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Abstract. Corn-based ethanol, the most common first generation biofuel in the US, plays an important role as 
a fossil fuels alternative. Second generation biofuels, which are mostly based on lignocellulosic biomass, have 
gained great attention in recent years. Size reduction of the lignocellulosic biomass is a key step to the 
efficiency of downstream processes (i.e., pretreatment, enzymatic hydrolysis, and fermentation), which will 
affect the yield of ethanol significantly. However, size reduction consumes considerable energy itself, it is an 
expensive process and needs to be optimized. Some studies have been done on corn stover size reduction, 
but none of them have examined the initial particle size of feedstock as a variable, and they failed to take the 
biomass harvest and storage conditions and downstream process requirements into consideration when setting 
the variables. The objective of this research was to study the effect of initial particle size of corn stover, 
moisture content, and screen size on energy consumption of corn stover size reduction. Consequently, these 
results should be generally applicable over a range of conditions that are affected by corn stover harvest and 
storage conditions and downstream processing. 
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Introduction 

Fossil fuels have been the main source of fuels for human since the beginning of last century; they are still 

counted for about 80% of total fuel consumption worldwide (Coldemberg 2007). However, according to a recent 

study, fossil fuel reserves will only last 35, 37, and 107 years for oil, gas, and coal, respectively (Shahriar 

Shafiee 2009). Besides, burning of fossil fuels is a large source of carbon dioxide and other green house gases 

(GHG) emissions (Hall and Scrase 1998). It is necessary and urgent to develop renewable fuels or energy as 

alternatives of fossil fuels that are less pollutant in terms of particulate, sulfur, lead emission and GHG emission 

(Coldemberg 2007). Nowadays, applicable renewable energy sources are hydro, biomass, wind, solar, 

geothermal, and marine tidal energy, of which modern biomass takes up 1.9% of total energy consumption in 

the world, while the total of other new renewable energy takes up only 1.5% (Coldemberg 2007). Modern 

biomass energy plays a more significant role compared to other available renewable energy sources because it 

can be converted to solid, liquid, or gaseous fuels that can be transported and utilized more easily than other 

energy sources (Hall and Scrase 1998). Corn ethanol is one of the most developed modern biomass energy 

industry, but its development has met some limitations.  

A lot of attention has been paid on lignocellulosic ethanol production recently (Spatari, et al. 2010). Compared 

to corn ethanol, lignocellulosic ethanol has many advantages: wide availability of feedstocks, less controversies 

on land use change, and less environmental risk; while the key issue is to bring down the cost and make it 

profitable (Gnansounou and Dauriat 2010). Pretreatment, hydrolysis of cellulose and hemicellulose into 

monosaccharide, sugar fermentation, and ethanol recovery are the main steps of lignocellulosic ethanol 

production (Alvira, et al. 2010). However, due to the physical and chemical recalcitrance of lignocellulosic 

material, i.e., high lignin content as an enzyme barrier, high hemicellulose content, and crystallinity of cellulose 

(Hendriks and Zeeman 2009), digestibility of the material in these two processes is low if nothing is done 

before them (Taherzadeh and Karimi 2008). That’s what makes pretreatment an extra and essential step 

compared to corn ethanol. In pretreatment process, particle size is reduced, lignin structures are broken down, 

and crystallinity of cellulose decreases, so that the accessibility and the potency of enzymes increase, as does 

the digestibility (Alvira, et al. 2010). On the other hand, pretreatment is costly; it is said to be the second most 

expensive step during the whole process (Mosier, et al. 2005). Looking for effective methods to bring down the 

cost of lignocellulosic biomass pretreatment is a major topic in many researches. 

