LIFTING OF A CONTRACTION INTERTWINING TWO
ISOMETRIES

Zoia Ceausescu

0. Throughout this note we consider only (bounded, linear) operators on Hilbert
spaces. As usual, we denote by L(/,,/#,) the space of all operators from ]
into &, and by L(5°) the space L(# #’). Also, for two contractions 7, and 7,
on ##, and #,, respectively, we shall denote by I(T,,T,) the set of all operators
A € L(#,,,) intertwining T, and T},; i.e., satisfying T, A = AT,. Let V, € L(%))
be an isometry (i = 1,2), #; a (closed linear) subspace of 7, invariant for V,
and V, = V,|7. By a contractive intertwining lifting in I(V,,V,) (briefly,
(V,, V;)-CIL) of a contraction A € I(V,, V,) we mean any contraction A € I(V,, V,)
satisfying A | %, = A. In case V, = S, (i = 1,2) is a unilateral shift, necessary and
sufficient conditions for the existence and the uniqueness of such a (S,,S,)-CIL
were given in [3, Theorem 2] and [4, Proposition 3.1] Also, in case V= U,
(i = 1,2) is a unitary operator and 7 is a reducing subspace for U,, three equivalent
conditions for the uniqueness of a (U,,U,)-CIL of A (which obviously, in this
case always exists) were given in [2, Corollary 2.3]. In the present note we extend
the result of [3] to the case of arbitrary isometries V, and V, (see Thm. 1.1
below), and also, adapting the quoted results of [2] and [4], we give a necessary
and sufficient condition for the uniqueness of (V,, V,)-CIL of A (see Section 3,
Thm. 3.1).

I take this opportunity to express my thanks to Professor C. Foiag for the
helpful discussions concerning the subject of this note and also for suggesting
the example given in Section 4.

1. THEOREM 1.1. Let V; € L(J)) be an isometry (i = 1,2), let a‘?},'be a subspace
of &, invariant for V,, let V, = V|| %, and let A be a contraction belonging
to I(V,,V,). Then, there exists a (V,,V,)-CIL A of A if and only if the condition

(L.1) 2= Ve VI") AR = I = VI VI®) A,

holds for alln = 1,2, ... and h, € ;.

Proof. Since the necessity of the condition (1.1) is obvious, it remains to prove
its sufficiency. For this purpose we adapt the original proof of [3] to the present
more general situation.

Let U; € L(.%;) be the minimal unitary dilation of V,(i = 0,1, 2) (see [9, Ch.I,
Sec. 4]); obviously we can and shall identify %, with the space V U." #, and

U, = U, | .Z,. Also, let us denote by P, the orthogonal prOJectlon of Z; onto 7,
(t=0,1,2), and let us set ¥, = (I - P,) #Z (i = 1,2) and ¥, = (I — P,) %) ".
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First, we define by the formula

(1.2) Aok, =s—lim U;"AP, Uk, (k, E %)

n— oo

(see [6, Thm. 2 and Cor. 5.1]) the unique contraction A, € I(U,, U(l,) satisfying
(1.3) A #=A
Since we also have A, U™ | #, = U, A (m = 0,1,2,...), it follows, by (1.1), that

I~ P)Ag U™ holl* = |Aq U™ hol” — | P,A U™ g ||?
= | U™ Aho||* = | V3™ Aho|* = (I — V3 V™) Ak, |”
= I = VI VIR = | U™ Rholl® = | VI Aol
= (1= P) U™ hol>  (hy € #).

From this and from the fact that U™ h, (m =0,1,2, ..., h, € #,) span %, we
infer that there exists a unique contraction A,: ¥, ¥, such that

(1.4) A, (I-P)ky=I—-P,)Ak, (ko€ 7).

Also, denoting by W, the isometry U;'| ¢, (i = 1,2) and remarking that since
Z, reduces U,, ¥, is invariant to W3, we have, by (1.4),

WrA (I- Pk, = (I— P)U,(I— P,)A ky=(I—P,)U, Ak,
= (I-P,) AU ko= A, (I - P,)Ujky= A, W} (I— P,)k,

(k, € HZ,), so that A, € I(W3%,W{| &,). Then, by the lifting theorem for coisome-
tries (see [8], [7], [9]), it follows that there exists a contraction B, € I(WJ;, W)
such that B, | ¥, = A,.

