Skip to main content
Log in

\(\mathbb{F}_{1}\) for Everyone

  • Survey Article
  • Published:
Jahresbericht der Deutschen Mathematiker-Vereinigung Aims and scope Submit manuscript

Abstract

This text serves as an introduction to \({\mathbb {F}_{1}}\)-geometry for the general mathematician. We explain the initial motivations for \({\mathbb {F}_{1}}\)-geometry in detail, provide an overview of the different approaches to \({\mathbb {F}_{1}}\) and describe the main achievements of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. To be precise, Tits considers in [61] only semi-simple algebraic groups and he considers \(\operatorname {PGL}(n)\) in place of \(\operatorname {GL}(n)\). However, we can illustrate Tits’ idea in the case of either group and we will allow ourselves this inaccuracy for the sake of a simplified account.

  2. This is, again, slightly inaccurate. In general, one can consider the Weyl group for any torus of a matrix group. However, if the torus is not specified, it is assumed that the torus is of maximal rank. For \(G=\operatorname {GL}(n)\), the diagonal torus is of maximal rank, but this is not true for all matrix groups.

  3. In order to avoid a digression into technicalities, we do not introduce sheaves. The reader can safely omit all details concerning sheaves.

  4. Please note that we face a clash of notation at this point: while we denote by \(\mathbb {G}_{m,\mathbb {Z}}\) the spectrum of the polynomial ring \(\mathbb {Z}[T]^{+}\), the very same notation is also used for the spectrum of the free blueprint \((\{aT^{i}\},\mathbb {Z}[T]^{+})\) in the definition of \(\mathbb {G}_{m,B}\) in the case \(B=\mathbb {Z}\). However, for the sake of a more intuitive notation, we do not dissolve this contradiction, but refer the reader to [42] and [45] for a more sophisticated treatment.

References

  1. Artin, M., Bertin, J.E., Demazure, M., Gabriel, P., Grothendieck, A., Raynaud, M., Serre, J.-P.: Schémas en groupes II: groupes de type multiplicatif, et structure des Schémas en groupes généraux. Lecture Notes in Mathematics, vol. 152. Springer, Berlin (1962)

    Google Scholar 

  2. Artin, M., Bertin, J.E., Demazure, M., Gabriel, P., Grothendieck, A., Raynaud, M., Serre, J.-P.: Schémas en groupes III: structure des schémas en groupes réductifs. Lecture Notes in Mathematics, vol. 153. Springer, Berlin (1962)

    Google Scholar 

  3. Berkovich, V.G.: Analytic geometry over \(\mathbb{F}_{1}\). Slides. Online available at http://www.wisdom.weizmann.ac.il/~vova/Padova-slides_2011.pdf (2011)

  4. Borger, J.: \(\varLambda\)-rings and the field with one element. arXiv:0906.3146 (2009)

  5. Borwein, P., Choi, S., Rooney, B., Weirathmueller, A. (eds.): The Riemann Hypothesis. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2008). A resource for the afficionado and virtuoso alike

    Google Scholar 

  6. Chu, C., Lorscheid, O., Santhanam, R.: Sheaves and \(K\)-theory for \(\mathbb {F}_{1}\)-schemes. Adv. Math. 229(4), 2239–2286 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Connes, A., Consani, C.: From monoids to hyperstructures: in search of an absolute arithmetic. In: Casimir Force, Casimir Operators and the Riemann Hypothesis, pp. 147–198. de Gruyter, Berlin (2010)

    Google Scholar 

  8. Connes, A., Consani, C.: Schemes over \(\mathbb {F}_{1}\) and zeta functions. Compos. Math. 146(6), 1383–1415 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Connes, A., Consani, C.: The hyperring of adèle classes. J. Number Theory 131(2), 159–194 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Connes, A., Consani, C.: On the notion of geometry over \(\mathbb {F}_{1}\). J. Algebraic Geom. 20(3), 525–557 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Connes, A., Consani, C.: Universal thickening of the field of real numbers. In: Advances in the Theory of Numbers. Fields Inst. Commun., vol. 77, pp. 11–74. Fields Inst. Res. Math. Sci, Toronto (2015)