Of all the pretreatment methods, size reduction is an essential one; it increases surface area, bulk density, and 
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flowability; reduces crystallinity and mass, heat transfer limitation of the biomass (Mani, et al. 2004). On the 

other hand, other pretreatment methods require biomass size reduction as a “pre-pretreatment”, e.g., dilute 

acid pretreatment, steam explosion pretreatment. (Harun 2011) (Öhgren 2006) However, it is unavoidably an 

expensive process, costing 13% to 28% of the total expenses along with transportation and storage (Miao, et 

al. 2011). Feedstock particle size, moisture content, material properties, mass feed rate, end size (screen 

opening), and machine parameters are the variables most relevant to effective specific energy consumption 

(Mani, et al. 2004). Some work has been done concerning the energy consumption of grinding different 

biomass materials with different physical properties using different mills and screens. Bitra et al. used a 

commercial knife mill as the grinder, took switchgrass, wheat straw, and corn stover as materials, set screen 

openings, rotor speed, and mass feed rate as variables; relationship between total specific energy and those 

variables was modeled and an optimum condition was determined from the model (Bitra, et al., 2009). A similar 

study was conducted by the same group using a hammer mill to process switchgrass, wheat straw, and corn 

stover at a constant mass input rate and fixed screen size, setting hammer speed and orientation as variables 

(Bitra, et al., 2009). Another study used biomass moisture content as one of the variables (Mani, et al. 2004).  

Unfortunately, none of the related studies set the initial particle size of feedstock as a variable; besides, they 

failed to take the biomass harvest and storage conditions, i.e., moisture content, and downstream process 

requirements, i.e., particle size into consideration when setting the variables. Thus, the objective of this 

research was to study the effect of initial size of biomass, moisture content, and screen opening size on corn 

stover size reduction energy consumption; moisture content levels were set according to corn stover harvest 

and storage scenario and screen opening size levels were set to match with the requirement for the following 

pretreatment process. 
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Materials and Methods 

Biomass 

In this study, freshly harvested, air-dried corn stover round bales were supplied from central Iowa and stored in 

ambient temperature.  

Grinder 

A knife mill modeled Thomas Model 4 Whiley® Mill 3375-E15 (120V, 800rpm, Thomas Scientific, Swedesboro, 

NJ) was used in this study.  

Power Meter 

Energy consumption data was obtained using Watts Up PRO power meter (ThinkTank Energy Products Inc. 

Milton, Vermont). Power was recorded every second when the knife mill was in operation.  

Grinding variables 

Initial size of corn stover 

Stalks, leaves, and husks were cut by band using metal scissors; they were sorted into three sizes of large (L, 

4~7cm), medium (M, 7~10cm), and small (S, 8~18cm), together with different sizes of cobs within the bale. 

Moisture content 

The initial moisture content of corn stover was determined according to ASABE standard S358.2 DEC 98 for 

forages (ASAE, 1999). Three samples of 25 grams were dried in oven at 105±3°C for 24 hours. The average of 

the three samples was recorded in percent wet basis. 

After the determination of initial moisture content, corn stover of L, M, and S sizes were put into separate 

plastic zip bags. The amount of water needed in order to get the objective moisture content was calculated 

based on the original moisture content and the weight of samples that were put into the bags. Then water was 

added on the biomass evenly; the bags were well sealed and stored in ambient temperature for 72h to get 

equilibrium moisture content (Mani, et al.  2004).  

Moisture content of 5.17% (original moisture), 10%, and 20% (all in wet basis) were set for this study. Typically, 

corn stover is harvested at moisture content of 20% to 25% as dry product and packaged as dense round bales 

or loose stacks (Shinners, et al. 2007). According to Nielson, corn stover moisture content should be 20% or 
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less for storage (Niel, 1995). Another research conducted by Iowa State University indicates that the corn 

stover of moisture content less than 25% has less storage loss for both tarped and under roof storage method 

(Shah and Darr, 2014). According to these facts, moisture content of 20% was chosen for this study; 10% was 

also chosen to fill the gap between 20% and 5.17%. 

Screen 

Screens of 2mm and 6mm opening sizes were used in this study. In the studies conducted by Öhgren, particle 

size of 2mm to 10mm was used for steam pretreatment of corn stover (Öhgren, et al. 2006, 2007). In another 

study, rice straw was ground to less than 10mm for extrusion/expansion pretreatment (Chen, et al. 2011). In 

addition, switchgrass and corn stover was reduced to 60mesh (0.25mm) to 20mesh (0.85mm) for hydrothermal 

pretreatment (Kumar, et al. 2011). Considering the facts above and the availability of interchangeable parts for 

the knife mill, 2mm and 6mm screens were the optimal choice for this study.  

