd~
md s2

s zmsMs2
d

s2
s zMs2

d

zb ð1aÞ

(weighted combination)

msd~mszM md{msð Þzb ð1bÞ

(un-weighted combination)

msd~
mszb if s2

s vMs2
d

mdzb if s2
s §Ms2

d

(
ð1cÞ

(weighted, no combination)

We determined model fit on the basis that participants’

responses r were centred on msd with Gaussian response noise of

variance k2, where k was a free parameter in the model: r,N(msd,

k2). For each model, for each participant, we found the joint

maximum likelihood values for M, k, and b and calculated the

model log likelihood as p(r | r,N(msd , k2)), where msd is determined

according to the model equation above, using the MLE values of b

and M.

As they contained the exact same free parameters, the models

could be compared according to their log likelihood ratios

(logLRs). However, additional nested-model comparison analysis

using the Bayesian Information Criterion (see Text S1 and Figure

S2) confirms the results. We fit all models to data from 22

participants, who each performed 200 trials of the task while being

scanned with fMRI (see below).

The weighted combination model provided the best description

of human behavior. It outperformed both the un-weighted

combination model (overall logLR = 105, mean 6 SEM logLR

Figure 3. Three alternative ways of combining the trajectory
with the statistical model of the environment. Illustration of the
three models we compared. In each case a statistical model of the
environment over many trials (red) and trajectory estimate (blue) are
combined. (a) Weighted combination model—the response is based on
the precision-weighted combined distribution (purple). (b) Unweighted
combination model—the response in between the predictions from the
two models, but does not depend on their relative precision. (c)
Weighted noncombination—the actor chooses the prediction with the
highest precision but does not combine information from the two
predictions.
doi:10.1371/journal.pbio.1001662.g003

Probabilistic and Dynamic Predictions in the Brain

PLOS Biology | www.plosbiology.org 5 September 2013 | Volume 11 | Issue 9 | e1001662



for individual participants = 4.860.83, range = 20.83 to 12.9,

logLR .0 for 20/22 participants), and the weighted noncombina-

tion model (overall logLR = 363, mean 6 SEM for individual

participants = 16.561.36, range = 7.9 to 30.6, logLR .0 for all

participants) (see Figure S1 and Table S1 for full results).

Note that although the alternative combination models are

presented here in terms of combining spatial probability density

functions over the trajectory endpoint, in fact we do not wish to

assert that in the brain the two sources of information were

combined only at the end of the trajectory or that this combination

necessarily occurs in the spatial reference frame of endpoints’

coordinates. It seems equally possible that the statistical distribu-

tion over endpoints acts as a prior over possible trajectories,

constraining a process of estimating the current trajectory that

unfolds as each new data point from the trajectory is observed.

In Text S1, we present a model in which the trajectory is

estimated by fitting equations of motion after each observed data

point as the trajectory unfolds. In this case, the role of the statistical

prior is simply to constrain the set of possible trajectories (Figure

S3). In this model, information from the statistical distribution and

the current trajectory is truly integrated throughout the trajectory

observation process. If information from all data points is linearly

combined, this model gives precisely the same predictions of

endpoint location (although not necessarily of intermediate

locations on the trajectory) as the weighted combination model

described above; hence, the behaviour described could certainly

be produced by a process in which the statistical model acts as a

constraint (a prior) on the trajectory estimation process itself,

rather than being combined with the trajectory estimation after

the fact. Indeed, since our only measure of behaviour was

estimation of the endpoints, we cannot distinguish the two

hypotheses.

Neural Correlates of the Computations
The results of the behavioral modeling indicate that participants

did indeed use precision weighting. In accordance with the

Bayesian principle that multiple sources of information should be

reconciled according to their respective predictive values, partic-

ipants (a) integrated the output of the two internal models rather

than selecting one or the other (weighted combination . weighted

noncombination) and (b) weighted the two predictive modes

according to their relative precision (weighted combination . un-

weighted combination) on a trial-to-trial basis. This finding was

the basis for the design of our fMRI experiment.

We used the fact that participants used precision-weighting to

shift, parametrically, between strategies as the basis for an fMRI

investigation of the neural systems underlying the computations.

We reasoned that if the there are computationally specialized

neural systems for the two types of prediction, activity in these

systems should correlate with how behaviorally relevant that

system’s prediction was on a trial-to-trial basis. The fact that the

weighted combination model fit the behavior of human partici-

pants better than the un-weighted combination model indicates

that participants made use of each type of predictive computation

parametrically, in accordance with its predictive precision. Hence

we sought to identify brain regions involved in one or other

predictive process as those that track the precision of the

prediction for that computational strategy compared to the other,

on a trial-to-trial basis.

Causing a trial-to-trial re-weighting of the two modes of

information processing is a manipulation analogous to asking

participants to attend to one or other aspect of a multidimensional

stimulus, in order to up-regulate processing in brain networks

involved with that stimulus [21–23]. A clear example of this

approach is to instruct participants to attend to faces or houses

when stimuli are in fact face/house composites [24,25]. In the

present design, manipulations of the relative precision of the two

data sources acted essentially as an instruction to alter the relative

weighting assigned to the two strategies, and hence to up- or

down-regulate brain activity. Therefore, it is the trial-to-trial

behavioral relevance of the two types of prediction that we

expected to cause a change in the relative activity of brain systems

involved in the two types of computation—particularly, we are not

arguing that manipulating the precision of representations within a

brain network causes gross changes in the activity of that network.