    Chapter  Google Scholar 

  12. Connes, A., Consani, C.: Geometry of the arithmetic site. Adv. Math. 291, 274–329 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Connes, A., Consani, C.: Geometry of the scaling site. Sel. Math. New Ser. 23(3), 1803–1850 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Connes, A., Consani, C., Marcolli, M.: Fun with \(\mathbb {F}_{1}\). J. Number Theory 129(6), 1532–1561 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cortiñas, G., Haesemeyer, C., Walker, M.E., Weibel, C.: Toric varieties, monoid schemes and cdh descent. J. Reine Angew. Math. 698, 1–54 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Deitmar, A.: Schemes over \(\mathbb {F}_{1}\). In Number fields and function fields—two parallel worlds. In: Progr. Math., vol. 239, pp. 87–100. Birkhäuser Boston, Boston (2005)

    Google Scholar 

  17. Deitmar, A.: Remarks on zeta functions and \(K\)-theory over \({\mathbb {F}}_{1}\). Proc. Jpn. Acad., Ser. A, Math. Sci. 82(8), 141–146 (2006)

    Article  MATH  Google Scholar 

  18. Deitmar, A.: \(\mathbb {F}_{1}\)-schemes and toric varieties. Beitr. Algebra Geom. 49(2), 517–525 (2008)

    MATH  Google Scholar 

  19. Deitmar, A.: Congruence schemes. arXiv:1102.4046 (2011)

  20. Deninger, C.: On the \(\varGamma\)-factors attached to motives. Invent. Math. 104(2), 245–261 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Deninger, C.: Local \(L\)-factors of motives and regularized determinants. Invent. Math. 107(1), 135–150 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Durov, N.: New approach to arakelov geometry. Thesis. arXiv:0704.2030 (2007)

  23. Flores, J., Lorscheid, O., Szczesny, M.: Čech cohomology over \(\mathbb {F}_{1^{2}}\). J. Algebra 485, 269–287 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Giansiracusa, J., Giansiracusa, N.: The universal tropicalization and the Berkovich analytification. arXiv:1410.4348 (2014)

  25. Giansiracusa, J., Giansiracusa, N.: Equations of tropical varieties. Duke Math. J. 165(18), 3379–3433 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Haran, M.J.S.: Non-additive geometry. Compos. Math. 143(3), 618–688 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Haran, M.J.S.: New foundations for geometry-two non-additive languages for arithmetic geometry. Mem. Am. Math. Soc. 246(1166), 200 (2017)

    MATH  Google Scholar 

  28. Haran, S.M.J.: Invitation to nonadditive arithmetical geometry. In: Casimir Force, Casimir Operators and the Riemann Hypothesis, pp. 249–265. de Gruyter, Berlin (2010)

    Google Scholar 

  29. Hasse, H.: Zur Theorie der abstrakten elliptischen Funktionenkörper III. Die Struktur des Meromorphismenrings. Die Riemannsche Vermutung. J. Reine Angew. Math. 175, 193–208 (1936)

    MathSciNet  MATH  Google Scholar 

  30. Jun, J.: Algebraic geometry over hyperrings. arXiv:1512.04837 (2015)

  31. Kajiwara, T.: Tropical toric geometry. In: Toric Topology. Contemp. Math., vol. 460, pp. 197–207. Am. Math. Soc., Providence (2008)

    Chapter  Google Scholar 

  32. Kapranov, M., Smirnov, A.: Cohomology determinants and reciprocity laws: number field case. Unpublished preprint (1995)

  33. Kato, K.: Toric singularities. Am. J. Math. 116(5), 1073–1099 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kurokawa, N.: Multiple zeta functions: an example. In: Zeta Functions in Geometry, Tokyo, 1990. Adv. Stud. Pure Math., vol. 21, pp. 219–226. Kinokuniya, Tokyo (1992)

    Google Scholar 

  35. Lescot, P.: Absolute algebra, II: ideals and spectra. J. Pure Appl. Algebra 215(7), 1782–1790 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lescot, P.: Absolute algebra, III: the saturated spectrum. J. Pure Appl. Algebra 216(5), 1004–1015 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. López Peña, J., Lorscheid, O.: Mapping \(\mathbb {F}_{1}\)-land: an overview of geometries over the field with one element. In: Noncommutative Geometry, Arithmetic, and Related Topics, pp. 241–265. Johns Hopkins Univ. Press, Baltimore (2011)

    Google Scholar 

  38. López Peña, J., Lorscheid, O.: Torified varieties and their geometries over \(\mathbb {F}_{1}\). Math. Z. 267(3–4), 605–643 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. López Peña, J., Lorscheid, O.: Projective geometry for blueprints. C. R. Math. Acad. Sci. Paris 350(9–10), 455–458 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lorscheid, O.: Algebraic groups over the field with one element. Math. Z. 271(1–2), 117–138 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lorscheid, O.: The geometry of blueprints, part I: algebraic background and scheme theory. Adv. Math. 229(3), 1804–1846 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lorscheid, O.: The geometry of blueprints, part II: Tits-Weyl models of algebraic groups. arXiv:1201.1324 (2012)

