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Abstract

Pulsars of very different types, including isolated objects and binaries (with short- and
long-period orbits, and white-dwarf and neutron-star companions) provide the means to test
both the predictions of general relativity and the viability of alternate theories of gravity. This
article presents an overview of pulsars, then discusses the current status of and future prospects
for tests of equivalence-principle violations and strong-field gravitational experiments.
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1 Introduction

Since their discovery in 1967 [60], radio pulsars have provided insights into physics on length
scales covering the range from 1 m (giant pulses from the Crab pulsar [56]) to 10 km (neutron
star) to kpc (Galactic) to hundreds of Mpc (cosmological). Pulsars present an extreme stellar
environment, with matter at nuclear densities, magnetic fields of 108 G to nearly 1014 G, and spin
periods ranging from 1.5 ms to 8.5 s. The regular pulses received from a pulsar each correspond
to a single rotation of the neutron star. It is by measuring the deviations from perfect observed
regularity that information can be derived about the neutron star itself, the interstellar medium
between it and the Earth, and effects due to gravitational interaction with binary companion stars.

In particular, pulsars have proved to be remarkably successful laboratories for tests of the
predictions of general relativity (GR). The tests of GR that are possible through pulsar timing fall
into two broad categories: setting limits on the magnitudes of parameters that describe violation
of equivalence principles, often using an ensemble of pulsars, and verifying that the measured
post-Keplerian timing parameters of a given binary system match the predictions of strong-field
GR better than those of other theories. Long-term millisecond pulsar timing can also be used to
set limits on the stochastic gravitational-wave background (see, e.g., [73, 86, 65]), as can limits on
orbital variability in binary pulsars for even lower wave frequencies (see, e.g., [20, 78]). However,
these are not tests of the same type of precise prediction of GR and will not be discussed here.
This review will present a brief overview of the properties of pulsars and the mechanics of deriving
timing models, and will then proceed to describe the various types of tests of GR made possible
by both single and binary pulsars.
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6 I. H. Stairs

2 Pulsars, Observations, and Timing

The properties and demographics of pulsars, as well as pulsar search and timing techniques, are
thoroughly covered in the article by Lorimer in this series [87]. This section will present only an
overview of the topics most important to understanding the application of pulsar observations to
tests of GR.

2.1 Pulsar properties

Radio pulsars were firmly established to be neutron stars by the discovery of the pulsar in the
Crab nebula [120]; its 33-ms period was too fast for a pulsating or rotating white dwarf, leaving a
rotating neutron star as the only surviving model [108, 53]. The 1982 discovery of a 1.5-ms pulsar,
PSR B1937+21 [12], led to the realization that, in addition to the “young” Crab-like pulsars born
in recent supernovae, there exists a separate class of older “millisecond” or “recycled” pulsars,
which have been spun up to faster periods by accretion of matter and angular momentum from
an evolving companion star. (See, for example, [21] and [109] for reviews of the evolution of such
binary systems.) It is precisely these recycled pulsars that form the most valuable resource for
tests of GR.

Figure 1: Top: 100 single pulses from the 253-ms pulsar B0950+08, demonstrating pulse-to-pulse
variability in shape and intensity. Bottom: Cumulative profile for this pulsar over 5 minutes (about
1200 pulses); this approaches the reproducible standard profile. Observations taken with the Green
Bank Telescope [98]. (Stairs, unpublished.)

The exact mechanism by which a pulsar radiates the energy observed as radio pulses is still
a subject of vigorous debate. The basic picture of a misaligned magnetic dipole, with coherent

Living Reviews in Relativity (lrr-2003-5)
http://relativity.livingreviews.org

http://relativity.livingreviews.org


Testing General Relativity with Pulsar Timing 7

radiation from charged particles accelerated along the open field lines above the polar cap [55, 128],
will serve adequately for the purposes of this article, in which pulsars are treated as a tool to probe
other physics. While individual pulses fluctuate severely in both intensity and shape (see Figure 1),
a profile “integrated” over several hundred or thousand pulses (i.e., a few minutes) yields a shape
– a “standard profile” – that is reproducible for a given pulsar at a given frequency. (There
is generally some evolution of pulse profiles with frequency, but this can usually be taken into
account.) It is the reproducibility of time-averaged profiles that permits high-precision timing.

Of some importance later in this article will be models of the pulse beam shape, the envelope
function that forms the standard profile. The collection of pulse profile shapes and polarization
properties have been used to formulate phenomenological descriptions of the pulse emission regions.
At the simplest level (see, e.g., [112] and other papers in that series), the classifications can be
broken down into Gaussian-shaped “core” regions with little linear polarization and some circular
polarization, and double-peaked “cone” regions with stronger linear polarization and S-shaped
position angle swings in accordance with the “Rotating Vector Model” (RVM; see [111]). While
these models prove helpful for evaluating observed changes in the profiles of pulsars undergoing
geodetic precession, there are ongoing disputes in the literature as to whether the core/cone split
is physically meaningful, or whether both types of emission are simply due to the patchy strength
of a single emission region (see, e.g., [90]).

2.2 Pulsar observations

A short description of pulsar observing techniques is in order. As pulsars have quite steep radio
spectra (see, e.g., [93]), they are strongest at frequencies f0 of a few hundred MHz. At these
frequencies, the propagation of the radio wave through the ionized interstellar medium (ISM) can
have quite serious effects on the observed pulse. Multipath scattering will cause the profile to be
convolved with an exponential tail, blurring the sharp profile edges needed for the best timing.
Figure 2 shows an example of scattering; the effect decreases with sky frequency as roughly f−4

0

(see, e.g., [92]), and thus affects timing precision less at higher observing frequencies. A related
effect is scintillation: Interference between the rays traveling along the different paths causes time-
and frequency-dependent peaks and valleys in the pulsar’s signal strength. The decorrelation
bandwidth, across which the signal is observed to have roughly equal strength, is related to the
scattering time and scales as f4

0 (see, e.g., [92]). There is little any instrument can do to compensate
for these effects; wide observing bandwidths at relatively high frequencies and generous observing
time allocations are the only ways to combat these problems.

Another important effect induced by the ISM is the dispersion of the traveling pulses. Acting
as a tenuous electron plasma, the ISM causes the wavenumber of a propagating wave to become
frequency-dependent. By calculating the group velocity of each frequency component, it is easy
to show (see, e.g., [92]) that lower frequencies will arrive at the telescope later in time than the
higher-frequency components, following a 1/f2 law. The magnitude of the delay is completely
characterized by the dispersion measure (DM), the integrated electron content along the line of
sight between the pulsar and the Earth. All low-frequency pulsar observing instrumentation is
required to address this dispersion problem if the goal is to obtain profiles suitable for timing. One
standard approach is to split the observing bandpass into a multichannel “filterbank,” to detect the
signal in each channel, and then to realign the channels following the 1/f2 law when integrating the
pulse. This method is certainly adequate for slow pulsars and often for nearby millisecond pulsars.
However, when the ratio of the pulse period to its DM becomes small, much sharper profiles can be
obtained by sampling the voltage signals from the telescope prior to detection, then convolving the
resulting time series with the inverse of the easily calculated frequency-dependent filter imposed
by the ISM. As a result, the pulse profile is perfectly aligned in frequency, without any residual
dispersive smearing caused by finite channel bandwidths. In addition, full-Stokes information can
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8 I. H. Stairs

Figure 2: Pulse profile shapes for PSR J1740−3052 at multiple frequencies, aligned by pulse timing.
The full pulse period is displayed at each frequency. The growth of an exponential scattering tail
at low frequencies is evident. All observations taken with the Green Bank Telescope [98] (Stairs,
unpublished), except for the 660-MHz profile which was acquired at the Parkes telescope [9, 122].
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Figure 3: Pulse profile of the fastest rotating pulsar, PSR B1937+21, observed with the 76-m Lovell
telescope at Jodrell Bank Observatory [67]. The top panel shows the total-intensity profile derived
from a filterbank observation (see text); the true profile shape is convolved with the response of
the channel filters. The lower panel shows the full-Stokes observation with a coherent dedispersion
instrument [126, 123]. Total intensity is indicated by black lines, and linear and circular power by
red and blue lines, respectively. The position angle of the linear polarization is plotted twice. The
coherent dedispersion observation results in a much sharper and more detailed pulse profile, less
contaminated by instrumental effects and more closely resembling the pulse emitted by the rotating
neutron star. Much better timing precision can be obtained with these sharper pulses.
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10 I. H. Stairs

be obtained without significant increase in analysis time, allowing accurate polarization plots to
be easily derived. This “coherent dedispersion” technique [57] is now in widespread use across
normal observing bandwidths of several tens of MHz, thanks to the availability of inexpensive fast
computing power (see, e.g., [10, 66, 123]). Some of the highest-precision experiments described
below have used this approach to collect their data. Figure 3 illustrates the advantages of this
technique.

