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This paper studies the effects on Zernike coefficients of aperture scaling,

translation and rotation, when a given aberrated wavefront is described

on the Zernike polynomial basis. It proposes a new analytical method for

computing the matrix that enables the building of the transformed Zernike

coefficients from the original ones. The technique is based on the properties

of Zernike polynomials Fourier Transform and, in the case of a full aperture

without central obstruction, the coefficients of the matrix are given in terms

of integrals of Bessel functions. The integral formulas are exact and do not

depend on any specific ordering of the polynomials. c© 2013 Optical Society

of America

OCIS codes: 070.0070, 000.3860, 350.1260, 010.1290, 330.4460.

1. Introduction

The use of Zernike polynomials for representing the aberrations of an optical system is now

common and well understood [1]. Indeed, these polynomials have been proven to form a very

convenient basis in applications as diverse as the description of pupil aberrations of the hu-

man eye [2] or the characterization in observational astronomy of the statistics of turbulent

aberrations produced by the atmosphere over the telescope aperture [3]. When using the

Zernike basis, the aberrated phase is described as a linear combination of the polynomials,

the value of the coefficients being related to the aperture on which the phase is defined.

When this aperture undergoes geometrical transformations such as scaling, translation and

rotation, the Zernike coefficients corresponding to the transformed aperture can be computed

from proper linear combinations of the original ones by finding the transformation matrix
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associated to these linear applications.

In that matter, if many solutions have been proposed for pure pupil scaling, see e.g. [4–8], only

a few authors have tackled the three linear transformations altogether in a unified method.

Let us mention Lundström & Unsbo [9] who, by generalizing the paper of Campbell [6],

have developed an ingenious technique that however necessitates a specific reordering of the

polynomials in the complex plane. Alternatively Bara et al. [10] have proposed a method

based on the theoretically simple principle of reference change matrix built from a given grid

of points that sample the wavefront. In practice however this technique appears sometimes

difficult to implement, especially when the scaling factor is important and/or when the num-

ber of Zernike coefficients needed to represent the phase is large (the matrix being in these

cases often ill-conditioned).

In this paper we propose an alternative technique based on the Fourier Transform properties

of the Zernike polynomials. We provide analytical and exact formulas that allow the compu-

tation of the transformation matrix in all cases of scaling/translation/rotation of the pupil.

In the hypothesis of a full aperture without central obstruction, we develop the results in

terms of integrals of a product of two or three Bessel functions. The numerical evaluation of

these integrals can be fastly performed by making use of Mellin Transform properties [11] or

merely by referring to published tables of integrals [12,13] and it will not be addressed here.

Section (2) recalls the properties of the Zernike polynomials useful for the formal derivation

of our calculations. Section (3)provides the general formalism that enablesthe building of the

transformation matrix, whereas Sects (4, 5, 6), are focusing in further details on the scaling,

translation and rotation processes, respectively.

2. Zernike polynomials basic properties

Any wavefront φ(rrr) defined over a circular aperture can be described as a linear combination

of Zernike polynomials Zj(ρρρ):

φ(rrr) = φ(Rρρρ) =
∞∑

j=1

ajZj(ρρρ) (1)

where R is the physical radius of the pupil. Zernike polynomials are defined over the circle

of unit radius Πp(ρρρ) , that is:

Πp(ρρρ) =

{
1/π if |ρρρ| ≤ 1

0 elsewhere
(2)

The Zernike coefficients can be calculated by projecting the phase on the Zernike basis:

aj =

∫
Πp(ρρρ)Zj(ρρρ)φ(Rρρρ)d

2ρρρ (3)
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In polar coordinates, Zernike polynomials are defined for a circular aperture without ob-

struction as:

Zm
n (ρ, θ) = Zj(ρ, θ) =

√
n+ 1Rm

n (ρ)





√
2 cos(|m|θ) if m > 0√
2 sin(|m|θ) if m < 0

1 if m = 0

(4)

where n and m are respectively the radial degree and the azimuthal frequency of the jth

polynomial (note that n and m have necessarily the same parity), j being defined as j =
n(n+2)+m

2
+ 1, and:

Rm
n (ρ) =

(n−|m|)/2∑

s=0

(−1)s(n− s)!

s![(n + |m|)/2− s]![(n− |m|)/2− s]!
ρn−2s (5)

In the full aperture case, Zernike polynomials are orthonormal:
∫

Πp(ρρρ)Zi(ρρρ)Zj(ρρρ)d
2ρρρ = δij (6)

and the Fourier Transform Qj(κ, α) of Πp(ρρρ)Zj(ρρρ) writes in polar coordinates:

Qj(κ, α) = (−1)n
√
n + 1

Jn+1(2πκ)

πκ





(−1)(n−|m|)/2i|m|
√
2 cos(|m|α) if m > 0

(−1)(n−|m|)/2i|m|
√
2 sin(|m|α) if m < 0

(−1)n/2 if m = 0

(7)

3. Changing axis reference: building the transformation matrix

Figure (1) sketches the principle of reference system shifting. The input phase φ(Rρρρ) is

defined over the pupil diameter R, in the Ôxy reference axis. The output phase φ(R′ρρρ′ρρρ′ρρρ′)

defined over the pupil diameter R′ is a scaled/translated/rotated version of the input one,

and is centered on the Ô′x′y′ reference axis. We call ttt the unitary translation vector between

both reference systems, and θr the rotation angle. For a given point P of the phase that

belongs to both input and output pupils, we have φ(P ) = φ(Rρρρ) = φ(R′ρρρ′ρρρ′ρρρ′) where:

R′ρρρ′ρρρ′ρρρ′ = Rθr [Rρρρ−Rttt] ⇔ ρρρ′ρρρ′ρρρ′ = Rθr [β(ρρρ− ttt)] (8)

with β = R/R′ and Rθr is the rotation operator. In the following we impose the transformed

pupil to lie inside the input one (no extrapolation), that is R, R′ and ttt have to verify this

additional relationship:

R|ttt|+R′ ≤ R ⇔ β|ttt|+ 1 ≤ β (9)

In this framework the input phase is described as a sum of Nz Zernike polynomials:

φ(Rρρρ) =

Nz∑

j=1

ajZj(ρρρ) (10)
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Fig. 1. Sketch of the reference systems used in Sect. (3). In the Ôxy reference

axis (solid lines), the phase is defined over the aperture of radius R and the

unitary coordinates of a point P in this system is ρρρ. In the Ô′x′y′ reference

axis (dashed lines) the phase is defined over the aperture of radius R′ and the

unitary coordinates of a point P in this system is ρρρ′ρρρ′ρρρ′. The reference change

involves a translation of vector Rttt and a rotation of angle θr.

Ragazzoni et al. [14] and Shu et al. [7] have demonstrated that it exists a set of Zernike coef-

ficients limited by the same highest polynomial number Nz that can represent the wavefront

over the transformed pupil, that is:

φ(R′ρρρ′ρρρ′ρρρ′) =

Nz∑

i=1

biZi(ρρρ
′ρρρ′ρρρ′) (11)

with

bi =

∫
Πp(ρρρ

′ρρρ′ρρρ′)Zi(ρρρ
′ρρρ′ρρρ′)φ(R′ρρρ′ρρρ′ρρρ′)d2ρρρ′ρρρ′ρρρ′ (12)

Inside the output pupil, we have φ(R′ρρρ′ρρρ′ρρρ′) = φ(Rρρρ) and we can modify previous equation as:

bi =

∫
Πp(ρρρ

′ρρρ′ρρρ′)Zi(ρρρ
′ρρρ′ρρρ′)φ(Rρρρ)d2ρρρ′ρρρ′ρρρ′ =

Nz∑

j=1

aj

∫
Πp(ρρρ

′ρρρ′ρρρ′)Zi(ρρρ
′ρρρ′ρρρ′)Zj(ρρρ)d

2ρρρ′ρρρ′ρρρ′ (13)

that we can rewrite:

bi = π

Nz∑

j=1

aj

∫
Πp(ρρρ

′ρρρ′ρρρ′)Zi(ρρρ
′ρρρ′ρρρ′)Πp(ρρρ)Zj(ρρρ)d

2ρρρ′ρρρ′ρρρ′ (14)
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providing that Eq. (9) is verified. Then using Eq. (8) it comes:

bi = π

Nz∑

j=1

aj

∫
Πp(ρρρ

′ρρρ′ρρρ′)Zi(ρρρ
′ρρρ′ρρρ′)Πp

(R−θr [ρρρ
′ρρρ′ρρρ′]

β
+ ttt

)
Zj

(R−θr [ρρρ
′ρρρ′ρρρ′]

β
+ ttt

)
d2ρρρ′ρρρ′ρρρ′ (15)