Now, let us consider the subspace .#, = V U? &4, of #; and let us denote by
n=0
P, the orthogonal projection of .Z; onto .#; (i = 1,2); obviously U,P, =P, U,
(i = 1,2). Since the strong limit of {U;B, (I —P,)U,"|#,} ,cn €Xists, we can
define by the formula

(1.5) B, =s—1im U}B,(I- P,))U;"| A4,

n—o

an operator from .#, into .#, which is (for any B, ) the unique contraction belonging
to I(U,| #,, U, | #,) such that B, I — P))|.#,=(I— P,)B, (see [1, Thm. 1.1]
and [9, Ch. VII, Prop. 3.2]). Also, by the definition of .#;, we have

s—limU;(I-P)U;"k,=s—lim Ur(I—P)U;"P, k,

n—oo n—ow

=P k;,— (s—YmU;P,UT"P, k) =P,k

n—o

kR, € Z;, 1=12),
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whence, by (1.4),
B,P ko= s~ lim U;B,(I - P)Ug"ko = 5 — lim U3 A, (I - P,) U™k,
(1.6) = s lim U3 (I = P,) A, Ug" ko = s = lim U3 (I = P,) Uy Aok
=P, Ak, (ko E 7).
Now, if we denote 7} = .#, v %, and
(1.7) B,=B,(P, |7},

then B, is obviously a contraction belonging to I(U, | .#,, U, | Z"}) which, by (1.6),
satisfies

(1.8) B,| %, =P,,A,.
Also, by (1.8), we have

[0 P/(z)Aokon = | Dszko” (ko € A5),
(where as usual, for a contraction C € L(77#") we denote D, = (I — C* C)'/?
€ L(#) and Y,= (D.#)"), whence it follows that there exists a unique
contraction A, from (Dg, %)~ into (I — P,,) 4, such that
(1.9) Ay,Dy ky=(I—P,)Ak, (ko € 7Z5).
Because U, Dy, = Dy, U, | %', we obtain at once, by (1.8), that

A, € (U, | Z,© M5, U, |(Dy, Z;) 7).

Now, let 4, be a (U,| % © #,,U,| Z5,)-CIL of A, (such an A, is for instance
A,Q, where @ denotes the orthogonal projection of Z5, onto (D, #;)”). Then,
if we set
(1.10) Ay=B,+ A,Dyp,
it is clear that A} € I(U,, U, | %#"}) and that, by (1.8) and (1.9),
(1.11) Al 2 =A,.
Moreover, since the ranges of B, and A, are orthogonal and A, is a contraction,
we easily infer that A} is also a contraction. Hence A} is a (U,, U, |.Z",)-CIL

of A,. We note that, since

(I-P,)B,=(I-P,)B,P, |7,=B,I-P)|.Z,
= (I-P,)B,U-P)|¥,=U-P,)B,I-P)| 7",

we also have
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(1.12) (I-P)A;=U-P,)A (I- P)| 7.
Now, let A, be a (U,, U,)-CIL of A}, satisfying

(1.13) (I-P,)A,=I-P,)A,(I-P,).

Note that such a (U,, U,)-CIL of 4 exists because we can set A, = Aj P, where

-

P,. denotes the orthogonal projection of 7] onto Z7;. Obviously, by (1.11), A,
isa (U,, U,)-CIL of A, and also, by (1.13), A, | #, € L(#,,#,), so that the operator

(1.14) A=4,|%#,

is a (V,, V,)-CIL of A. This completes the proof of theorem.

2. Let the operators A, V,, U, (i = 0,1,2), the spaces (i = 0,1,2), #,(i = 1,2),
%" and the orthogonal projections P; (i = 0,1,2), PJ,,J i=12), P, be as in Section
1; also, let A, be the contraction defined by (1.2). In the sequel we shall assume
that A satisfies the condition (1.1) and A, will be the contraction defined by the

formula (1.4). In the following three lemmas we shall give some simple facts
concerning the CIL’s of the contractions A and A,,.