2.3 Pulsar timing

Once dispersion has been removed, the resultant time series is typically folded modulo the expected
pulse period, in order to build up the signal strength over several minutes and to obtain a stable
time-averaged profile. The pulse period may not be very easily predicted from the discovery period,
especially if the pulsar happens to be in a binary system. The goal of pulsar timing is to develop
a model of the pulse phase as a function of time, so that all future pulse arrival times can be
predicted with a good degree of accuracy.

The profile accumulated over several minutes is compared by cross-correlation with the “stan-
dard profile” for the pulsar at that observing frequency. A particularly efficient version of the
cross-correlation algorithm compares the two profiles in the frequency domain [130]. Once the
phase shift of the observed profile relative to the standard profile is known, that offset is added to
the start time of the observation in order to yield a “Time of Arrival” (TOA) that is representative
of that few-minute integration. In practice, observers frequently use a time- and phase-stamp near
the middle of the integration in order to minimize systematic errors due to a poorly known pulse
period. As a rule, pulse timing precision is best for bright pulsars with short spin periods, narrow
profiles with steep edges, and little if any profile corruption due to interstellar scattering.

With a collection of TOAs in hand, it becomes possible to fit a model of the pulsar’s tim-
ing behaviour, accounting for every rotation of the neutron star. Based on the magnetic dipole
model [108, 53], the pulsar is expected to lose rotational energy and thus “spin down”. The primary
component of the timing model is therefore a Taylor expansion of the pulse phase φ with time t:

φ = φ0 + ν(t− t0) +
1
2
ν̇(t− t0)2 + . . . , (1)

where φ0 and t0 are a reference phase and time, respectively, and the pulse frequency ν is the time
derivative of the pulse phase. Note that the fitted parameters ν and ν̇ and the magnetic dipole
model can be used to derive an estimate of the surface magnetic field B sinα:

B sinα =
(
−3Iν̇c3

8π2R6ν3

)1/2

≈ 3.2× 1019

(
−ν̇
ν3

)1/2

G, (2)

where α is the inclination angle between the pulsar spin axis and the magnetic dipole axis, R is the
radius of the neutron star (about 106 cm), and the moment of inertia is I ' 1045 g cm2. In turn,
integration of the energy loss, along with the assumption that the pulsar was born with infinite
spin frequency, yields a “characteristic age” τc for the pulsar:

τc = − ν

2ν̇
. (3)

2.3.1 Basic transformation

Equation (1) refers to pulse frequencies and times in a reference frame that is inertial relative to the
pulsar. TOAs derived in the rest frame of a telescope on the Earth must therefore be translated to
such a reference frame before Equation (1) can be applied. The best approximation available for
an inertial reference frame is that of the Solar System Barycentre (SSB). Even this is not perfect;
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many of the tests of GR described below require correcting for the small relative accelerations of
the SSB and the centre-of-mass frames of binary pulsar systems. But certainly for the majority
of pulsars it is adequate. The required transformation between a TOA at the telescope τ and the
emission time t from the pulsar is

t = τ −D/f2 + ∆R� + ∆E� −∆S� −∆R −∆E −∆S. (4)

Here D/f2 accounts for the dispersive delay in seconds of the observed pulse relative to infinite
frequency; the parameter D is derived from the pulsar’s dispersion measure by D = DM/2.41 ×
10−4 Hz, with DM in units of pc cm−3 and the observing frequency f in MHz. The Roemer
term ∆R� takes out the travel time across the solar system based on the relative positions of the
pulsar and the telescope, including, if needed, the proper motion and parallax of the pulsar. The
Einstein delay ∆E� accounts for the time dilation and gravitational redshift due to the Sun and
other masses in the solar system, while the Shapiro delay ∆S� expresses the excess delay to the
pulsar signal as it travels through the gravitational well of the Sun – a maximum delay of about
120 µs at the limb of the Sun; see [11] for a fuller discussion of these terms. The terms ∆R, ∆E,
and ∆S in Equation (4) account for similar “Roemer”, “Einstein”, and “Shapiro” delays within
the pulsar binary system, if needed, and will be discussed in Section 2.3.2 below. Most observers
accomplish the model fitting, accounting for these delay terms, using the program tempo [110].
The correction of TOAs to the reference frame of the SSB requires an accurate ephemeris for
the solar system. The most commonly used ephemeris is the “DE200” standard from the Jet
Propulsion Laboratory [127]. It is also clear that accurate time-keeping is of primary importance
in pulsar modeling. General practice is to derive the time-stamp on each observation from the
Observatory’s local time standard – typically a Hydrogen maser – and to apply, retroactively,
corrections to well-maintained time standards such as UTC(BIPM), Universal Coordinated Time
as maintained by the Bureau International des Poids et Mesures in Paris.

2.3.2 Binary pulsars

The terms ∆R, ∆E, and ∆S in Equation (4), describe the “Roemer”, “Einstein”, and “Shapiro”
delays within a pulsar binary system. The majority of binary pulsar orbits are adequately de-
scribed by five Keplerian parameters: the orbital period Pb, the projected semi-major axis x, the
eccentricity e, and the longitude ω and epoch T0 of periastron. The angle ω is measured from
the line of nodes Ω where the pulsar orbit intersects the plane of the sky. In many cases, one or
more relativistic corrections to the Keplerian parameters must also be fit. Early relativistic timing
models, developed in the first years after the discovery of PSR B1913+16, either did not provide
a full description of the orbit (see, e.g., [22]), or else did not define the timing parameters, in a
way that allowed deviations from GR to be easily identified (see, e.g., [49, 58]). The best modern
timing model [33, 133, 43] incorporates a number of “post-Keplerian” timing parameters which
are included in the description of the three delay terms, and which can be fit in a completely
phenomenological manner. The delays are defined primarily in terms of the phase of the orbit,
defined by the eccentric anomaly u and true anomaly Ae(u), as well as ω, Pb, and their possible
time derivatives. These are related by

u− e sinu = 2π

[(
T − T0

Pb

)
− Ṗb

2

(
T − T0

Pb

)2
]
, (5)

Ae(u) = 2 arctan

[(
1 + e

1− e

)1/2

tan
u

2

]
, (6)

ω = ω0 +
(
Pb ω̇

2π

)
Ae(u), (7)
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12 I. H. Stairs

where ω0 is the reference value of ω at time T0. The delay terms then become:

∆R = x sinω(cosu− e(1 + δr)) + x(1− e2(1 + δθ)2)1/2 cosω sinu, (8)
∆E = γ sinu, (9)

∆S = −2r ln
{

1− e cosu− s
[
sinω(cosu− e) + (1− e2)1/2 cosω sinu

]}
. (10)