  43. Lorscheid, O.: Blueprints—towards absolute arithmetic? J. Number Theory 144, 408–421 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lorscheid, O.: Scheme theoretic tropicalization. arXiv:1508.07949 (2015)

  45. Lorscheid, O.: A blueprinted view on \(\mathbb{F}_{1}\)-geometry. In: Thas, K. (ed.) Absolute Arithmetic and \(\mathbb {F}_{1}\)-Geometry. Eur. Math. Soc. Publ. House, Zurich (2016)

    Google Scholar 

  46. Lorscheid, O.: Blue schemes, semiring schemes, and relative schemes after Toën and Vaquié. J. Algebra 482, 264–302 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. Maclagan, D., Rincón, F.: Tropical schemes, tropical cycles, and valuated matroids. arXiv:1401.4654 (2014)

  48. Maclagan, D., Rincón, F.: Tropical ideals. arXiv:1609.03838 (2016)

  49. Manin, Y.I.: Lectures on zeta functions and motives (according to Deninger and Kurokawa). Astérisque 228(4), 121–163 (1995)

    MathSciNet  MATH  Google Scholar 

  50. Mikhalkin, G.: Real algebraic curves, the moment map and amoebas. Ann. Math. (2) 151(1), 309–326 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mochizuki, S.: Inter-universal Teichmüller theory I–IV. Preprint (2012)

  52. Mochizuki, S.: Topics in absolute anabelian geometry, III: global reconstruction algorithms. J. Math. Sci. Univ. Tokyo 22(4), 939–1156 (2015)

    MathSciNet  MATH  Google Scholar 

  53. Nash, J.F. Jr., Rassias, M.Th. (eds.): Open Problems in Mathematics. Springer, Cham (2016)

    MATH  Google Scholar 

  54. Payne, S.: Analytification is the limit of all tropicalizations. Math. Res. Lett. 16(3), 543–556 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Rousseau, G.: Les immeubles, une théorie de Jacques Tits, prix Abel 2008. Gaz. Math. 121, 47–64 (2008)

    MATH  Google Scholar 

  56. Smirnov, A.: Hurwitz inequalities for number fields. Algebra Anal. 4(2), 186–209 (1992)

    MathSciNet  MATH  Google Scholar 

  57. Soulé, C.: On the field with one element. In: Lecture Notes from the Arbeitstagung 1999 of the Max Planck Institute for Mathematics (1999). Online available at http://www.mpim-bonn.mpg.de/preblob/175

    Google Scholar 

  58. Soulé, C.: Les variétés sur le corps à un élément. Mosc. Math. J. 4(1), 217–244 (2004). 312

    MathSciNet  MATH  Google Scholar 

  59. Soulé, C.: Lectures on algebraic varieties over \(\mathbb {F}_{1}\). In: Noncommutative Geometry, Arithmetic, and Related Topics, pp. 267–277. Johns Hopkins Univ. Press, Baltimore (2011)

    Google Scholar 

  60. Takagi, S.: Compactifying \(\operatorname{Spec} \mathbb{Z}\). arXiv:1203.4914 (2012)

  61. Tits, J.: Sur les analogues algébriques des groupes semi-simples complexes. In: Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956. Centre Belge de Recherches Mathématiques, pp. 261–289. Établissements Ceuterick, Louvain (1957)

    Google Scholar 

  62. Tits, J.: Normalisateurs de tores, i: groupes de Coxeter étendus. J. Algebra 4, 96–116 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  63. Toën, B., Vaquié, M.: Au-dessous de \(\operatorname{Spec}\mathbb {Z}\). J. K-Theory 3(3), 437–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  64. Weil, A.: Sur les courbes algébriques et les variétés qui s’en déduisent. In: Actualités Sci. Ind., no. 1041 Publ. Inst. Math. Univ. Strasbourg, vol. 7, p. 1041. Hermann et Cie, Paris (1945). 1948

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Lorscheid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorscheid, O. \(\mathbb{F}_{1}\) for Everyone. Jahresber. Dtsch. Math. Ver. 120, 83–116 (2018). https://doi.org/10.1365/s13291-018-0177-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s13291-018-0177-x

Navigation