Making use of convolution and Fourier Transform properties [15], the latter equation writes:

bi = β2π

Nz∑

j=1

aj

∫
Q∗

i (KKK)Q
R−θr

j (βKKK) exp [2iπβttt.KKK] d2KKK (16)

where Q
Rθr

j (KKK) denotes the Fourier Transform of ΠpZj (Rθr [ρρρ]). Note that in polar coor-

dinates ΠpZj (Rθr [ρρρ]) = ΠpZj(ρ, θ − θr), hence its Fourier Transform simply translates as

Q
Rθr

j (κ, α) = Qj(κ, α− θr). Rewriting Eq. (16) as a product of matrices, we finally have:

bbb = M [β,t,θr ].aaa (17)

where aaa = [a1, ..., aNz
], bbb = [b1, ..., bNz

], and the coefficients (M
[β,t,θr ]
ij ) of the matrix M [β,t,θr]

verify:

M
[β,t,θr ]
ij = πβ2

∫ ∞

0

∫ 2π

0

κQ∗
i (κ, α)Qj(βκ, α+ θr) exp [2iπβ|ttt|κ cos(α− αt)] dαdκ (18)

with αt = arg(ttt). Eq. (18) is the general expression of the linear application that enables

the transformation of the Zernike coefficients in cases of scaling/translation/rotation of the

pupil over which the wavefront is originally defined. In the following, we will focus on the

full aperture case without central obstruction such that Eq. (7) can be used for our further

derivations.

4. Concentric pupils

We first investigate the case where the output pupil is a shrunk version of the input one with

a scaling factor of R′/R = 1/β (and with |ttt| = 0, αt = 0, θr = 0). Introducing the expression

of Zernike Fourier Transform in Eq. (18), it comes:

M
[β]
ij =

β

π
(−1)

3(ni+nj)

2 (−1)
−(|mi|+|mj |)

2 i(|mj |−|mi|)
√
ni + 1

√
nj + 1

×
∫ ∞

0

κ−1Jni+1(2πκ)Jnj+1(2πβκ)dκ

×
∫ 2π

0




√
2 cos(|mi|α)√
2 sin(|mi|α)

1



⊗




√
2 cos(|mj|α)√
2 sin(|mj |α)

1


 dα (19)

where the operator
⊗

denotes all the possible multiplicative combinations between the coef-

ficients of the vectors, depending on the respective values of mi and mj (i.e. 9 multiplications
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Fig. 2. Center: initial phase (top) and associated Zernike coefficients (bottom),

with j = 1 to 28, that is the phase is defined with n = 6 radial degree modes.

Left: reconstructed phase over the scaled aperture (β = 1.3) computed from

the transformed Zernike coefficients. These coefficients are calculated from the

original ones using both the transformation matrix of Eq. (20) (circles) and

Shu et al. method [7] (solid line) . Right: same as previously for a scaled and

translated aperture (β = 1.5, |ttt| = 0.3, αt = π/3). The transformed coefficients

derived from Eq. (23) (circles) are compared with that of Lundström & Unsbo

technique [9] (solid line).

possible in this case). From the trigonometric properties of cosine functions, it comes straight-

forward that the integral over α in Eq. (19) is non zero only if mi = mj . Hence previous

equation can be replaced by:

M
[β]
ij =

{
2β

√
ni + 1

√
nj + 1

∫∞

0
κ−1Jni+1(2πκ)Jnj+1(2πβκ)dκ if mi = mj

0 if mi 6= mj

(20)
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Figure (2, left and center) shows an example of pupil scaling with β = 1.3. We can verify on

the upper plots that the computed phase over the scaled pupil is indeed the zoomed version

of the input one, with the appropriate zooming factor β. Bottom graphics are displaying the

input and derived output Zernike coefficients. In order to further check the validity of our

method, we have also plotted the estimated output coefficients calculated with that of Shu

et al. [7]. Both independent techniques are giving the same results.

5. Scaling and translating

Since we have assumed that the transformed pupil should lie within the original one, any

shifting must necessarily be combined with appropriate scaling, such that Eq. (9) is verified.

As a consequence, pure translation process cannot be tackled by this study unless a so-called

meta-pupil encompassing both pre- and post-shifted apertures is considered beforehand [14].