We asked two questions about how different computational

strategies are implemented in the brain. First, which brain systems

are involved in computing each type of prediction (dynamic/

statistical)? Second, if there are separate computationally specific

neural systems for statistical models versus dynamic models, how is

information from these systems integrated in the brain? To address

these questions, we used functional magnetic resonance imaging

(fMRI). The fMRI results below are from the same 22 participants

whose behavioral performance (from the fMRI session) was

analyzed above.

We analyzed the fMRI data using a general linear model, with

regressors representing the precisions of the dynamic forward

model and the statistical model on a trial-to-trial basis (where

precision was represented as a parametric modulation of the

magnitude of event-related regressors time-locked to the onset of

the decision phase of the trial; see Methods). These regressors were

log transformed as precision is a logarithm quantity by nature.

Formally, the Jeffreys’ prior for estimating a precision is uniform if

the Bayesian integrals are performed over log precision; intuitively,

the same information gain is achieved between precisions of 0.1

and 1, as between precisions of 1 and 10.

A third regressor representing the formation of the combined

prediction (the Kullback-Liebler divergence between the statistical

model and the combined prediction incorporating dynamic

information—see below) was also included. A fourth regressor

representing trial-to-trial accuracy (the distance between the

participant’s prediction and the true landing point) was also used;

this regressor was orthogonalized with respect to statistical and

dynamic model precision, because as behavioral results show

(Figures 2 and 5e) accuracy depended on these variables. All other

regressors were uncorrelated (see Methods section for details).

All four regressors were constructed as follows: brain activity

was modeled using a single event (short square wave of 0.1 s

duration) at the onset of the decision phase of the trial; the

magnitude of these events was parametrically modulated to reflect

the value of the quantity of interest (e.g., in the case of model

precision, larger event magnitudes represented higher precisions).

Thus, all regressors had similar temporal/frequency characteristics

and represented phasic activity at the time of decision-making,

rather than tonic activity over many trials. Therefore, our analysis

was sensitive to brain activity associated with representations of the

predictive models that were activated at the time or making a

decision, rather than with steady-state, stored representations of

each model. The four computational regressors were entered into

a general linear model together with regressors of no interest

representing the main effect of task (events as above, but with an

equal magnitude on all trials) and head motion.

The reported group-level statistical maps were thresholded at

p,0.05 corrected for multiple comparisons at the whole brain

level using cluster-based False Discovery Rate correction (see

Methods)—this resulted in a minimum cluster size of 238

contiguous 2 mm3 voxels at a cluster-forming threshold of

p,0.01 uncorrected. Additionally, we limit reporting of activations

Probabilistic and Dynamic Predictions in the Brain

PLOS Biology | www.plosbiology.org 6 September 2013 | Volume 11 | Issue 9 | e1001662



in the main text to only those clusters with a peak Z-score greater

than 3.1 (p,0.001 uncorrected). However, a full table of

activations is given in Table S2.

Dynamic Forward Modeling and Action Planning
To extrapolate the occluded part of the trajectory from the

observed part, the observer must construct a dynamic forward

model representing how the horizontal and vertical position of the

target changes over time. Use of the dynamic forward model was

correlated with increased activity in a network of connected areas

including the anterior inferior parietal cortex in the region of intra-

parietal area AIP, the ventral premotor cortex PMv, and

connected subcortical areas: Lobules VI and VIII of the

cerebellum (AIP is the chief recipient of cerebellar input within

IPL and IPS [26]) and the caudate/anterior putamen. These areas

are shown in Figure 4 and listed in full in Table S2.

Statistical Model and Reinforcement Learning
As well as constructing a dynamic forward model of the current

trajectory, participants could use a statistical estimate of the

underlying distribution to inform their predictions. This estimate

of the underlying environmental statistics could be learned by a

system without access to the dynamic forward model, because

participants were always given feedback on the true endpoint of

each trajectory.

Activity associated with preferential use of the statistical model

was observed in a region more usually associated with reward-

learning and calculation of expected value: lateral orbitofrontal

cortex (OFC) (Figure 5a, Table S2). This region was activated

bilaterally.

OFC Activity Is Specific to Predictions of the Statistical
Model

Since activity in the reinforcement learning system is often

associated with predictions of positive outcomes, it could be

argued that the activity observed in the OFC and ventral striatum

in relation to precision of the statistical model is simply due to an

increased expectation of success when endpoints are drawn from a

narrow generative distribution. However, increased expectation of

success cannot fully explain the current results; instead, it seems

that there is an intriguing dissociation between two regions that

have both been associated with reward [27]: OFC and the ventral

striatum. We contrasted the effects in the two regions of interest of

statistical model precision, trajectory model precision, and trial-to-

trial accuracy (which in this analysis, unlike the analyses previously

presented, was not orthogonalized with respect to the other

regressors).

We found that the OFC showed a strong effect of the precision

of the statistical model but no effect of trajectory precision or trial-

to-trial accuracy, whereas ventral striatum showed a strong effect

of accuracy (Figure 5b).

Strikingly, the OFC activity was correlated only with precision

of the statistical model, even though the precision of the dynamic

trajectory model was a much better predictor of behavioral

accuracy than the precision of the statistical model (Figure 5e).