Here γ represents the combined time dilation and gravitational redshift due to the pulsar’s orbit,
and r and s are, respectively, the range and shape of the Shapiro delay. Together with the orbital
period derivative Ṗb and the advance of periastron ω̇, they make up the post-Keplerian timing
parameters that can be fit for various pulsar binaries. A fuller description of the timing model also
includes the aberration parameters δr and δθ, but these parameters are not in general separately
measurable. The interpretation of the measured post-Keplerian timing parameters will be discussed
in the context of double-neutron-star tests of GR in Section 4.
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3 Tests of GR – Equivalence Principle Violations

Equivalence principles are fundamental to gravitational theory; for full descriptions, see, e.g., [94]
or [152]. Newton formulated what may be considered the earliest such principle, now called the
“Weak Equivalence Principle” (WEP). It states that in an external gravitational field, objects of
different compositions and masses will experience the same acceleration. The Einstein Equiva-
lence Principle (EEP) includes this concept as well as those of Lorentz invariance (non-existence of
preferred reference frames) and positional invariance (non-existence of preferred locations) for non-
gravitational experiments. This principle leads directly to the conclusion that non-gravitational
experiments will have the same outcomes in inertial and in freely-falling reference frames. The
Strong Equivalence Principle (SEP) adds Lorentz and positional invariance for gravitational ex-
periments, thus including experiments on objects with strong self-gravitation. As GR incorporates
the SEP, and other theories of gravity may violate all or parts of it, it is useful to define a formalism
that allows immediate identifications of such violations.

The parametrized post-Newtonian (PPN) formalism was developed [150] to provide a uniform
description of the weak-gravitational-field limit, and to facilitate comparisons of rival theories in
this limit. This formalism requires 10 parameters (γPPN, β, ξ, α1, α2, α3, ζ1, ζ2, ζ3, and ζ4), which
are fully described in the article by Will in this series [147], and whose physical meanings are nicely
summarized in Table 2 of that article. (Note that γPPN is not the same as the Post-Keplerian
pulsar timing parameter γ.) Damour and Esposito-Farèse [38, 36] extended this formalism to
include strong-field effects for generalized tensor-multiscalar gravitational theories. This allows a
better understanding of limits imposed by systems including pulsars and white dwarfs, for which
the amounts of self-gravitation are very different. Here, for instance, α1 becomes α̂1 = α1 +α′1(c1 +
c2) + . . ., where ci describes the “compactness” of mass mi. The compactness can be written

ci = −2
∂ lnmi

∂ lnG
' −

(
2Egrav

mc2

)
i

, (11)

where G is Newton’s constant and Egrav
i is the gravitational self-energy of mass mi, about −0.2 for

a neutron star (NS) and −10−4 for a white dwarf (WD). Pulsar timing has the ability to set limits
on α̂1, which tests for the existence of preferred-frame effects (violations of Lorentz invariance); α̂3,
which, in addition to testing for preferred-frame effects, also implies non-conservation of momentum
if non-zero; and ζ2, which is also a non-conservative parameter. Pulsars can also be used to set limits
on other SEP-violation effects that constrain combinations of the PPN parameters: the Nordtvedt
(“gravitational Stark”) effect, dipolar gravitational radiation, and variation of Newton’s constant.
The current pulsar timing limits on each of these will be discussed in the next sections. Table 1
summarizes the PPN and other testable parameters, giving the best pulsar and solar-system limits.
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3.1 Strong Equivalence Principle: Nordtvedt effect

The possibility of direct tests of the SEP through Lunar Laser Ranging (LLR) experiments was first
pointed out by Nordtvedt [104]. As the masses of Earth and the Moon contain different fractional
contributions from self-gravitation, a violation of the SEP would cause them to fall differently in
the Sun’s gravitational field. This would result in a “polarization” of the orbit in the direction of
the Sun. LLR tests have set a limit of |η| < 0.001 (see, e.g., [45, 147]), where η is a combination
of PPN parameters:

η = 4β − γ − 3− 10
3
ξ − α1 +

2
3
α2 −

2
3
ζ1 −

1
3
ζ2. (12)

The strong-field formalism instead uses the parameter ∆i [41], which for object “i ” may be
written as (

mgrav

minertial

)
i

= 1 + ∆i

= 1 + η

(
Egrav

mc2

)
i

+ η′
(
Egrav

mc2

)2

i

+ . . . . (13)

Pulsar–white-dwarf systems then constrain ∆net = ∆pulsar−∆companion [41]. If the SEP is violated,
the equations of motion for such a system will contain an extra acceleration ∆netg, where g is the
gravitational field of the Galaxy. As the pulsar and the white dwarf fall differently in this field,
this ∆netg term will influence the evolution of the orbit of the system. For low-eccentricity orbits,
by far the largest effect will be a long-term forcing of the eccentricity toward alignment with the
projection of g onto the orbital plane of the system. Thus, the time evolution of the eccentricity
vector will not only depend on the usual GR-predicted relativistic advance of periastron (ω̇), but
will also include a constant term. Damour and Schäfer [41] write the time-dependent eccentricity
vector as

e(t) = eF + eR(t), (14)

where eR(t) is the ω̇-induced rotating eccentricity vector, and eF is the forced component. In terms
of ∆net, the magnitude of eF may be written as [41, 145]

|eF| =
3
2

∆netg⊥
ω̇a(2π/Pb)

, (15)

where g⊥ is the projection of the gravitational field onto the orbital plane, and a = x/ sin i is the
semi-major axis of the orbit. For small-eccentricity systems, this reduces to

|eF| =
1
2

∆netg⊥c2

FGM(2π/Pb)2
, (16)

where M is the total mass of the system, and, in GR, F = 1 and G is Newton’s constant.
Clearly, the primary criterion for selecting pulsars to test the SEP is for the orbital system

to have a large value of P 2
b/e, greater than or equal to 107 days2 [145]. However, as pointed out

by Damour and Schäfer [41] and Wex [145], two age-related restrictions are also needed. First of
all, the pulsar must be sufficiently old that the ω̇-induced rotation of e has completed many turns
and eR(t) can be assumed to be randomly oriented. This requires that the characteristic age τc
be � 2π/ω̇, and thus young pulsars cannot be used. Secondly, ω̇ itself must be larger than the
rate of Galactic rotation, so that the projection of g onto the orbit can be assumed to be constant.
According to Wex [145], this holds true for pulsars with orbital periods of less than about 1000
days.

Converting Equation (16) to a limit on ∆net requires some statistical arguments to deal with
the unknowns in the problem. First is the actual component of the observed eccentricity vector (or
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e

e

θ

F

R

g

Figure 4: “Polarization” of a nearly circular binary orbit under the influence of a forcing vector g,
showing the relation between the forced eccentricity eF, the eccentricity evolving under the general-
relativistic advance of periastron eR(t), and the angle θ. (After [145].)

upper limit) along a given direction. Damour and Schäfer [41] assume the worst case of possible
cancellation between the two components of e, namely that |eF| ' |eR|. With an angle θ between
g⊥ and eR (see Figure 4), they write |eF| ≤ e/(2 sin(θ/2)). Wex [145, 146] corrects this slightly
and uses the inequality

|eF| ≤ e ξ1(θ), ξ1(θ) =

 1/ sin θ for θ ∈ [0, π/2),
1 for θ ∈ [π/2, 3π/2],

−1/ sin θ for θ ∈ (3π/2, 2π),
(17)

where e = |e|. In both cases, θ is assumed to have a uniform probability distribution between 0
and 2π.

Next comes the task of estimating the projection of g onto the orbital plane. The projection
can be written as

|g⊥| = |g|[1− (cos i cosλ+ sin i sinλ sin Ω)2]1/2, (18)

where i is the inclination angle of the orbital plane relative to the line of sight, Ω is the line of
nodes, and λ is the angle between the line of sight to the pulsar and g [41]. The values of λ and |g|
can be determined from models of the Galactic potential (see, e.g., [83, 1]). The inclination angle i
can be estimated if even crude estimates of the neutron star and companion masses are available,
from statistics of NS masses (see, e.g., [136]) and/or a relation between the size of the orbit and
the WD companion mass (see, e.g., [114]). However, the angle Ω is also usually unknown and also
must be assumed to be uniformly distributed between 0 and 2π.