Providing that this hypothesis is verified, Eq. (18) rewrites (with θr = 0):

M
[β,t]
ij =

β

π
(−1)

3(ni+nj )−|mi|−|mj |

2 i(|mj |−|mi|)
√
ni + 1

√
nj + 1

∫ ∞

0

κ−1Jni+1(2πκ)Jnj+1(2πβκ)

×
∫ 2π

0




√
2 cos(|mi|α)√
2 sin(|mi|α)

1



⊗




√
2 cos(|mj|α)√
2 sin(|mj|α)

1


 exp [2iπβ|ttt|κ cos(α− αt)] dαdκ (21)

The derivation of the integral over α requires to make use of the integral definition of Bessel

functions [16], that is:

Jn(κ) =
1

2π

∫ π

−π

exp [−i(nα − κ sinα)] dα (with n integer) (22)

The formal development of Eq. (21) necessitates several steps that are not difficult however

somewhat tedious. They are presented in App. (A). The coefficients of the matrix M [β,t]

eventually write:

M
[β,t]
ij =

√
2
δmi,0

.δmj,0(−1)
3(ni+nj)−|mi|−|mj |

2 i(|mj |−|mi|)β
√
ni + 1

√
nj + 1

×
[
A−

ij,αt

∫ ∞

0

κ−1Jni+1(2πκ)Jnj+1(2πβκ)J||mi|−|mj ||(2πβ|ttt|κ)dκ

+A+
ij,αt

∫ ∞

0

κ−1Jni+1(2πκ)Jnj+1(2πβκ)J|mi|+|mj |(2πβ|ttt|κ)]dκ
]

(23)

with

A−
ij,αt

= (−1)
||mi|−|mj ||

2

{
cos([|mi| − |mj|]αt) if sgn(mi) = sgn(mj)

sgn(mi) sin([|mi| − |mj |]αt) if sgn(mi) 6= sgn(mj)

and

A+
ij,αt

= (−1)
||mi|+|mj ||

2

{
sgn(mi) cos([|mi|+ |mj |]αt) if sgn(mi) = sgn(mj)

sin([|mi|+ |mj |]αt) if sgn(mi) 6= sgn(mj)

7
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Fig. 3. Left: original wavefront. Center: reconstructed wavefront for a pupil

rotation of θr = π/3. Right: transformed Zernike coefficients derived from the

original ones using Eq. (28) (circles) and Bara et al. method [10] (solid lines).

If Eq. (23) appears to return complex numbers, the conjugated parity of ni and mi (respec-

tively nj and mj) insures to produce a real coefficient for any pair of Zernike polynomials

considered. Figure (2, center and right) illustrates the case of scaling + translation with

β = 1.5, |ttt| = 0.3, and θt = π/3 and results of the present method are proven to match with

that of Lundström & Unsbo [9].

6. Rotation

We finally investigate the case of pure rotation as it can be treated independently from the

scaling and translation processes. A full scaling+translation+rotation transformation can

indeed be decomposed in two consecutive processes, that is scaling+translation then pure

rotation (or similarly rotation first, then scaling+translation). In other words the transfor-

mation matrix of the full transformation M [β,t,θr ] can be computed as:

M [β,t,θr ] = M [β,t].M [θr ] = M [θr ].M [β,t] (24)

Applying Eq. (18) with β = 1 and |ttt| = 0, it comes:

M
[θr ]
ij =

1

π
(−1)

3(ni+nj )

2 (−1)
−(|mi|+|mj |)

2 i(|mj |−|mi|)
√
ni + 1

√
nj + 1

×
∫ ∞

0

κ−1Jni+1(2πκ)Jnj+1(2πκ)dκ

×
∫ 2π

0




√
2 cos(|mi|α)√
2 sin(|mi|α)

1



⊗




√
2 cos(|mj|[α + θr])√
2 sin(|mj |[α+ θr])

1


 dα (25)
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In this case, trigonometric properties of cosine functions imply that the integral over α is

non-zero only when |mi| = |mj |, and Eq. (25) reduces to:

M
[θr ]
ij = 2

√
ni + 1

√
nj + 1

∫ ∞

0

κ−1Jni+1(2πκ)Jnj+1(2πκ)dκ

×





cos(mjθr) if mi = mj

sin(mjθr) if mi = −mj (and mi 6= 0)

0 if |mi| 6= |mj |
(26)

Furthermore it can be shown that:

2
√
ni + 1

√
nj + 1

∫ ∞

0

κ−1Jni+1(2πκ)Jnj+1(2πκ)dκ = δni,nj
(27)

so that M
[θr ]
ij takes the simpler form:

M
[θr ]
ij = δni,nj

×





cos(mjθr) if mi = mj

sin(mjθr) if mi = −mj (and mi 6= 0)

0 if |mi| 6= |mj |
(28)

As a consequence, the rotation matrix does not necessitate the evaluation of integral of Bessel

functions but merely requires to compute cosine functions for multiples of the rotation angle

accordingly to the accounted azimuthal frequencies (mj). Figure (28) shows an example of

phase rotation with θr = π/3. The transformed Zernike coefficients calculated from Eq. (28)

are successfully compared with that of Bara et al. [10].