LEMMA 2.1. The formulas (1.14) and

2.1) A,=s—lim U;"AP, U}

n-—» oo

establish a one-to-one correspondence between all the (U,,U,)-CIL’s A, of A,
satisfying (1.13) and all the (V,, V,)-CIL’s A of A.

Proof. This lemma follows directly from Theorem 2 and Corollary 5.1 of [6].

LEMMA 2.2. Let A} be a contraction in I(U,,U, | %) satisfying (1.12). The
formulas

(2.2) Ay=A(P,, +D; . TUI—Py,)
and
(2.3) D;,.T=A4,1%0%

establish a one-to-one correspondence between all the contraction
I € I(U,| Dy, U, | 7,0 .27)

satisfying

(2.4) (I—-P,)D, .I'=0

and all the (U,,U,)-CIL’s A, of A} satisfying (1.13).
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Proof. It is known (see [56, Lemma 3.1]) that for any contraction
Ao € L(27",, 7))

the formulas (2.2) and (2.3) establish a one-to-one correspondence between all the
contractions I' € L(%;© .7, 9 A .) and all the contractions A, € L(.%],.%)
satisfying AO | 77 = A’ Also 1fA € I(U,, U, | 7)) and satisfies (1 12), then, for
any contraction I' € I(U, | 4., U | 7, © %) satisfying (2.4) the contraction A,
defined by (2.2) lies in I(U,,U,) and satisfies (1.13); on the other hand, for any
(U,,U,)-CIL A, of A/ satisfying (1.13), the forml';_l'a (2.3) defines a contraction
belonging to I(U,| Dy,., U,| Z, © Z"}) which also satisfies
(I—P,) Dy . TUT—Py) = (I— P,)A (I- Py.)= - P,)A, —A(’,Pﬁ,i)
=(I—-P)A,I-P,)—(I—-P)A,(I-P)=0
Remark 2.1. If, in Lemma 2.2, Al is a (U,,U,| Z%)-CIL of A,, then the
(U,,U,)-CIL A, of Aj defined by (2.2) is a (U,, U,)-CIL of A4,,.
LEMMA 2.3. Let Al be a (U,,U,| Z})-CIL of A, satisfying (1.12). Then
(I-P,)A}| Z,is a (W}, W*)-CIL of A,, and A’, satisfies also .

(2.5) P,.«ZA:) = P//ZA(') (P.//, | Z7).

Proof. First, note that

(I_Pz)A(’)(I'—Pl)Ull gl = (I—Pz)Ai)Ull 91=(I—P2) UzA’oIgl
= (I-—Pz)U‘.Z(I—~PZ)AE,|g1
and
(I—P)A(I—P)ky= (I—P)ALko=I~P,)Agky=A,(I-P,)k,
(ko € Z5)

whence it follows that (I — P,)A,| &, is a (W}, W¥)-CIL of A,. Also, since (by
virtue of the last three equalities in (1.6)) we have

P, Ajky = Py Aok =s—lim Uy A,(I- P,) Uk,

=s—lim U;(I~P)A;U-P)U"ky=P, AP, ky (k€ T,)

n—»w

it follows that A/ satisfies (2.5).

Remark 2.2. It is obvious that if A, is a (U,, U,)-CIL of A, satisfying (1.13),
then A,|. %7 is a (U, U,|Z7%)-CIL of A, satisfying (1.12). Also, any
(U,, U, |Y’ )-CIL A’ of A, is of the form (1. 10), where B, =P, Al and A4, is
a contraction in I(U,| %, © #,,U, |9 ) such that A, = A l(D %) satisfies
(1.9). From these facts and by virtue of Lemmas 2.1, 2. 2 and 2 3 1t is clear that:
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The construction given in the proof of Theorem 1.1 yields all the (V,,V,)-CIL’s
of a contraction A intertwining the isometries V, and V, = V|| #, and satisfying
(1.1).