These results suggest that whereas OFC may contain a represen-

tation of reward expectation [28,29], this representation is

restricted to the part of the outcome that can be inferred statistically from

prior experience.

An interesting contrast may therefore be drawn between ventral

striatal activity, which may be related to success expectation,

because it reflects all information bearing on the likelihood of

success, and OFC activity, which only reflects that part of the

estimate that is furnished by the a statistical model of the

underlying environment.

Combining the Two Models
The results presented so far show that different brain systems

are selectively sensitive to predictions based on the dynamic or

statistical model. However, behavioral analysis suggested that

participants combine the predictions of the statistical model and the

dynamic trajectory model (see behavioral results). This raises the

question: if the statistical model and dynamic trajectory model are

combined in the brain, where and how does this happen?

To identify regions in which the statistical and dynamic

predictions are combined, two approaches are possible.

First, we might test for regions containing information about

both the dynamic and statistical models independently—that is,

regions that are independently sensitive to both the precision of the

statistical model and the dynamic model. Perhaps surprisingly,

when we examined the neural networks associated with precision

of the statistical and dynamic models, we found no overlap

between the two neural systems (no shared voxels even at a liberal

threshold of Z.2.3; that is, p,0.01 uncorrected).

Second, we might test for regions that are sensitive to the

disparity between the predictions of the statistical and dynamic

models. In particular, we tested for regions that were active in

proportion to how much the prediction of the statistical model had

to be updated, with dynamic information, to produce the

combined prediction (the Kullback-Liebler divergence between

the predictions of the statistical and dynamic model; see Methods).

This approach stems from a predictive coding framework [1], in

which observations that are well predicted result in lower neural

activity than poorly predicted observations [30–32]. Hence the

response of brain regions combining statistical and dynamic

models should be lower if there is high concordance between the

two models’ predictions, and higher if there is a high disparity

between the two models.

We observed activity associated with the disparity between the

prediction of the statistical and combined models in the angular

Figure 4. Brain regions associated with the dynamic forward
model. Activity correlated with the precision of prediction from the
dynamic forward model. Cortical activity and subcortical activity in
cerebellum and caudate. The figure shows group Z-maps for the 22
participants, thresholded at p,0.05 corrected (see Methods). A full
table of activation peaks is given in Table S2.
doi:10.1371/journal.pbio.1001662.g004
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gyrus of the IPL, the posterior cingulate cortex, and the putamen

(see Table S2 and Figure 6a).

A brain region that forms the combined prediction should have

access to the predictions of the statistical model itself. However,

none of the regions identified as possible sites of combination were

active in proportion to the precision of the statistical model as

defined in our analysis above. A possible reason for this would be if

the statistical model was coded in the tonic firing, or synaptic

efficacy of neurons that are responsive to the trajectory (as we

tested only for phasic effects of the precision at the time of

decision-making). For example, we might hypothesise that

statistical-model-based constraints on the possible sets of motion

parameters would be represented by top-down up-regulation of

networks of neurons representing the more likely trajectories (we

present such a model in Text S1 and Figure S3). In this case, the

statistical model could be represented in a region that calculates

the dynamic model, but there would not necessarily be a phasic

fMRI response correlated with the precision of the statistical

model at the time of the decision.

Although a bulk average signal such as BOLD may not be

directly sensitive to complex neural coding patterns, it is

nevertheless possible to infer the presence of this neural

information indirectly, by demonstrating that changes to this

complex code are associated with increased BOLD activity. This

change-related activity has been used to demonstrate the encoding

of specific visual objects [33,34], actions [35], words [36], and

numbers [37] and locations, amongst many other examples.

We therefore tested for representations of the statistical model in

each of the possible convergence sites (regions with activity

proportional to the KL divergence between statistical and

combined predictions) by defining two regressors that captured

changes in the statistical model from trial to trial: The KL

divergence between the predictions of the statistical model on

the current and subsequent trials (see Methods) and the simple

unsigned change in the mean prediction of the statistical model.

Note that because veridical feedback on the landing point was

given after each trial, these updates in the statistical model could

be, but were not necessarily, calculated without reference to

dynamic predictions.

We tested for effects of each of these regressors within the

regions in which activity correlated with the prediction error

between statistical and combined predictions, identified above: the

angular gyrus, putamen, and posterior cingulate. In each case we

defined a region of interest as the cluster of voxels with p,0.01

uncorrected, identified in the whole brain analysis for the

prediction error signal above.