Damour and Schäfer [41] use the PSR B1953+29 system and integrate over the angles θ and
Ω to determine a 90% confidence upper limit of ∆net < 1.1 × 10−2. Wex [145] uses an ensemble
of pulsars, calculating for each system the probability (fractional area in θ–Ω space) that ∆net

is less than a given value, and then deriving a cumulative probability for each value of ∆net. In
this way he derives ∆net < 5× 10−3 at 95% confidence. However, this method may be vulnerable
to selection effects; perhaps the observed systems are not representative of the true population.
Wex [146] later overcomes this problem by inverting the question. Given a value of ∆net, an upper
limit on |θ| is obtained from Equation (17). A Monte Carlo simulation of the expected pulsar
population (assuming a range of masses based on evolutionary models and a random orientation of
Ω) then yields a certain fraction of the population that agree with this limit on |θ|. The collection
of pulsars ultimately gives a limit of ∆net < 9 × 10−3 at 95% confidence. This is slightly weaker
than Wex’s previous limit but derived in a more rigorous manner.

Prospects for improving the limits come from the discovery of new suitable pulsars, and from
better limits on eccentricity from long-term timing of the current set of pulsars. In principle,
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measurement of the full orbital orientation (i.e., Ω and i) for certain systems could reduce the
dependence on statistical arguments. However, the possibility of cancellation between |eF| and
|eR| will always remain. Thus, even though the required angles have in fact been measured for the
millisecond pulsar J0437−4715 [139], its comparatively large observed eccentricity of ∼ 2 × 10−5

and short orbital period mean it will not significantly affect the current limits.

3.2 Preferred-frame effects and non-conservation of momentum

3.2.1 Limits on α̂1

A non-zero α̂1 implies that the velocity w of a binary pulsar system (relative to a “universal”
background reference frame given by the Cosmic Microwave Background, or CMB) will affect its
orbital evolution. In a manner similar to the effects of a non-zero ∆net, the time evolution of the
eccentricity will depend on both ω̇ and a term that tries to force the semi-major axis of the orbit
to align with the projection of the system velocity onto the orbital plane.

The analysis proceeds in a similar fashion to that for ∆net, except that the magnitude of eF is
now written as [34, 18]

|eF| =
1
12
α̂1

∣∣∣∣m1 −m2

m1 +m2

∣∣∣∣ |w⊥|
[G(m1 +m2)(2π/Pb)]1/3

, (19)

where w⊥ is the projection of the system velocity onto the orbital plane. The angle λ, used in
determining this projection in a manner similar to that of Equation (18), is now the angle between
the line of sight to the pulsar and the absolute velocity of the binary system.

The figure of merit for systems used to test α̂1 is P 1/3
b /e. As for the ∆net test, the systems

must be old, so that τc � 2π/ω̇, and ω̇ must be larger than the rate of Galactic rotation. Examples
of suitable systems are PSR J2317+1439 [27, 18] with a last published value of e < 1.2× 10−6 in
1996 [28], and PSR J1012+5307, with e < 8× 10−7 [84]. This latter system is especially valuable
because observations of its white-dwarf component yield a radial velocity measurement [24], elim-
inating the need to find a lower limit on an unknown quantity. The analysis of Wex [146] yields
a limit of α̂1 < 1.4 × 10−4. This is comparable in magnitude to the weak-field results from lunar
laser ranging, but incorporates strong field effects as well.

3.2.2 Limits on α̂3

Tests of α̂3 can be derived from both binary and single pulsars, using slightly different techniques.
A non-zero α̂3, which implies both a violation of local Lorentz invariance and non-conservation
of momentum, will cause a rotating body to experience a self-acceleration aself in a direction
orthogonal to both its spin ΩS and its absolute velocity w [107]:

aself = −1
3
α̂3
Egrav

(mc2)
w ×ΩS. (20)

Thus, the self-acceleration depends strongly on the compactness of the object, as discussed in
Section 3 above.

An ensemble of single (isolated) pulsars can be used to set a limit on α̂3 in the following manner.
For any given pulsar, it is likely that some fraction of the self-acceleration will be directed along the
line of sight to the Earth. Such an acceleration will contribute to the observed period derivative
Ṗ via the Doppler effect, by an amount

Ṗα̂3 =
P

c
n̂ · aself , (21)
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where n̂ is a unit vector in the direction from the pulsar to the Earth. The analysis of Will [152]
assumes random orientations of both the pulsar spin axes and velocities, and finds that, on av-
erage, |Ṗα̂3 | ' 5 × 10−5|α̂3|, independent of the pulse period. The sign of the α̂3 contribution
to Ṗ , however, may be positive or negative for any individual pulsar; thus, if there were a large
contribution on average, one would expect to observe pulsars with both positive and negative total
period derivatives. Young pulsars in the field of the Galaxy (pulsars in globular clusters suffer
from unknown accelerations from the cluster gravitational potential and do not count toward this
analysis) all show positive period derivatives, typically around 10−14 s/s. Thus, the maximum
possible contribution from α̂3 must also be considered to be of this size, and the limit is given by
|α̂3| < 2× 10−10 [152].

Bell [16] applies this test to a set of millisecond pulsars; these have much smaller period deriva-
tives, on the order of 10−20s/s. Here, it is also necessary to account for the “Shklovskii effect” [119]
in which a similar Doppler-shift addition to the period derivative results from the transverse motion
of the pulsar on the sky:

Ṗpm = Pµ2 d

c
, (22)

where µ is the proper motion of the pulsar and d is the distance between the Earth and the
pulsar. The distance is usually poorly determined, with uncertainties of typically 30% resulting
from models of the dispersive free electron density in the Galaxy [132, 30]. Nevertheless, once
this correction (which is always positive) is applied to the observed period derivatives for isolated
millisecond pulsars, a limit on |α̂3| on the order of 10−15 results [16, 19].

In the case of a binary-pulsar–white-dwarf system, both bodies experience a self-acceleration.
The combined accelerations affect both the velocity of the centre of mass of the system (an effect
which may not be readily observable) and the relative motion of the two bodies [19]. The relative-
motion effects break down into a term involving the coupling of the spins to the absolute motion
of the centre of mass, and a second term which couples the spins to the orbital velocities of the
stars. The second term induces only a very small, unobservable correction to Pb and ω̇ [19]. The
first term, however, can lead to a significant test of α̂3. Both the compactness and the spin of the
pulsar will completely dominate those of the white dwarf, making the net acceleration of the two
bodies effectively

aself =
1
6
α̂3cp w ×ΩSp, (23)

where cp and ΩSp denote the compactness and spin angular frequency of the pulsar, respectively,
and w is the velocity of the system. For evolutionary reasons (see, e.g., [21]), the spin axis of the
pulsar may be assumed to be aligned with the orbital angular momentum of the system, hence the
net effect of the acceleration will be to induce a polarization of the eccentricity vector within the
orbital plane. The forced eccentricity term may be written as

|eF| = α̂3
cp|w|
24π

P 2
b

P

c2

G(m1 +m2)
sinβ, (24)

where β is the (unknown) angle between w and ΩSp, and P is, as usual, the spin period of the
pulsar: P = 2π/ΩSp.