7. Summary

This paper provides analytical formulas that enable the computation of Zernike coefficients

for scaling, translation and rotation of the aperture over which the wavefront is originally

defined. The expressions of the transformation matrix that allows to switch from the original

Zernike coefficients to the transformed ones are exact. Each coefficient of the matrix can be

calculated directly and independently without involving any specific ordering of the poly-

nomials. Our method has been compared to several independent techniques avalaible in the

literature. The results are consistently matching, hence validating the approach presented in

this paper.

Appendix A: Computing the scaling+translation matrix

We focus here on the integral over α of Eq. (21):

F (κ) =

∫ 2π

0




√
2 cos(|mi|α)√
2 sin(|mi|α)

1



⊗




√
2 cos(|mj|α)√
2 sin(|mj|α)

1


 exp [2iπβ|ttt|κ cos(α− αt)] dα (A-1)

9



We recall the integral definitions of Bessel functions that will be used to unfold Eq. (A-1):

∫ 2π

0

cos(mα) exp(iy cos(α− αt))dα =

{
2π(−1)

|m|
2 cos(mαt)J|m|(y) if m even

2iπ(−1)
|m|−1

2 cos(mαt)J|m|(y) if m odd
(A-2)

∫ 2π

0

sin(mα) exp(iy cos(α− αt))dα =

{
2π(−1)

|m|
2 sin(mαt)J|m|(y) if m even

2iπ(−1)
|m|−1

2 sin(mαt)J|m|(y) if m odd
(A-3)

We now have to investigate the different combinations regarding mi and mj .

1. mi > 0 and mj > 0: Eq. (A-1) rewrites:

F (κ) =

∫ 2π

0

cos([|mi| − |mj |]α) exp [2iπβ|ttt|κ cos(α− αt)] dα

+

∫ 2π

0

cos([|mi|+ |mj|]α) exp [2iπβ|ttt|κ cos(α− αt)] dα

that, according to Eq. (A-2) gives:

(a) if mi and mj have same parity:

F (κ) = 2π(−1)
||mi|−|mj ||

2 cos([|mi| − |mj |]αt)J||mi|−|mj ||(2πβ|ttt|κ)

+ 2π(−1)
||mi|+|mj ||

2 cos([|mi|+ |mj |]αt)J||mi|+|mj ||(2πβ|ttt|κ) (A-4)

(b) if mi and mj have different parity:

F (κ) = 2iπ(−1)
||mi|−|mj ||−1

2 cos([|mi| − |mj|]αt)J||mi|−|mj ||(2πβ|ttt|κ)

+ 2iπ(−1)
||mi|+|mj ||−1

2 cos([|mi|+ |mj|]αt)J||mi|+|mj ||(2πβ|ttt|κ) (A-5)

2. mi < 0 and mj < 0:

F (κ) =

∫ 2π

0

cos([|mi| − |mj |]α) exp [2iπβ|ttt|κ cos(α− αt)] dα

−
∫ 2π

0

cos([|mi|+ |mj |]α) exp [2iπβ|ttt|κ cos(α− αt)] dα

that rewrites:

(a) if mi and mj have same parity:

F (κ) = 2π(−1)
||mi|−|mj ||

2 cos([|mi| − |mj|]αt)J||mi|−|mj ||(2πβ|ttt|κ)

− 2π(−1)
||mi|+|mj ||

2 cos([|mi|+ |mj|]αt)J||mi|+|mj ||(2πβ|ttt|κ) (A-6)
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(b) if mi and mj have different parity:

F (κ) = 2iπ(−1)
||mi|−|mj ||−1

2 cos([|mi| − |mj |]αt)J||mi|−|mj ||(2πβ|ttt|κ)

− 2iπ(−1)
||mi|+|mj ||−1

2 cos([|mi|+ |mj |]αt)J||mi|+|mj ||(2πβ|ttt|κ) (A-7)

3. mi < 0 and mj > 0:

F (κ) = −
∫ 2π

0

sin([|mi| − |mj|]α) exp [2iπβ|ttt|κ cos(α− αt)] dα

+

∫ 2π

0

sin([|mi|+ |mj |]α) exp [2iπβ|ttt|κ cos(α− αt)] dα

that, according to Eq. (A-3) gives:

(a) if mi and mj have same parity:

F (κ) = −2π(−1)
||mi|−|mj ||

2 sin([|mi| − |mj |]αt)J||mi|−|mj ||(2πβ|ttt|κ)

+ 2π(−1)
||mi|+|mj ||

2 sin([|mi|+ |mj|]αt)J||mi|+|mj ||(2πβ|ttt|κ) (A-8)

(b) if mi and mj have different parity:

F (κ) = −2iπ(−1)
||mi|−|mj ||−1

2 sin([|mi| − |mj|]αt)J||mi|−|mj ||(2πβ|ttt|κ)

+ 2iπ(−1)
||mi|+|mj ||−1

2 sin([|mi|+ |mj |]αt)J||mi|+|mj ||(2πβ|ttt|κ) (A-9)

4. mi > 0 and mj < 0:

F (κ) =

∫ 2π

0

sin([|mi| − |mj|]α) exp [2iπβ|ttt|κ cos(α− αt)] dα

+

∫ 2π

0

sin([|mi|+ |mj |]α) exp [2iπβ|ttt|κ cos(α− αt)] dα

(a) if mi and mj have same parity:

F (κ) = 2π(−1)
||mi|−|mj ||

2 sin([|mi| − |mj|]αt)J||mi|−|mj ||(2πβ|ttt|κ)

+ 2π(−1)
||mi|+|mj ||

2 sin([|mi|+ |mj|]αt)J||mi|+|mj ||(2πβ|ttt|κ) (A-10)

(b) if mi and mj have different parity:

F (κ) = 2iπ(−1)
||mi|−|mj ||−1

2 sin([|mi| − |mj |]αt)J||mi|−|mj ||(2πβ|ttt|κ)

+ 2iπ(−1)
||mi|+|mj ||−1

2 sin([|mi|+ |mj |]αt)J||mi|+|mj ||(2πβ|ttt|κ) (A-11)
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5. mi > 0 and mj = 0:

F (κ) =
√
2

∫ 2π

0

cos(|mi|α) exp [2iπβ|ttt|κ cos(α− αt)] dα

(a) if mi is even:

F (κ) = 2π
√
2(−1)

|mi|

2 cos(|mi|αt)J|mi|(2πβ|ttt|κ) (A-12)

(b) if mi is odd:

F (κ) = 2iπ
√
2(−1)

|mi|−1

2 cos(|mi|αt)J|mi|(2πβ|ttt|κ) (A-13)

6. mi < 0 and mj = 0:

F (κ) =
√
2

∫ 2π

0

sin(|mi|α) exp [2iπβ|ttt|κ cos(α− αt)] dα

(a) if mi is even:

F (κ) = 2π
√
2(−1)

|mi|

2 sin(|mi|αt)J|mi|(2πβ|ttt|κ) (A-14)

(b) if mi is odd:

F (κ) = 2iπ
√
2(−1)

|mi|−1

2 sin(|mi|αt)J|mi|(2πβ|ttt|κ) (A-15)

7. mi = 0 and mj > 0:

F (κ) =
√
2

∫ 2π

0

cos(|mj|α) exp [2iπβ|ttt|κ cos(α− αt)] dα

(a) if mj is even:

F (κ) = 2π
√
2(−1)

|mj |

2 cos(|mj |αt)J|mj |(2πβ|ttt|κ) (A-16)

(b) if mj is odd:

F (κ) = 2iπ
√
2(−1)

|mj |−1

2 cos(|mj|αt)J|mj |(2πβ|ttt|κ) (A-17)

8. mi = 0 and mj < 0:

F (κ) =
√
2

∫ 2π

0

sin(|mj |α) exp [2iπβ|ttt|κ cos(α− αt)] dα

(a) if mj is even:

F (κ) = 2π
√
2(−1)

|mj |

2 sin(|mj|αt)J|mj |(2πβ|ttt|κ) (A-18)
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(b) if mj is odd:

F (κ) = 2iπ
√
2(−1)

|mj |−1

2 sin(|mj |αt)J|mj |(2πβ|ttt|κ) (A-19)

9. mi = 0 and mj = 0:

F (κ) =

∫ 2π

0

exp [2iπβ|ttt|κ cos(α− αt)] dα = 2πJ0(2πβ|ttt|κ) (A-20)

Putting all together the different combinations leads to the general expression of Eq. (23).
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