3. Now, we recall some results concerning the contractive intertwining dilations
(CID) of a contraction A € I(T,,T,), where T; is an arbitrary contraction on #;
(i = 1,2). If we denote by U, the minimal isometric dilation of T;on .7, (i = 1,2)
(see [9, Ch. I, Sec. 10]), and by P;, the orthogonal projection of .%;, onto #,
then by a (U, , U,, )-CID of A we mean any contraction A, € I(U,, , U, ) satisfying
P, ,A_ = AP,,. Also, let us denote

6 {%(A-T1)={d+lle@A+°£ﬁ:T}‘DAd+U;"+l1=0}—C@A+o£’1
BT, A) = {d®l, € 9,0%,:D,d+A*U* 1,=0)"C 2,0.%,

where & = ((U,, — T,) #) (=1,2). By a A-choice sequence (see [5, Def.
3.1]) we mean a sequence of contractions {I',}._, such that I';, € L(# (4 - T,),
Z(T, - A)) and T, € L(Z, _ ,Zr;_ ) (n=2). In [5, Propositions 2.2 and 3.1] the
following result is established:

There exists a one-to-one correspondence between all the (U,,,U,.)-CID of A
and all the A-choice sequences {I',},_,.

We introduce now the following

Definition 3.1. We say that a (U,,,U,,)-CID of A is the distinguished
(U,,,U,.)-CID (and we denote it by AY) if it is the CID of A corresponding to
the A-choice sequence {T'2}7_, with ' =0 for all n = 1,2, ...

Note that, if A has a unique (U,,,U,,)-CID, then this is the distinguished
CID AQ.

We shall also consider the case when Z € L(¥) is an isometry such that
¢ D> %,,, %, reduces Z and Z| %,, = U,,. By a (Z,U,,)-CID of A € I(T,,T,)
we mean any contraction 4 , € I(Z, U,, ) satisfying P,A_ = AP,, where P, denotes
the orthogonal projection of & onto #,. If we denote by P,, the orthogonal projection
of &4 onto .%;, it is clear that A_. =P, A € L(%,,,%,,) is a (U,,,U,,)-CID
of AandA” = (I - P, )A, € L(%,,, %O .%,,)is of the form: A7, = CD 4, , where
C is a contraction in L(9y, , ¥© %, ) satisfying CD4,_U,, = ZCDy, . The distin-
guished (Z,U,, )-CID of A is by definition the following (Z, U, )-CID of A:

Agg Hay
38.2) . A = [ > ©
OD 4 v o,

where A? is the distinguished (U,, ,U,,)-CID of A and O is regarded as operator
from 9,0 into ¥ OZ,, .

In the sequel A will be a contraction as in Sections 1 and 2 satisfying the
condition (1.1). Also, let A, and A, be the contractions uniquely defined by the
formulas (1.2) and (1.4), respectively. Using the notation of Sections 1 and 2,

we denote ¥ = W &, and W,, = W,| ¢; obviously ¢ reduces W, (since

n=0
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&, is invariant for W), and W,, is the minimal isometric dilation of P, W,| ¢,
(where P, denotes the orthogonal projection of &, onto ¥,). Let Afmo be the
dlstlngulshed (W, W,)-CIDof A} € I(P, W,| &,, W, ), and let A;‘;obe the distin-
guished (W,, W, )-CID of A}. The adjoint operator Ary*=@Ar)Hp,. (where pP_,
denotes the orthogonal projection of &, onto 1), is a (W3, W7)- CIL of A,. We
denote

(3.3) Bl =(A}))*Pg,

and we say that BY is the distinguished (W}, W*)-CIL of A,.

Let BY be the contraction defined by the formula (1.5) for B, = B, let B;
be the contraction defined by the formula (1.7) for B, = B?, and let A be the
contraction defined by the formula (1.9) for B, = B;. If we set B, = B{P,, , then
the operator

(34) Ag=B20+AgQOD320P_2/i,
where @ ° denotes the orthogonal projection of P4 o onto (Dy o Z5) ~, isa (U,, U, )-CIL

of A, satlsfylng (1.13); obviously, in the case When A, has a unique (U,, U,)-CIL,
this is A

Now, by virtue of Lemma 2.2, we have the following:

LEMMA3.1. In orderthatfi{,o | 77 € I(U,,U, | 1) have a unique (U,, U, )-CIL
satisfying (1.13) (which will be Ay) it is necessary and sufficient that

(a,) (T € (U, | Dy, Uy | Z,© 77): (I — P,) D s 0. T = 0} = {0).