The figure of merit for systems used to test α̂3 is P 2
b/(eP ). The additional requirements of

τc � 2π/ω̇ and ω̇ being larger than the rate of Galactic rotation also hold. The 95% confidence
limit derived by Wex [146] for an ensemble of binary pulsars is α̂3 < 1.5 × 10−19, much more
stringent than for the single-pulsar case.
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3.2.3 Limits on ζ2

Another PPN parameter that predicts the non-conservation of momentum is ζ2. It will contribute,
along with α3, to an acceleration of the centre of mass of a binary system [149, 152]

acm = (α3 + ζ2)
πm1m2(m1 −m2)

Pb[(m1 +m2)a(1− e2)]3/2
enp, (25)

where np is a unit vector from the centre of mass to the periastron of m1. This acceleration
produces the same type of Doppler-effect contribution to a binary pulsar’s Ṗ as described in
Section 3.2.2. In a small-eccentricity system, this contribution would not be separable from the Ṗ
intrinsic to the pulsar. However, in a highly eccentric binary such as PSR B1913+16, the longitude
of periastron advances significantly – for PSR B1913+16, it has advanced nearly 120◦ since the
pulsar’s discovery. In this case, the projection of acm along the line of sight to the Earth will change
considerably over the long term, producing an effective second derivative of the pulse period. This
P̈ is given by [149, 152]

P̈ =
P

2
(α3 + ζ2)m2 sin i

(
2π
Pb

)2
X(1−X)
(1 +X)2

e ω̇ cosω
(1− e2)3/2

, (26)

where X = m1/m2 is the mass ratio of the two stars and an average value of cosω is chosen.
As of 1992, the 95% confidence upper limit on P̈ was 4 × 10−30 s−1 [133, 149]. This leads to an
upper limit on (α3 + ζ2) of 4 × 10−5 [149]. As α3 is orders of magnitude smaller than this (see
Section 3.2.2), this can be interpreted as a limit on ζ2 alone. Although PSR B1913+16 is of course
still observed, the infrequent campaign nature of the observations makes it difficult to set a much
better limit on P̈ (J. Taylor, private communication, as cited in [75]). The other well-studied
double-neutron-star binary, PSR B1534+12, yields a weaker test due to its orbital parameters and
very similar component masses. A complication for this test is that an observed P̈ could also be
interpreted as timing noise (sometimes seen in recycled pulsars [73]) or else a manifestation of
profile changes due to geodetic precession [79, 75].

3.3 Strong Equivalence Principle: Dipolar gravitational radiation

General relativity predicts gravitational radiation from the time-varying mass quadrupole of a
binary pulsar system. The spectacular confirmation of this prediction will be discussed in Section 4
below. GR does not, however, predict dipolar gravitational radiation, though many theories that
violate the SEP do. In these theories, dipolar gravitational radiation results from the difference
in gravitational binding energy of the two components of a binary. For this reason, neutron-star–
white-dwarf binaries are the ideal laboratories to test the strength of such dipolar emission. The
expected rate of change of the period of a circular orbit due to dipolar emission can be written
as [152, 35]

Ṗb dipole = −4π2G∗
c3 Pb

m1m2

m1 +m2
(αc1 − αc2)2, (27)

where G∗ = G in GR, and αci is the coupling strength of body “i ” to a scalar gravitational
field [35]. (Similar expressions can be derived when casting Ṗb dipole in terms of the parameters
of specific tensor-scalar theories, such as Brans–Dicke theory [23]. Equation (27), however, tests
a more general class of theories.) Of course, the best test systems here are pulsar–white-dwarf
binaries with short orbital periods, such as PSR B0655+64 and PSR J1012+5307, where αc1 �
αc2 so that a strong limit can be set on the coupling of the pulsar itself. For PSR B0655+64,
Damour and Esposito-Farèse [35] used the observed limit of Ṗb = (1 ± 4) × 10−13 [5] to derive
(αc1 − α0)2 < 3 × 10−4 (1-σ), where α0 is a reference value of the coupling at infinity. More
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recently, Arzoumanian [6] has set a somewhat tighter 2-σ upper limit of |Ṗb/Pb| < 1×10−10 yr−1,
or |Ṗb| < 2.7× 10−13, which yields (αc1 −α0)2 < 2.7× 10−4. For PSR J1012+5307, a “Shklovskii”
correction (see [119] and Section 3.2.2) for the transverse motion of the system and a correction for
the (small) predicted amount of quadrupolar radiation must first be subtracted from the observed
upper limit to arrive at Ṗb = (−0.6±1.1)×10−13 and (αc1−α0)2 < 4×10−4 at 95% confidence [84].
It should be noted that both these limits depend on estimates of the masses of the two stars and
do not address the (unknown) equation of state of the neutron stars.

Limits may also be derived from double-neutron-star systems (see, e.g., [148, 151]), although
here the difference in the coupling constants is small and so the expected amount of dipolar radia-
tion is also small compared to the quadrupole emission. However, certain alternative gravitational
theories in which the quadrupolar radiation predicts a positive orbital period derivative indepen-
dently of the strength of the dipolar term (see, e.g., [117, 99, 85]) are ruled out by the observed
decreasing orbital period in these systems [142].

Other pulsar–white-dwarf systems with short orbital periods are mostly found in globular clus-
ters, where the cluster potential will also contribute to the observed Ṗb, or in interacting systems,
where tidal effects or magnetic braking may affect the orbital evolution (see, e.g., [4, 50, 100]).
However, one system that offers interesting prospects is the recently discovered PSR J1141−6545
[72], which is a young pulsar with white-dwarf companion in a 4.75-hour orbit. In this case, though,
the pulsar was formed after the white dwarf, instead of being recycled by the white-dwarf pro-
genitor, and so the orbit is still highly eccentric. This system is therefore expected both to emit
sizable amounts of quadrupolar radiation – Ṗb could be measurable as soon as 2004 [72] – and to
be a good test candidate for dipolar emission [52].

3.4 Preferred-location effects: Variation of Newton’s constant

Theories that violate the SEP by allowing for preferred locations (in time as well as space) may
permit Newton’s constant G to vary. In general, variations in G are expected to occur on the
timescale of the age of the Universe, such that Ġ/G ∼ H0 ∼ 0.7 × 10−10 yr−1, where H0 is
the Hubble constant. Three different pulsar-derived tests can be applied to these predictions, as
a SEP-violating time-variable G would be expected to alter the properties of neutron stars and
white dwarfs, and to affect binary orbits.

3.4.1 Spin tests

By affecting the gravitational binding of neutron stars, a non-zero Ġ would reasonably be expected
to alter the moment of inertia of the star and hence change its spin on the same timescale [32].
Goldman [54] writes (

Ṗ

P

)
Ġ

=
(
∂ ln I
∂ lnG

)
N

Ġ

G
, (28)

where I is the moment of inertia of the neutron star, about 1045 g cm2, and N is the (conserved)
total number of baryons in the star. By assuming that this represents the only contribution to the
observed Ṗ of PSR B0655+64, in a manner reminiscent of the test of α̂3 described above, Goldman
then derives an upper limit of |Ġ/G| ≤ (2.2 – 5.5) × 10−11 yr−1, depending on the stiffness of the
neutron star equation of state. Arzoumanian [5] applies similar reasoning to PSR J2019+2425 [103],
which has a characteristic age of 27 Gyr once the “Shklovskii” correction is applied [102]. Again,
depending on the equation of state, the upper limits from this pulsar are |Ġ/G| ≤ (1.4 – 3.2) ×
10−11 yr−1 [5]. These values are similar to those obtained by solar-system experiments such as
laser ranging to the Viking Lander on Mars (see, e.g., [115, 59]). Several other millisecond pulsars,
once “Shklovskii” and Galactic-acceleration corrections are taken into account, have similarly large
characteristic ages (see, e.g., [28, 137]).
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3.4.2 Orbital decay tests

The effects on the orbital period of a binary system of a varying G were first considered by Damour,
Gibbons, and Taylor [39], who expected(

Ṗb

Pb

)
Ġ

= −2
Ġ

G
. (29)

Applying this equation to the limit on the deviation from GR of the Ṗb for PSR 1913+16, they
found a value of Ġ/G = (1.0± 2.3)× 10−11 yr−1. Nordtvedt [106] took into account the effects of
Ġ on neutron-star structure, realizing that the total mass and angular momentum of the binary
system would also change. The corrected expression for Ṗb incorporates the compactness parameter
ci and is (

