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Abstract: State-of-the-art micro-optic multichannel matrix sensor combined with the tunable 

Fabry–Perot micro interferometer enables a compact diagnostic device sensitive to the changes of 

the oxygen saturation as well as the blood volume fraction of human skin. The possibility of using 

Monte-Carlo modelling for neural network training in the problem of hyperspectral image 

processing has been demonstrated and validated using biotissue phantom and human skin in vivo. 

The proposed approach enables a tool combining both the speed of neural network processing and 
the accuracy and flexibility of Monte-Carlo modelling. © 2019 The Author(s) 
OCIS codes: (170.0110) Imaging systems; (170.6510) Spectroscopy, tissue diagnostic; (110.4234) Multispectral and 

hyperspectral imaging 

1. Introduction 

Nowadays an intensive research is conducted in the field of biomedical application of hyperspectral imaging 

supported by recent progress in the hyperspectral instruments development and followed by their costs reduction. 

Potential applications of the considered technique are of high social impact and include monitoring and diagnostics 

of diabetic ulcer formation, rheumatic complications, wound healing control, diagnosis of melanoma and other 

malignancies. 

Here we present a new approach based on the application of Artificial Neural Networks (ANN) to hyperspectral 
imaging for quantitative functional diagnostics of skin including 2D mapping of skin blood distribution (skin 

perfusion) and its oxygen saturation. For the validation of the proposed method we have developed a calibration 

phantom with predefined optical properties mimicking human bloodless dermis with the embedded capillaries filled 

with human blood of known oxygen saturation. 

2.  Methods and Materials 
The imaging device was constructed on the basis of the hyperspectral snapshot camera (Senop Optronics, Finland) 

utilizing a Fabry-Perot tunable filter providing spectral resolution of 8-12 nm within the range of 500-900 nm. A 

broadband illumination unit utilizing 50W halogen lamp is based on the fiber-optic ring illuminator combined with 

the camera providing uniform distribution of light intensity in the camera field of view. The illumination ring and 

the camera are equipped with the rotatable broadband linear polarizers used for reduction of specular reflection from 

the skin surface. Generally, the constructed device is capable of recording spatially and spectrally resolved skin 
reflectance (hypercube) used for further ANN-based analysis. 

      
                 (a)                                         (b)                                                       (c)                                   (d) 

Fig. 1. 7-layer skin model used for calculations of diffuse reflectance spectra (a); 3D schematics of the biotissue phantom with the 

embedded blood vessels (b); photograph (top view) of the manufactured phantom with the channels filled with fully oxygenated blood 

(c); 3-layer tissue phantom model used for calculations of diffuse reflectance spectra. 

The quantitative assessment of major physiological skin parameters was performed with the specially developed 

ANN algorithm. For the training of ANN a set of diffuse reflectance spectra of human skin simulated by the in-

house developed Monte Carlo (MC) method has been used extensively. The volume fraction of blood, oxygen 

saturation, melanin content and thickness of the epidermal layer were used as the variable parameters in the utilized 

seven-layer MC-based skin model (see Fig. 1a). The total training set contained 82,005 spectra in the range of 505–

900 nm simulated with a step of 5 nm. To validate the proposed method a biotissue phantom with the predefined 
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optical properties equal to those of human dermis has been created. The detailed description of manufacturing and 

characterization of biotissue phantoms is given in [1, 2]. The layout and the dimensions of the developed phantom 

are shown in Fig.1b, c. The phantom contains two tilted plain hollow channels (0.25x1 mm cross-section) located at 

the different angles inside the phantom. The embedding depth linearly increases from 0.3 to 2 mm for top channel 

and from 0.3 to 4 mm for the deep one. Fully oxygenated human blood from healthy donor was pumped through the 

channels with the rate of 10 ml/h to avoid blood sedimentation. For the training of ANN and estimation of blood 

oxygen saturation, the diffuse reflectance spectra were simulated by MC technique using 3-layer tissue model (Fig. 

1d) accounting the blood layer embedding depth and its oxygen saturation as the variable parameters. Totally 11,628 

spectra have been obtained. 

3.  Results and conclusion 
The developed imaging system has been successfully used to perform the occlusion test measurements with healthy 

volunteers of different gender and skin color. Fig. 2a, b shows the results of the recovered blood volume fraction in 

skin and oxygen saturation level during the ring finger occlusion. It is seen that the occluded finger has significantly 

lower blood perfusion and oxygenation.  
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                              (d)                                                       (e)                                                            (f) 

Fig. 2. 2D maps of blood volume fraction (a) and skin blood oxygenation (b) during ring finger occlusion; 2D map of blood oxygen 

saturation in the manufactured phantom (c); measured optical properties of the biotissue phantom (d,e); recovered values of blood 

oxygen saturation along the upper channel in the biotissue phantom (f). 

The results of the phantom optical properties characterization (Fig. 2d, e) show good correspondence of the reduced 

scattering and absorption with those of human dermis in the range of 700-1100 nm. Fig.2c shows the recovered 

blood oxygen saturation along the embedded channels in the tissue phantom. It is seen that the correct value of 

blood oxygenation in this case can be recovered up to the depth of about 2 mm. Further increase of the embedding 

depth causes the immediate signal loss. This result was obtained accounting the dependence of the simulated spectra 

on the channel embedding depth. However, the application of the numerical model with the fixed embedding depth 

(e.g. 0.5 mm) leads to the underestimation of recovered blood saturation (Fig. 2f, red curve). The correct value is 

obtained only for the embedding depth corresponding to that in the numerical model. This result highlights the 

importance of correct tissue model selection for the accurate measurements of tissue parameters. 
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