Also by virtue of [2, Corollary 2.3] we obtain at once
LEMMA 3.2. A[° = AJ| 7 is the unique (U,, U, | %")-CIL of A, satisfying

(3.5) (I“Pz)Atl)ong(I_Pl)l'yll

if and only if

(az) I(U, | Z,© #,,U,|[(D5,0© (Dg %) ) = {0},
where
(3.6) By=P, A,°.

Finally, if we denote by C, the contraction from ((I — V’{ V{‘k)/‘?”o)_ into
(I — V% V**) #, defined by the formula

(3-7) Ck(I_ VI; ka)ho:‘ I - V; V;k)Aho (hoe%)

(which exists by virtue of (1.1)) for every £ =1,2,... and C, =0 € L(%,, #,),
then, by virtue of [4, Proposition 3.1] we also have the following
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LEMMA 3.3. In order that A, have a unique (W3, W{)-CIL (which will be
BY:(I— P,)A2| ¢,) it is necessary and sufficient that

(a;) one of the following two conditions holds:

(i) for every h, € H#, there exists {hy,},., C #, and {n,},_, CIN\ {0} such
that

s—Hm{I -V, V)V lh, =(I—V,V5h,
(3.8) ke

s~ Ilel—l;l;lo Dcn(lz)—l(I - VIllk_1 V*nk_l)hOk =0

(ii) for every h, € #, there exists {hy,},-, C #4 and {n,},_, CIN\ {0} such
that

k—>

{s —lm I -V, V) Vi Ahy, = (I— V,VE)h,
(3.9)

s—lim D (I— Vi tyr—p, =0.

k—s>o00

Crnpy -1

It is clear, by virtue of the construction given in the proof of Theorem 1.1,
by Remark 2.2, and by Lemmas 2.1, 3.1, 3.2 and 3.3, that every one of the conditions
(a,), (a,) and (a;) is a necessary condition for the uniqueness of the (V,, V,)-CIL
of A, and also that all the conditions (a,), (a,) and (a,;) together are sufficient
in order that A have a unique (V,, V,)-CIL; hence we conclude with the following

THEOREM 3.1. In order that a contraction A belonging to 1(V,,V, = V, | )
and satisfying (1.1) have a unique (V,,V,)-CIL (which will be A° = Ag|#,) it
is necessary and sufficient that the conditions (a,), (a,) and (a,) hold.

4. In this section we illustrate Theorems 1.1 and 3.1 by a functional example.
Let us consider an arbitrary (fixed) scalar valued analytic function 8,(\) € H>,
0% 1]0,(N]| =1for |\ =1 (j=1,2). We define the space
(4.1), #,=H*® (A, L%)”

where A, (e*) = (1 — [0;(e*)|*)'/? (0 = t = 2m), j = 1,2, and the subspace #, of
by

(4.1), =0, u®A u:uec H*)

Also, we consider the following isometry on #;:

(4.2), V(@ w)e”) =e“ule”)®e“wle”) wOwe #,0=t= 2m).

(/ = 1,2). Also, we denote by U, the minimal unitary dilation of V; on
Z=L*® (A,L%)”

(obviously, U, is the multiplication by e” on 7)), j = 1,2. Using the notation of
the previous section it is obvious that
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(4.3); %=(L2@H2)®{O}C%, ﬂj=L2®{O}C%,
(= 1,2) and

Zo={0,v®Av:vE L?},
4.3),

Gy = (Prrop20,L2) " ® (0} = (L2© H?) ® {0) = &,
Also, we have
(4.4) T =(L*® {0} v 8,v@A,v:vE L’} = (L°®A,L%) =

Let A be a contraction in I(V,,V, | #;). Then, it is clear that A has a unique
form

(4.5) A@®,u® A u)e”) =a)u(e”) ® (") ue) (e H0=<t < 2w)

where a(\) € H”, t(e*) is measurable,

(4.6) ) =0 if A,(e“)=0
and
(4.7) la(e®)|?+ |7(¥))?’=<1 ae.on0<t=< 2.