Ṗb

Pb

)
Ġ

= −
[
2−

(
m1c1 +m2c2
m1 +m2

)
− 3

2

(
m1c2 +m2c1
m1 +m2

)]
Ġ

G
. (30)

(Note that there is a difference of a factor of −2 in Nordtvedt’s definition of ci versus the Damour
definition used throughout this article.) Nordtvedt’s corrected limit for PSR B1913+16 is there-
fore slightly weaker. A better limit actually comes from the neutron-star–white-dwarf system
PSR B1855+09, with a measured limit on Ṗb of (0.6± 1.2)× 10−12 [73]. Using Equation (29), this
leads to a bound of Ġ/G = (−9± 18)× 10−12 yr−1, which Arzoumanian [5] corrects using Equa-
tion (30) and an estimate of NS compactness to Ġ/G = (−1.3± 2.7)× 10−11 yr−1. Prospects for
improvement come directly from improvements to the limit on Ṗb. Even though PSR J1012+5307
has a tighter limit on Ṗb [84], its shorter orbital period means that the Ġ limit it sets is a factor
of 2 weaker than obtained with PSR B1855+09.

3.4.3 Changes in the Chandrasekhar mass

The Chandrasekhar mass, MCh, is the maximum mass possible for a white dwarf supported against
gravitational collapse by electron degeneracy pressure [29]. Its value – about 1.4M� – comes
directly from Newton’s constant: MCh ∼ (h̄ c/G)3/2/m2

n, where h̄ is Planck’s constant and mn

is the neutron mass. All measured and constrained pulsar masses are consistent with a narrow
distribution centred very close to MCh: 1.35 ± 0.04M� [136]. Thus, it is reasonable to assume
that MCh sets the typical neutron star mass, and to check for any changes in the average neutron
star mass over the lifetime of the Universe. Thorsett [135] compiles a list of measured and average
masses from 5 double-neutron-star binaries with ages ranging from 0.1 Gyr to 12 or 13 Gyr in
the case of the globular-cluster binary B2127+11C. Using a Bayesian analysis, he finds a limit
of Ġ/G = (−0.6 ± 4.2) × 10−12 yr−1 at the 95% confidence level, the strongest limit on record.
Figure 5 illustrates the logic applied.

While some cancellation of “observed” mass changes might be expected from the changes in
neutron-star binding energy (cf. Section 3.4.2 above), these will be smaller than the MCh changes
by a factor of order the compactness and can be neglected. Also, the claimed variations of the fine
structure constant of order ∆α/α ' −0.72±0.18×10−5 [140] over the redshift range 0.5 < z < 3.5
could introduce a maximum derivative of 1/(h̄c) · d(h̄c)/dt of about 5 × 10−16 yr−1 and hence
cannot influence the Chandrasekhar mass at the same level as the hypothesized changes in G.

One of the five systems used by Thorsett has since been shown to have a white-dwarf compan-
ion [138], but as this is one of the youngest systems, this will not change the results appreciably.
The recently discovered PSR J1811−1736 [89], a double-neutron-star binary, has a characteristic
age of only τc ∼ 1 Gyr and, therefore, will also not significantly strengthen the limit. Ongoing
searches for pulsars in globular clusters stand the best chance of discovering old double-neutron-star
binaries for which the component masses can eventually be measured.
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Figure 5: Measured neutron star masses as a function of age. The solid lines show predicted
changes in the average neutron star mass corresponding to hypothetical variations in G, where
ζ−12 = 10 implies Ġ/G = 10× 10−12 yr−1. (From [135], used by permission.)
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4 Tests of GR – Strong-Field Gravity

The best-known uses of pulsars for testing the predictions of gravitational theories are those in
which the predicted strong-field effects are compared directly against observations. As essentially
point-like objects in strong gravitational fields, neutron stars in binary systems provide extraor-
dinarily clean tests of these predictions. This section will cover the relation between the “post-
Keplerian” timing parameters and strong-field effects, and then discuss the three binary systems
that yield complementary high-precision tests.

4.1 Post-Keplerian timing parameters

In any given theory of gravity, the post-Keplerian (PK) parameters can be written as functions of
the pulsar and companion star masses and the Keplerian parameters. As the two stellar masses
are the only unknowns in the description of the orbit, it follows that measurement of any two
PK parameters will yield the two masses, and that measurement of three or more PK parameters
will over-determine the problem and allow for self-consistency checks. It is this test for internal
consistency among the PK parameters that forms the basis of the classic tests of strong-field
gravity. It should be noted that the basic Keplerian orbital parameters are well-measured and can
effectively be treated as constants here.

In general relativity, the equations describing the PK parameters in terms of the stellar masses
are (see [33, 133, 43]):

ω̇ = 3
(
Pb

2π

)−5/3

(T�M)2/3 (1− e2)−1, (31)

γ = e

(
Pb

2π

)1/3

T
2/3
� M−4/3m2(m1 + 2m2), (32)

Ṗb = −192π
5

(
Pb

2π

)−5/3(
1 +

73
24
e2 +

37
96
e4

)
(1− e2)−7/2 T

5/3
� m1m2M

−1/3, (33)

r = T�m2, (34)

s = x

(
Pb

2π

)−2/3

T
−1/3
� M2/3m−1

2 . (35)

where s ≡ sin i, M = m1+m2 and T� ≡ GM�/c3 = 4.925490947 µs. Other theories of gravity, such
as those with one or more scalar parameters in addition to a tensor component, will have somewhat
different mass dependencies for these parameters. Some specific examples will be discussed in
Section 4.4 below.

4.2 The original system: PSR B1913+16

The prototypical double-neutron-star binary, PSR B1913+16, was discovered at the Arecibo Ob-
servatory [96] in 1974 [62]. Over nearly 30 years of timing, its system parameters have shown a
remarkable agreement with the predictions of GR, and in 1993 Hulse and Taylor received the Nobel
Prize in Physics for its discovery [61, 131]. In the highly eccentric 7.75-hour orbit, the two neutron
stars are separated by only 3.3 light-seconds and have velocities up to 400 km/s. This provides an
ideal laboratory for investigating strong-field gravity.

For PSR B1913+16, three PK parameters are well measured: the combined gravitational red-
shift and time dilation parameter γ, the advance of periastron ω̇, and the derivative of the orbital
period, Ṗb. The orbital parameters for this pulsar, measured in the theory-independent “DD”
system, are listed in Table 2 [133, 144].
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Parameter Value

Orbital period Pb (d) 0.322997462727(5)

Projected semi-major axis x (s) 2.341774(1)

Eccentricity e 0.6171338(4)

Longitude of periastron ω (deg) 226.57518(4)

Epoch of periastron T0 (MJD) 46443.99588317(3)

Advance of periastron ω̇ (deg yr−1) 4.226607(7)

Gravitational redshift γ (ms) 4.294(1)

Orbital period derivative (Ṗb)obs (10−12) −2.4211(14)

Table 2: Orbital parameters for PSR B1913+16 in the DD framework, taken from [144].

Figure 6: The parabola indicates the predicted accumulated shift in the time of periastron for
PSR B1913+16, caused by the decay of the orbit. The measured values of the epoch of periastron
are indicated by the data points. (From [144], courtesy Joel Weisberg.)
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The task is now to judge the agreement of these parameters with GR. A second useful timing
formalism is “DDGR” [33, 43], which assumes GR to be the true theory of gravity and fits for
the total and companion masses in the system, using these quantities to calculate “theoretical”
values of the PK parameters. Thus, one can make a direct comparison between the measured DD
PK parameters and the values predicted by DDGR using the same data set; the parameters for
PSR B1913+16 agree with their predicted values to better than 0.5% [133]. The classic demon-
stration of this agreement is shown in Figure 6 [144], in which the observed accumulated shift of
periastron is compared to the predicted amount.