Activity in the angular gyrus was significantly correlated with

both these regressors (Figure 6b)—a t test for the mean activity in

the angular gyrus ROI revealed significant effects of the trial-to-

trial KL divergence in the statistical model (p = 0.0047) and the

Figure 5. Activity associated with the statistical model and with accuracy. (A) Activity correlated with the precision of prediction from the
statistical model. The figure shows group Z-maps for the 22 participants, thresholded at p,0.05 corrected (see Methods). (B) Parameter estimates for
the effect of precision of the statistical model, precision of the trajectory estimate, and trial-to-trial accuracy, for a region of interest in the
orbitofrontal cortex, defined based on a meta-analysis [65]. Bars show group mean, and error bars show s.e.m. Note that although there is a
significant effect of precision for the statistical model (p = 0.036, one sample t test against zero), there is no effect of accuracy per se (p = 0.82) or of
the precision of the dynamic model (p = 0.55); note, in the region of interest analysis, accuracy is not orthogonalised with respect to model precisions,
so the effects of model precision are independent of variance that could also be explained by overall accuracy. This is why effect sizes look slightly
different to in Figure 6. (C) Activity relating to trial-to-trial accuracy. The figure shows group Z-maps for the 22 participants, thresholded at p,0.05
corrected (see Methods). Note the strong peak in the ventral striatum. Slice location is y = 6, peak effect at 20, 6, 210, Z = 4.8. In the whole brain
analysis, accuracy was orthogonalised with respect to the model precisions, with which it was correlated (as in panel E). (D) Parameter estimates as in
(B), but for a region of interest in the ventral striatum, defined using the nucleus accumbens mask from the Harvard-Oxford atlas, available in FSL
(www.fmrib.ox.ac.uk/fsl). Note that this ROI is strongly affected by overall accuracy (p = 0.0015, one sample t test against zero) but not by the
precision of the statistical (p = 0.23) or dynamic (p = 0.61) models. (E) Behavioral effects of precision of the statistical model and trajectory estimate on
accuracy. Bars show group mean 6 s.e.m. effect size from a multiple regression of accuracy on precisions for the two models. The effect of precision
for both the statistical and dynamic models were significant (t test versus zero, p,0.01 and p,0.0001, respectively), but the effect of dynamic model
precision was much greater (paired t test, p,0.0001).
doi:10.1371/journal.pbio.1001662.g005
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change in the mean prediction of the statistical model (p = 0.043).

These effects were not present in the putamen ROI (p = 0.24,

p = 0.29) or the posterior cingulate ROI (p = 0.15, p = 0.93).

It is particularly striking that the putative site of convergence in

the angular gyrus, which is sensitive to the KL divergence between

statistical and combined predictions, is also sensitive to two

independently defined regressors that depend on knowledge of the

statistical model’s predictions (the KL divergence in the statistical

model from trial to trial, and the change in its mean prediction), as

well as to the disparity (KL divergence), because these latter effects

survive even when the regressors are orthogonalized with respect to

the KL divergence between the statistical and combined models

(p = 0.022, p = 0.047, respectively—single sample t test against zero).

Angular Gyrus as a Site of Convergence: Connectivity
with OFC

It was notable that distinct regions of parietal cortex were

associated with trajectory prediction and updating of the statistical

model. In particular, the angular gyrus in the posterior inferior

parietal lobule (IPL) was active during updating; the angular gyrus

is distinct from the more anterior AIP region that we had seen

activated in association with trajectory prediction, although the

regions are interconnected [38,39].

Anatomically, the angular gyrus is well placed to provide a

bridge for statistical information calculated in frontal striatal

systems to reach action maps in parietal cortex. The correspond-

ing region in the macaque, also in the posterior IPL, is

distinguished from all other parietal regions by its possession of

connections with the lateral OFC [40]; in other words, the same

region that we had seen was activated in proportion to the

precision of the statistical model (Figure 5a). The connections are

reciprocal [40].

Because the connections between posterior IPL (angular gyrus

homologue) and lateral OFC are carried in a distinct fascicle in the

macaque, the third branch of the superior longitudinal fascicle (SLF

III), we were able to use diffusion-weighted imaging and tracto-

graphy to test for evidence of angular gyrus-lateral OFC connectivity

in human subjects. We confirmed that this was the case for the

particular region in which activity was associated with the disparity

between the statistical and combined predictions by running

diffusion tractography on a database of 65 participants, from the

region identified in the fMRI experiment above (see Figure 6c).

Discussion

Traditionally, systems neuroscience has focussed on contrasting

different behaviors, tasks, or stimulus types. In contrast, an

emerging [2,4] computational view of systems neuroscience suggests

that brain systems may be better characterized by the types of

internal models they employ, than by the behavioral domains in

which they are commonly engaged.

In this study we investigated computational specialization

directly by controlling the type of information available to

participants, and hence the strategies they could use, in the

context of a single goal (predicting the endpoint of a space

invader’s trajectory). By manipulating their predictive power, we

investigated whether different computational strategies for

performing the same task recruited different neural systems.

Strikingly, we found that each computational domain recruited

brain networks that are typically involved in tasks that are

computationally similar, but behaviorally dissimilar, to compo-

nents of the current task. There was preferential involvement of

the motoric/action planning regions when participants used a

dynamic model to make predictions, and preferential involve-

ment of the reinforcement learning system, particularly lateral

OFC, when a statistical model was used. This dissociation

occurred even though on all trials participants were making a

single behavioural response based on the two predictions.

Brain Networks with Computational Specificity
In this experiment, we set out to test whether two types of

predictive model—dynamic and probabilistic—were associated

with different brain systems. We found that there were indeed

brain systems computationally specialized for the two types of

prediction. These brain systems have generally been associated

with different behavioral domains—but those behavioral

domains can also be distinguished in terms of the computations

involved.