Data analysis 

Original data was transferred from the power meter to a computer connected by a USB cord. Watts UP USB 

Data Logger software was used to assist the process. Specific energy is obtained by the equation (1): 

𝑆𝑆𝑆𝑆 =
∫ (𝑃𝑃 − P0)𝑡𝑡
0 𝑑𝑑𝑑𝑑

𝑚𝑚
=
∫ Δ𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡
0
𝑚𝑚

 

where SE is the specific energy, t is the grinding time, P is the power when the material is being grinded, P0 is 

the idle power of the grinder, m is the mass of corn stover (Miao, et al. 2011). SAS GLM procedure was used 

for data analysis. The effects of each variable and their interactions were analyzed. 
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Results and Discussion 
 

Table 1. Specific Energy Consumption (joule/g) for Each Treatment 

 

Screen  2mm   6mm  

Moisture/Size L M S L M S 

 186.4 199.1 167.7 91.6 104.5 117.6 

5% 173.6 203.0 182.5 111.6 100.4 137.6 

 190.8 170.8 196.6 123.6 123.3 129.5 

Average of 5% 183.6 191.0 182.2 108.9 109.4 128.2 

 288.0 336.1 433.3 248.0 261.4 258.0 

10% 529.8 506.0 340.4 214.0 178.8 229.5 

 339.8 412.4 443.5 199.1 186.2 211.1 

Average of 10% 385.9 418.2 405.7 220.4 208.8 232.9 

20 838.6 954.0 812.0 556.2 585.7 519.8 

 

 

As shown in table 1, specific energy was calculated using equation (1) in joule (watt*second) per gram of 

biomass. It can be converted to kilowatt*hour per metric ton by a dividing factor of 3.6. ‘Size’ stands for initial 

size of corn stover. From table 2 we can see the p-values for ‘Size’ and the interaction between ‘Size’ and other 

variables are larger than 0.1, which shows no significant effect of those factors. P-values for moisture, screen, 

and the interaction between moisture and screen are less than 0.0001, which shows strong evidence for the 

significant effects of moisture, screen, and their interaction on specific energy consumption of corn stover 

grinding. 

Figure 1 shows the interaction between moisture and screen opening size. The blue line and red line are not 

parallel with each other, which indicates the existence of interaction between the two factors. Figure 2 shows 

the mean value for each level of moisture and screen opening. Figure 3, 4, 5 show the box-plots of effects of 

each individual factor. 
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Table 2. ANOVA Table for Each Variable and Their Interactions 

Source DF Type III SS Mean Square F Value Pr > F 

Moisture 2 1418212.206 709106.103 273.95 <.0001 

Screen 1 289272.064 289272.064 111.75 <.0001 

Size 2 6482.485 3241.242 1.25 0.3039 

moisture*screen 2 73881.001 36940.500 14.27 <.0001 

moisture*size 4 10469.771 2617.443 1.01 0.4213 

screen*size 2 3827.181 1913.590 0.74 0.4880 

moisture*screen*size 4 1394.128 348.532 0.13 0.9680 

 

                 
       Fig. 1. Interaction Between Screen & Moisture                                          Fig. 2. Least Square Means for Screen & Moisture 

 

  
                             Fig. 3. Effects of Screen                                                 Fig. 4. Effects of Moisture                                              Fig. 5. Effects of Initial Size 
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Conclusion 

In this study, the effects of three factors on corn stover size reduction energy consumption were discussed. 

The initial size of corn stover was the novel variable that has not been discussed in other works. It turned out 

that the initial size of biomass had no significant effect on specific energy consumption. This suggested 

skipping or reducing unnecessary coarse grinding process before fine grinding, as long as the initial size of 

biomass can fit into the fine grinder and will not cause clogging or other malfunction of the grinder. Levels of 

other two factors were determined according to the harvest and storage conditions of the biomass and the 

downstream processing requirement on the biomass. Moisture content and screen opening size (final size after 

grinding) both had significant effects on specific energy, so did their interaction. Higher moisture content and 

smaller screen opening will end up with higher energy consumption. Not taking economic factors into account, 

biomass should be as dry as possible prior to size reduction. Size of biomass for pretreatment should be as 

large as possible at the least expense of decreasing the effectiveness of pretreatment. 

The amount of corncobs in the corn stover was found to have a big influence on the final result during our 

experiments, so further study can be designed to test the effect of the cob ratios in corn stover on specific 

energy consumption of size reduction. 
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