Because, for any contraction A as in Theorem 1.1, the condition (1.1) is equivalent
to the existence of a unique contraction A, (defined by (1.4)), we can easily infer
in the particular case of this section that, by the functional representation of
A,, the condition (1.1) is equivalent to the existence of a function 8 € H”, ||B|g-= 1
and satisfying

(4.8) BN, (A) =a() (N <T).

On the other hand if A € I(V,, V| #,) is a contraction satisfying the condition
(4.8), then, since ¥, = ¢, and %} = .%;, the conditions (a,) and (a, ), respectively,
are automatically satisfied, so that the uniqueness of the (V,,V,)-CIL A® of A
is equivalent to the condition (a,). In order to give an explicit interpretation of
the condition (a,), we notice that in our case this can be written

(4.9) I(U, ({0} ® (A, L*)7), U; (D0 © (Do #5) 7)) =0},

where the operator B has the same meaning as in Section 3. Denote by x, the
characteristic function of the set {e”: |[B(e”) #1,0 =t = 2w} and by X; the charac-
teristic function of the set {e”: A;(e”) #0,0=<t =< 2w} (j =1,2). It is easy to see
that the operator U, [(Zy,0 © (DB o #Z5) ) is unitarily equivalent to the operator
of multiplication by e” on xole and that the operator U ({0} ® (A, L?)7) is
unitarily equivalent to the operator of multiplication by e” on x,L? From this
it is clear that (4.9) is equivalent to

(4.10) XoX1X2 =0 a.e.
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Now we can conclude with the following

COROLLARY 4.1. Let #; and V; be defined by (4.1); (j = 0,1,2), respectively
by (4.2); (j = 1,2) and let A be the operator of the form (4.5), (4.6), (4.7) satisfying
also the condition (4.8) with some B € H”, ||Bllg==< 1. Then A has a unique
(V,, V,)-CIL if and only if Lebesgue (linear) measure of the set

(4.11) {e*: 10, (™) #1, |0,(e™)| #1, |B(e?)]| # 1, 0= t= 2m)

ts O.

Finally, let us give a consequence of this corollary. Using the notation and
the results of [10], we have that any contraction X € I(S(0,), S(0,)) is of the
form

(4.12) X = Py, A|H®,),

where A is a contraction in I(V,, V,) such that

(4.13) A{0,u®Au:ue H’YC 0,u®@A,u:uc H?).
Clearly such an operator A is a (V,, V,)-CIL of

(4.14) A=A |#=A|{0,u®Au:u€ H*} € I(V,,V,| %,).

We say that the contraction X € I(S(0,), S(0,)) is associated with A. Also, by
virtue of (4.13), there exists a function vy € H”, with |[y(\)| = 1 for |A| = 1 such
that

(4.15) AOu®Au)=0,yvu®A,yu (u€ H?).

Comparing (4.15) with (4.5), one easily infers that the condition (1.1) is equivalent
to the fact that 0, is divisible in H” by 6, and that ||0,v,/0,| z= =< 1. Thus, we
have the following

COROLLARY 4.2. Let A be a contraction in I(V,,V, | #,) of the form (4.15)
with vy € H”, |[yA\)| =1 for |N| =1, and such that 8,y is divisible in H” by 0,
and |0,y ./ 9, ||y~ = 1. Then there exists a unique contraction X € 1(S(9,), S(0,))
associated with A if and only if the set

(4.16) {e“:|0,(e®)| # 1, |0,(e™)| #1, |8,(e*)vy ()| #|0,(e”)], 0=t = 2}

has Lebesgue (linear) measure 0.

Corollaries 4.1 and 4.2 can be also stated in case the function 6, (j = 1,2)
is operator valued. The numerical case considered above was chosen only for the
sake of simplicity.
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