In the current paradigm, dynamic modeling was applied to

prediction of a perceptual trajectory, but it was associated with

activity in a network of brain areas that have generally been

associated with object-directed reaching [41,42], and with the

motor system more generally. Trajectory extrapolation is

computationally similar to motor control in that both require a

dynamic forward model in which the position of an object (or

body part) is represented and extrapolated using an estimate of

the rate of displacement. Perceptual trajectory extrapolation has

previously been show to activate a similar network to object-

directed reaching [14,15,43]; the present results suggest that the

Figure 6. Angular gyrus is a possible site for the formation of
the combined prediction. (A) Activity correlated with the degree to
which the statistical model must be updated with dynamic information
to obtain the combined predictions: DKL N sdkN sð Þ as defined in
Equation 3. This statistical map shows results corrected for multiple
comparisons using cluster-based correction as described in the
Methods section. A full table of activation peaks is given in Table S2.
(B) Effects for three measures involving the statistical model, in the
angular gyrus. An ROI was defined in the angular gyrus, as all voxels
with p,0.01 for the effect of divergence between the statistical and
combined models, DKL N sdkN sð Þ as defined in Equation 3. The group
effect is plotted, within this ROI for (i) the degree to which the statistical
model must be updated with dynamic information to form the
combined prediction DKL N sdkN sð Þ—this was the contrast based on
which the ROI was defined so suffers from selection bias—the result is
replotted here only for reference; (ii) the degree to which the statistical
model is updated between trials, DKL N s,tz1kN s,tð Þ as defined in
Equation 4; and (iii) the change in the mean prediction of the statistical
model between trials, Dm as defined in Equation 5. (C) Diffusion
tractography from angular gyrus. Figure shows probabilistic tracto-
graphy results for a group of 65 subjects, showing the connections of
the region in angular gyrus that was active during updating of the
statistical model. Connectivity to lateral OFC via the superior
longitudinal fasicle can clearly be seen. The image shows, in green,
the strength of connectivity of the functionally identified angular gyrus
region to each voxel, defined as the average number of ‘‘particles’’
originating in the angular gyrus region which pass through each voxel.
The image is thresholded at 1% of total ‘‘particles’’ (minimum) and 10%
(maximum). The red region in OFC is the area significantly correlated
with the trial-to-trial precision of the statistical model.
doi:10.1371/journal.pbio.1001662.g006
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network might always be active whenever a dynamic forward

model is employed.

In contrast, statistical prediction was associated with activity in

the lateral OFC, a region more commonly associated with the

learning of reward and value [44]. However, the computations

involved in reinforcement learning tasks are similar to those

involved in learning the statistical model in this task: The statistical

model over past endpoints forms a probabilistic prediction for

future endpoints, which can be updated via a prediction error

when the true landing position is observed. Similar to reward-

learning paradigms, learning of the statistical model occurs in

discrete steps and the resulting model consists of probabilities

assigned to different outcomes.

Interestingly, although in the present study expected value can

be predicted by two computational mechanisms, OFC activity is

specific to one of them: there is a specific relationship between

OFC and the precision of the statistical model of the underlying

environment. This suggests the hypothesis that the OFC may be

specialized to encode expectations about environmental events

that are inferred statistically from prior experience, in general—in

other words, activity in the OFC may not be indicative of the type

of information that is represented (value) but of how the

information was inferred (statistically, from discrete events, with

an expectation that future events are nondeterministically sampled

from that distribution).

Although we have considered our findings in terms of different

forms of computations, it is also possible to describe the two sets

of activity in terms of the Bayesian concepts of prior and

likelihoods. Indeed, it has previously been claimed that prior

knowledge might be represented in OFC [45]. However,

although in the present study the statistical model plays the role

of a Bayesian prior and the dynamic model corresponds to the

Bayesian likelihood, it is unlikely that the role each type of

prediction plays in Bayesian inference determines which brain

structures calculate that model; rather, both priors and

likelihoods may be expressed throughout the brain depending

on the type of information being modelled. In contrast to the

statistical prior expressed in the OFC in the current study,

modality-specific priors may be acquired and expressed within

modality-specific cortex. For example, the distribution of

orientation-tuned receptive field in primary visual cortex reflects

the range of distributions experienced in visual development

[46,47], whereas in auditory cortex, categorical activation of

neurons reveals priors in the acoustic structure of human speech

[48,49]; auditory priors as expressing in primary auditory cortex

can even be rapidly adjusted to maximize the posterior

discriminability of behaviourally relevant sounds [50].

Integrating Predictions
Bayesian theory suggests that when two sources of information

are available, they should be combined. Behavioural analysis

confirmed that participants did indeed combine statistical and

dynamic models in the current task, making use of both on any

given trial. We therefore asked where in the brain predictions from

two computationally and neurally distinct systems could be

combined.

The present results suggest the parietal cortex as a site of

integration for the two predictions. A network of areas centered

around the IPS was active during trajectory prediction, whereas a

specific region in angular gyrus, which has connections to the

lateral OFC, was sensitive both to the disparity between statistical

and combined predictions, and to updating of the statistical model.

This finding is analogous to previous observations [51,52] that

motoric regions of cortex show reward prediction error signals in

tasks in which the level of reward is determined by the choice of

action. It illustrates that dynamic predictions made in the motor

system can nonetheless be informed by knowledge of the statistical

properties of the environment, even if the key brain regions

involved in calculating the statistical model lie elsewhere (in the

present experiment, use of the statistical model was associated with

activity in a region of lateral OFC that has connections to the

proposed integration site in the angular gyrus; see Figure 6c).