Figure 7: Mass–mass diagram for the PSR B1913+16 system, using the ω̇ and γ parameters listed
in Table 2. The uncertainties are smaller than the widths of the lines. The lines intersect at
the point given by the masses derived under the DDGR formalism. (From [144], courtesy Joel
Weisberg.)

In order to check the self-consistency of the overdetermined set of equations relating the PK
parameters to the neutron star masses, it is helpful to plot the allowed m1–m2 curves for each
parameter and to verify that they intersect at a common point. Figure 7 displays the ω̇ and γ
curves for PSR B1913+16; it is clear that the curves do intersect, at the point derived from the
DDGR mass predictions.

Clearly, any theory of gravity that does not pass such a self-consistency test can be ruled
out. However, it is possible to construct alternate theories of gravity that, while producing very
different curves in the m1–m2 plane, do pass the PSR B1913+16 test and possibly weak-field tests
as well [38]. Such theories are best dealt with by combining data from multiple pulsars as well as
solar-system experiments (see Section 4.4).
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A couple of practical points are worth mentioning. The first is that the unknown radial velocity
of the binary system relative to the SSB will necessarily induce a Doppler shift in the orbital and
neutron-star spin periods. This will change the observed stellar masses by a small fraction but will
cancel out of the calculations of the PK parameters [33]. The second is that the measured value
of the orbital period derivative Ṗb is contaminated by several external contributions. Damour and
Taylor [42] consider the full range of possible contributions to Ṗb and calculate values for the two
most important: the acceleration of the pulsar binary centre-of-mass relative to the SSB in the
Galactic potential, and the “Shklovskii” v2/r effect due to the transverse proper motion of the
pulsar (cf. Section 3.2.2). Both of these contributions have been subtracted from the measured
value of Ṗb before it is compared with the GR prediction. It is our current imperfect knowledge
of the Galactic potential and the resulting models of Galactic acceleration (see, e.g., [83, 1]) which
now limits the precision of the test of GR resulting from this system.

4.3 PSR B1534+12 and other binary pulsars

A second double-neutron-star binary, PSR B1534+12, was discovered during a drift-scan survey at
Arecibo Observatory in 1990 [153]. This system is quite similar to PSR B1913+16: It also has a
short (10.1-hour) orbit, though it is slightly wider and less eccentric. PSR B1534+12 does possess
some notable advantages relative to its more famous cousin: It is closer to the Earth and therefore
brighter; its pulse period is shorter and its profile narrower, permitting better timing precision;
and, most importantly, it is inclined nearly edge-on to the line of sight from the Earth, allowing
the measurement of Shapiro delay as well as the 3 PK parameters measurable for PSR B1913+16.
The orbital parameters for PSR B1534+12 are given in Table 3 [125].

Parameter Value

Orbital period Pb (d) 0.420737299122(10)

Projected semi-major axis x (s) 3.729464(2)

Eccentricity e 0.2736775(3)

Longitude of periastron ω (deg) 274.57679(5)

Epoch of periastron T0 (MJD) 50260.92493075(4)

Advance of periastron ω̇ (deg yr−1) 1.755789(9)

Gravitational redshift γ (ms) 2.070(2)

Orbital period derivative (Ṗb)obs (10−12) −0.137(3)

Shape of Shapiro delay s 0.975(7)

Range of Shapiro delay r (µs) 6.7(1.0)

Table 3: Orbital parameters for PSR B1534+12 in the DD framework, taken from [125].

As for PSR B1913+16, a graphical version of the internal consistency test is a helpful way to
understand the agreement of the measured PK parameters with the predictions of GR. This is
presented in Figure 8. It is obvious that the allowed-mass region derived from the observed value
of Ṗb does not in fact intersect those from the other PK parameters. This is a consequence of the
proximity of the binary to the Earth, which makes the “Shklovskii” contribution to the observed
Ṗb much larger than for PSR B1913+16. The magnitude of this contribution depends directly on
the poorly known distance to the pulsar. At present, the best independent measurement of the
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distance comes from the pulsar’s dispersion measure and a model of the free electron content of the
Galaxy [132], which together yield a value of 0.7± 0.2 kpc. If GR is the correct theory of gravity,
then the correction derived from this distance is inadequate, and the true distance can be found
by inverting the problem [17, 121]. The most recent value of the distance derived in this manner
is 1.02± 0.05 kpc [125]. (Note that the newer “NE2001” Galactic model [30] incorporates the GR-
derived distance to this pulsar and hence cannot be used in this case.) It is possible that, in the
long term, a timing or interferometric parallax may be found for this pulsar; this would alleviate
the Ṗb discrepancy. The GR-derived distance is in itself interesting, as it has led to revisions of
the predicted merger rate of double-neutron-star systems visible to gravitational-wave detectors
such as LIGO (see, e.g., [121, 7, 71]) – although recent calculations of merger rates determine the
most likely merger rates for particular population models and hence are less vulnerable to distance
uncertainties in any one system [74].

Figure 8: Mass–mass diagram for the PSR B1534+12 system. Labeled curves illustrate 68%
confidence ranges of the DD parameters listed in Table 3. The filled circle indicates the com-
ponent masses according to the DDGR solution. The kinematic correction for assumed distance
d = 0.7 ± 0.2 kpc has been subtracted from the observed value of Ṗb; the uncertainty on this
kinematic correction dominates the uncertainty of this curve. A slightly larger distance removes
the small apparent discrepancy between the observed and predicted values of this parameter. (Af-
ter [125].)

Despite the problematic correction to Ṗb, the other PK parameters for PSR B1534+12 are in
excellent agreement with each other and with the values predicted from the DDGR-derived masses.
An important point is that the three parameters ω̇, γ, and s (shape of Shapiro delay) together
yield a test of GR to better than 1%, and that this particular test incorporates only “quasi-static”
strong-field effects. This provides a valuable complement to the mixed quasi-static and radiative
test derived from PSR B1913+16, as it separates the two sectors of the theory.
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There are three other confirmed double-neutron-star binaries at the time of writing. PSR
B2127+11C [2, 3] is in the globular cluster M15. While its orbital period derivative has been
measured [44], this parameter is affected by acceleration in the cluster potential, and the system
has not yet proved very useful for tests of GR, though long-term observations may demonstrate
otherwise. The two binaries PSRs J1518+4904 [101] and J1811−1736 [89] have such wide orbits
that, although ω̇ is measured in each case, prospects for measuring further PK parameters are dim.
In several circular pulsar–white-dwarf binaries, one or two PK parameters have been measured –
typically ω̇ or the Shapiro delay parameters – but these do not over-constrain the unknown masses.
The existing system that provides the most optimistic outlook is again the pulsar–white-dwarf
binary PSR J1141−6545 [72], for which multiple PK parameters should be measurable within a
few years – although one may need to consider the possibility of classical contributions to the
measured ω̇ from a mass quadrupole of the companion.