The parietal cortex is an appealing substrate for integrating

predictions because it contains a response-relevant reference

frame: IPS is structured as a series of action-centered, spatial

representations that might be accessed by environmental statistical

models or dynamic forward models (see Culham and Valyear

2006 [53] for review). Notably signals have been observed in the

IPS, albeit in separate experiments, which reflect the learning of

reward statistics and the forward dynamics of motor control.

Neurons in parietal reach region must access dynamic motor

predictions as they represent arm position with zero lag feedback

[54]. Similarly neurons in the lateral intraparietal area (LIP)

update their receptive fields predictively prior to a saccade [42].

However, LIP neurons also reflect statistical prior expectations of

the reward value associated with possible saccadic responses [55–

57]; these expectations are learned over many previous experi-

ences. It is even suggested that different prior experiences may

combine in a statistically optimal fashion to predict pre-saccadic

LIP firing [58]. Furthermore, IPL has been linked to the updating

of internal models even in an abstract, nonmotoric frame of

reference [59].

Another situation where it has been clear that the same

computation might be performed separately in two different places

is in the context of model-based and model-free learning. Indeed,

when subjects are performing tasks that can be performed in a

model-based or model-free manner, outcome signals in the ventral

striatum reflect the integrated prediction of both modelling

strategies [60]. Here we have shown how two computations may

be combined when a single action is to be selected, and they may

do so in cortical regions that prepare the actions themselves.

Because of its topographic mapping and close links to motor

output, the IPS has been used extensively as a model system for

investigating factors driving behavior. This is of particular

importance in single unit studies, which must necessarily focus

on a small region of cortex. Cellular activity in the IPS is therefore

characterized in exquisite detail in terms of the computational

variables found therein. It is unlikely, however, that the IPS is

solely itself responsible for the processing underlying these

computations. The present results suggest a hypothesis that inputs

to IPS could derive from distinct networks, depending on their

computational nature.

Methods

Twenty-two participants (11 females, mean age 28 years, age

range 24–35 years) completed the behavioural training and fMRI

parts of the experiment. All participants gave informed consent in

accordance with the National Health Service Oxfordshire Central

Office for Research Ethics Committees (07/Q1603/11).

Task
The trajectory extrapolation task was as described above:

participants observed a noisy trajectory and extrapolated to guess

where the endpoint of the trajectory would fall. They moved a

cursor to the predicted endpoint by holding down buttons for

leftwards or rightwards movement and pressing a third button to

finalize their response. After they responded, participants were
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given feedback as the target reappeared at its true endpoint. The

timing of each trial was as follows—duration of the trajectory (40

samples altogether) was 6 s. Participants were able to respond

from the moment the space invader disappeared behind the

occluder. Feedback was given immediately after the response was

made. fMRI responses were modeled based on a single timepoint,

the onset of the response period (the point at which the space

invader went behind the occluder).

Trajectories were generated as follows: endpoints were selected

from a Gaussian distribution (the mean and variance of which

changed every 20–40 trials, independently). After the endpoint was

selected, a value for the acceleration in x (i.e., the curvature of the

trajectory) was randomly selected from a uniform distribution that

was defined such that the minimum possible acceleration

magnitude was zero (straight vertical trajectory) and the maximum

acceleration (either leftwards or rightwards) was such that the

trajectory encompassed 50% of the horizontal screen width.

Trajectories that went off the edge of the screen were discarded.

This method of generating trajectories meant that a given

endpoint could be associated with any value of horizontal

acceleration and hence, any start point at the top of the screen.

Naturally, if any two values out of endpoint, acceleration, and start

point were known, the third could be predicted. However, both

start point and acceleration would have to be estimated to predict

the endpoint, and similarly prior knowledge of the endpoint could

only constrain the joint choice of start point and acceleration, not

the individual values.

Protocol
Each participant completed three task phases: first a behavioral

training block of 40 trials in which the trajectories had no noise

added, so they could learn the general shape of trajectories;

second, a further 310 trials of training to familiarize them with the

task environment; and third, an fMRI session of 220 trials. The

first 20 of these trials had no trajectory noise, to remind

participants of the shape of trajectories. These 20 trials were

excluded from fMRI analysis.

Participants were not informed that there was a statistical

distribution of trajectory endpoints across trials, nor that this

distribution changed over time. However, informal debriefing

conversations suggested that most participants did in fact notice

that there was a statistical pattern to the endpoints, at least some of

the time.

Although the precision of the underlying distribution and the

trajectory varied independently from trial-to-trial, across the

experiment the variance of the endpoints’ distribution and the

variance of the white noise in the trajectory were of the same order

of magnitude—the standard deviation of trajectory data points

about the smooth curve of the underlying (generative) trajectory

was (averaged across the 200 fMRI trials) 0.67 of the average

standard deviation of trajectory endpoints around their generative

mean. In modeling the relative weight given to information

sources, we took account of possible differences between subjects

in the accuracy of estimating each model, by fitting a ‘‘weighting

factor’’ to the data (M in the equations 1a–c above).

Bayesian Ideal Observer
Because the distribution of endpoints changed over time, we

could not assume that participants knew the true distribution. We

therefore constructed a Bayesian computer participant, which

learned about the position and variance of the statistical

distribution of endpoint from the same information that human

participants were given, and we used its ‘‘beliefs’’ to model what

participants should know/believe about the endpoints’ distribution

on a trial-to-trial basis. The Bayesian computer participant is

described in detail in Text S1. Here we give a brief summary.

Like all Bayesian models, our computer participant was

supplied with a model of the structure of the environment: it

‘‘knew’’ that trajectory endpoints were generated from a

Gaussian distribution with unknown mean and variance, and

that these parameters could independently jump to totally new

values. We did not model how participants would learn these

meta-parameters or ‘‘rules of the game,’’ but focused on the

period in which they were already well-learned: by the time

participants started the fMRI session, they had had an extensive

training session (350 trials, 1 hour) to familiarize them with the

task environment. We assumed that knowledge of the task

structure (distributions were Gaussian, etc.) was transferred from

the training to test session, but that estimates of the parameters of

the environment (the location and variance of the statistical

distribution) were not; this simplifying assumption was introduced

as we could not be sure how participants learned in the training

session (when they were also learning the structure of the

environment) nor how quickly this learning would decay in the

several hours/overnight gap between training and test sessions.

The model used an iterative process, which was updated once

for each experimental trial, to estimate the values of four free

parameters of the endpoints’ distribution (free parameters are

simply those parameters whose values are estimated from the

data): the distribution mean ms (i) on each trial i, the standard

deviation ss(i), and the independent probabilities am and as that

ms(i) and ss(i), respectively, would jump to new values on a given

trial. To estimate the parameters, it calculated the likelihood of the

current data point given each possible set of parameters {ms(i),

ss(i), am, as}, and inverted this using Bayes’ rule to find the

likelihood of the parameters, given the data point:

p ms ið Þ,ss ið Þ,am,asjx ið Þ
� �

~p x ið Þjms ið Þ,ss ið Þ,am,as

� �
p ms ið Þ,ss ið Þ,am,as

� �
:

ð2Þ

Initially (before the first trial of the experiment) the model

assigned equal probabilities to all values of the parameters, so

p(ms(i), ss(i), am, as) was uniformly distributed across all sets of

{ms(i), ss(i), am, as}. After one trial, the probability of each set of

parameters {ms(i), ss(i), am, as } was updated using Bayes’ rule as in

equation 1, to give a posterior probability that {ms(i), ss(i), am, as }

were the true parameters of the distribution. On the next trial, the

prior probability of each set of parameters p(ms(i), ss(i), am, as) was

calculated from the posterior of the first trial, using a ‘‘leaky’’ step

in which the possibility of a jump in parameter values (as estimated

by am and as) was taken into account.

We used the estimates of ms(i) and ss(i) from the Bayesian

computer participant both in the modeling of how people combine

the statistical and dynamic models’ predictions (above) and in the

fMRI analysis.

fMRI Data Collection and Analysis
In the fMRI block, trial timing was as follows: trajectory

observation period lasted 6 s; response was freely timed and took

about 1 s on average; and feedback was shown for 500 ms and

there was a Poisson-jittered inter trial interval, with a mean ITI of

6 s and the range truncated at 2–12 s.

fMRI data were collected on a Siemens Trio 3 Tesla scanner

using an EPI protocol optimized to reduce signal dropout in the

inferior frontal cortex [61], with full brain coverage at a resolution

of 36363 mm and a temporal resolution of 3.0 s. fMRI data were
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analyzed using tools from FMRIB software library, FSL [62]: the

individual functional images were fieldmap corrected, skull-

stripped, and smoothed with a Gaussian kernel at FWHM

8 mm. For group statistics, individual images were registered into

MNI space using nonlinear registration tool FNIRT.

fMRI analysis was performed on each individual participant’s

data using FEAT (from FSL) using a general linear model as

described in the main text. The regressors were uncorrelated

(correlations: statistical model precision versus dynamic model

precision, r = 20.0025, p = 0.97; statistical model precision versus

statistical model update, r = 0.11, p = 0.10; trajectory model

precision versus statistical model update, r = 0.040, p = 0.57) apart

from the regressor representing behavioural accuracy, which was

significantly correlated with dynamic model precision (r = 0.32,

p,0.00005). This behavioural accuracy regressor was therefore

orthogonalized with respect to other regressors in some analyses as

described in the Results section.

At the individual subjects level, regressors in the General Linear

Model were defined as the log precision of the statistical and

dynamic models, the update of the statistical model (defined as the

log KL divergence between the statistical model on the current

trial and the next trial as in Equation 4), and the accuracy of the

response (the distance in terms of % screen width from the point at

which the participant placed the cursor, to the actual endpoint of

the underlying trajectory). In some analyses this accuracy regressor

was orthogonalized with respect to all other regressors, as stated in

the Results section. Contrasts were defined as each regressor

minus implicit baseline—that is, the test statistic reported for each

regressor is simply the Beta value for that regressor derived from a

General Linear Model analysis of the fMRI data.

The measure of disparity between the statistical and combined

models was defined as the Kullback Liebler (KL) divergence

between the probability distribution of landing points across space

based on the statistical model and the distribution based on the

combined prediction, incorporating the dynamic model on each

trial:

DKL N sd DDN sð Þ~
X

x
p xi Nsdjð Þlog

p xi Nsdjð Þ
p xi Nsjð Þ : ð3Þ

In Equation 3, N s and N sd denote the propositions that the

landing point on trial i, xi, follows a normal distribution N ms,s
2
s

� �
or N msd ,ssd

2
� �

—that is, based on the statistical model alone or on

the combined prediction from the statistical and dynamic models,

respectively. p(xi DN s) and p(xi DN sd ) are therefore spatial proba-

bility distributions—that is, the probability that each point in space

will be the landing point.

The KL divergence between the statistical model on the current

and subsequent trials (used to identify steady-state representations

of the statistical model) was defined as follows:

DKL(N s,tz1DDN s,t)~
X

x
p(xi DN s,tz1)log

p(xi DN s,tz1)

p(xi DN s,t)
, ð4Þ

where N s,t and N s,tz1 denote the propositions that the landing

point on trial i, xi, follows a normal distribution) N ms,i,ss,i
2

� �
or)

N ms,iz1,ss,iz1
2

� �
—that is, based on the statistical model at trial i

or i+1, respectively.

The unsigned change in the mean prediction of the statistical

model was defined as:

Dm~ ms,iz1{ms,i

�� ��, ð5Þ

where ms,i is the value of ms on trial i, etc.

Group analysis was done using a random effects model in

FEAT. Z (Gaussianised T/F) statistic images were thresholded

using clusters determined by voxelwise p,0.01 (uncorrected) and a

corrected cluster significance threshold of p = 0.05 [63]. All

statistical maps (figures) and tables show voxelwise statistics (Z-

scores), which pass False Discovery Rate correction for multiple

comparisons at the whole brain level. Cluster-extent-based false

discovery rate was determined using Monte Carlo simulations of a

Gaussian random field, matched in size and shape to the MNI

brain and with a smoothing kernel of 8 mm (as used in our data

analysis), done using the AlphaSim tool distributed with AFNI

[64]. Using a cluster forming threshold of Z.2.3 (p,0.01), the

minimum cluster size necessary to ensure a false discovery rate of

a= 0.05 is 238 voxels (in 2 mm MNI space)—hence, only clusters

with more than 238 contiguous voxels at this threshold are

reported. We imposed an additional criterion of peak Z-score

greater than 3.1 (p,0.001 uncorrected) for reporting of clusters in

the main text, although all clusters surviving the extent threshold

above are reported in Table S2.

Supporting Information

Figure S1 Model fitting results. (a) Log likelihood ratio for

the two alternative models, the unweighted model and non-

combined model, versus the weighted combination model (if the

models were equally likely given the data, the logLR would be

zero). Participants are ordered according to the log likelihood ratio

for weighted versus unweighted model. (b) Maximum likelihood

parameters for the three models. The maximum likelihood values

for the three free parameters, M, k, b are shown for each model—

weighted combination (green), unweighted combination (blue),

weighted noncombination (red). Each dot is one participant. Note

that M had a different range in the three models—in the

unweighted combination model M ranged from 0 to 1, whereas in

the weighted combination and weighted no-combination model,

M ranged from 0 to 2. For the unweighted combination model

(blue dots). 2M is plotted so that the whole state space that was

searched maps onto the whole plot, for all three models. The

purpose of this plot is to illustrate that the state space we searched

encompassed the empirical values of M, k, b successfully.

(EPS)

Figure S2 BIC model comparison. BIC values for each ver-

sion of each model in each subject (each version/set of free para-

meters is one line). Overall the weighted combination model has the

best fit for all sets of free parameters in most subjects, whereas there

is little difference between different versions of the same model.

(EPS)

Figure S3 Expanded weighted combination model. (a)

Dynamic model with prior based on the statistical model. A single

trial is represented in the whole of panel a; each subplot is a

different time-point in the trial. The blue circles represent the

actual data points. The blue quadratic curve is the maximum

likelihood trajectory given the data points observed so far. The

blue Gaussian, superimposed on the trajectory, represents the

prediction of where the trajectory will end based on the

distribution of possible trajectories, represented as a probability

density function over the x-coordinate of the endpoint. Notice how

the variance decreases as more data points are observed. The red

Gaussian is the probability density function for the trajectory

endpoint based on the statistical distribution of endpoints. (b)

Dynamic model without prior. As above, but in this case the

statistical distribution of endpoints (red Gaussian) is shown for

reference only—in this version of the model, the statistical
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distribution is not used as a prior. Notice how initially the trajectory

estimate is much poorer than the version of the model where the

statistical model is used as a prior; the variance decreases as more

data points are observed.

(EPS)

Table S1 Model comparison for behavioural data. Log

Likelihood Ratio (logLR) for each model versus the weighted

combination model. Each row is one participant. Participants are

ordered by the log likelihood ratio for the weighted combination

model versus the model in question, as in the figures. The numbers

below the bar are the mean and summed logLR for all participants.

(DOCX)

Table S2 fMRI results. Activity relating to (a) precision of the

statistical model . precision of dynamic trajectory model, (b)

precision of dynamic trajectory model . precision of the statistical

model, (c) updating of the statistical model, and (d) trial-to-trial

accuracy. Only clusters with a corrected cluster p value less than

0.05 are reported.

(DOCX)

Text S1 Modelling supplement. A full description of the

mathematical models used in the main article.

(PDF)
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