4.4 Combined binary-pulsar tests

Because of their different orbital parameters and inclinations, the double-neutron-star systems
PSRs B1913+16 and B1534+12 provide somewhat different constraints on alternative theories
of gravity. Taken together with some of the limits on SEP violation discussed above, and with
solar-system experiments, they can be used to disallow certain regions of the parameter space of
these alternate theories. This approach was pioneered by Taylor et al. [134], who combined PK-
parameter information from PSRs B1913+16 and B1534+12 and the Damour and Schäfer result
on SEP violation by PSR B1855+09 [41] to set limits on the parameters β′ and β′′ of a class of
tensor-biscalar theories discussed in [38] (Figure 9). In this class of theories, gravity is mediated
by two scalar fields as well as the standard tensor, but the theories can satisfy the weak-field
solar-system tests. Strong-field deviations from GR would be expected for non-zero values of β′

and β′′, but the theories approach the limit of GR as the parameters β′ and β′′ approach zero.
A different class of theories, allowing a non-linear coupling between matter and a scalar field,

was later studied by Damour and Esposito-Farèse [35, 37]. The function coupling the scalar field φ
to matter is given by A(φ) = exp(1

2β0φ
2), and the theories are described by the parameters β0 and

α0 = β0φ0, where φ0 is the value that φ approaches at spatial infinity (cf. Section 3.3). These the-
ories allow significant strong-field effects when β0 is negative, even if the weak-field limit is small.
They are best tested by combining results from PSRs B1913+16, B1534+12 (which contributes
little to this test), B0655+64 (limits on dipolar gravitational radiation), and solar-system experi-
ments (Lunar laser ranging, Shapiro delay measured by Viking [116], and the perihelion advance
of Mercury [118]). The allowed parameter space from the combined tests is shown graphically in
Figure 10 [37]. Currently, for most neutron-star equations of state, the solar-system tests set a
limit on α0 (α2

0 < 10−3) that is a few times more stringent than those set by PSRs B1913+16
and B0655+64, although the pulsar observations do eliminate large negative values of β0. With
the limits from the pulsar observations improving only very slowly with time, it appears that
solar-system tests will continue to set the strongest limits on α0 in this class of theories, unless a
pulsar–black-hole system is discovered. If such a system were found with a ∼ 10-M� black hole
and an orbital period similar to that of PSR B1913+16 (∼ 8 hours), the limit on α0 derived from
this system would be about 50 times tighter than that set by current solar-system tests, and 10
times better than is likely to be achieved by the Gravity Probe B experiment [37].

4.5 Independent geometrical information: PSR J0437−4715

A different and complementary test of GR has recently been permitted by the millisecond pulsar
PSR J0437−4715 [139]. At a distance of only 140 pc, it is the closest millisecond pulsar to the
Earth [69], and is also extremely bright, allowing root-mean-square timing residuals of 35 ns with
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Figure 9: Portions of the tensor-biscalar β′–β′′ plane permitted by timing observations of
PSRs B1913+16, B1534+12, and B1855+09 up to 1992. Values lying above the curve labeled
“a” are incompatible with the measured ω̇ and γ parameters for PSR B1913+16. The curves
labeled “b” and “d” give the allowed ranges of β′ and β′′ for PSRs B1913+16 and B1534+12,
respectively, fitting for the two neutron-star masses as well as β′ and β′′, using data available
up to 1992. The vertical lines labeled “c” represent limits on β′ from the SEP-violation test us-
ing PSR B1855+09 [41]. The dot at (0,0) corresponds to GR. (Reprinted by permission from
Nature [134], c©1992, Macmillan Publishers Ltd.)
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Figure 10: The parameter space in the non-linear α0, β0 gravitational theory, for neutron stars
described by a polytrope equation of state. The regions below the various curves are allowed by
various pulsar timing limits, by solar-system tests (“1PN”), and by projected LIGO/VIRGO ob-
servations of NS–NS and NS–BH inspiral events. The shaded region is allowed by all tests. The
plane and limits are symmetric about α0 = 0. (From [37]; used by permission.)

the 64-m Parkes telescope [9], comparable to or better than the best millisecond pulsars observed
with current instruments at the 300-m Arecibo telescope [96].

The proximity of this system means that the orbital motion of the Earth changes the apparent
inclination angle i of the pulsar orbit on the sky, an effect known as the annual-orbital parallax [76].
This results in a periodic change of the projected semi-major axis x of the pulsar’s orbit, written
as

x(t) = x0

[
1 +

cot i
d

r⊕(t) ·Ω′
]
, (36)

where r⊕(t) is the time-dependent vector from the centre of the Earth to the SSB, and Ω′ is a
vector on the plane of the sky perpendicular to the line of nodes. A second contribution to the
observed i and hence x comes from the pulsar system’s transverse motion in the plane of the
sky [77]:

ẋpm = −x cot i µ ·Ω′, (37)

where µ is the proper motion vector. By including both these effects in the model of the pulse
arrival times, both the inclination angle i and the longitude of the ascending node Ω can be
determined [139]. As sin i is equivalent to the shape of the Shapiro delay in GR (PK parameter s),
the effect of the Shapiro delay on the timing residuals can then easily be computed for a range of
possible companion masses (equivalent to the PK parameter r in GR). The variations in the timing
residuals are well explained by a companion mass of 0.236± 0.017M� (Figure 11). The measured
value of ω̇, together with i, also provide an estimate of the companion mass, 0.23±0.14M�, which
is consistent with the Shapiro-delay value.

While this result does not include a true self-consistency check in the manner of the double-
neutron-star tests, it is nevertheless important, as it represents the only case in which an indepen-
dent, purely geometric determination of the inclination angle of a binary orbit predicts the shape
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Figure 11: Solid line: predicted value of the Shapiro delay in PSR J0437−4715 as a function
of orbital phase, based on the observed inclination angle of 42◦ ± 9◦. For such low-eccentricity
binaries, much of the Shapiro delay can be absorbed into the orbital Roemer delay; what remains is
the ∼ Pb/3 periodicity shown. The points represent the timing residuals for the pulsar, binned in
orbital phase, and in clear agreement with the shape predicted from the inclination angle. (Reprinted
by permission from Nature [139], c©2001, Macmillan Publishers Ltd.)

of the Shapiro delay. It can thus be considered to provide an independent test of the predictions
of GR.

4.6 Spin-orbit coupling and geodetic precession

A complete discussion of GR effects in pulsar observations must mention geodetic precession,
though these results are somewhat qualitative and do not (yet) provide a model-free test of GR. In
standard evolutionary scenarios for double-neutron-star binaries (see, e.g., [21, 109]), both stellar
spins are expected to be aligned with the orbital angular momentum just before the second super-
nova explosion. After this event, however, the observed pulsar’s spin is likely to be misaligned with
the orbital angular momentum, by an angle of the order of 20◦ [13]. A similar misalignment may be
expected when the observed pulsar is the second-formed degenerate object, as in PSR J1141−6545.
As a result, both vectors will precess about the total angular momentum of the system (in practice
the total angular momentum is completely dominated by the orbital angular momentum). The
evolution of the pulsar spin axis S1 can be written as [40, 14]

dS1

dt
= Ωspin

1 × S1, (38)

where the vector Ωspin
1 is aligned with the orbital angular momentum. Its magnitude is given by

Ωspin
1 =

1
2

(
Pb

2π

)−5/3
m2(4m1 + 3m2)

(1− e2)(m1 +m2)4/3
T

2/3
� , (39)
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where T� ≡ GM�/c
3 = 4.925490947 µs, as in Section 4.1. This predicted rate of precession is

small; the three systems with the highest Ωspin
1 values are:

• PSR J1141−6545 at 1.35◦ yr−1,

• PSR B1913+16 at 1.21◦ yr−1,

• PSR B1534+12 at 0.52◦ yr−1.

The primary manifestation of this precession is expected to be a slow change in the shape of the
pulse profile, as different regions of the pulse emission beam move into the observable region.

Figure 12: Changes in the observed pulse profile of PSR B1913+16 throughout the 1980s, due to
a changing line-of-sight cut through the emission region of the pulsar. (Taken from [133]; used by
permission.)

Evidence for long-term profile shape changes is in fact seen in PSRs B1913+16 and B1534+12.
For PSR B1913+16, profile shape changes were first reported in the 1980s [141], with a clear change
in the relative heights of the two profile peaks over several years (Figure 12). No similar changes
were found in the polarization of the pulsar [31]. Interestingly, although a simple picture of a
cone-shaped beam might lead to an expectation of a change in the separation of the peaks with
time, no evidence for this was seen until the late 1990s, at the Effelsberg 100-m telescope [80], by
which point the two peaks had begun to move closer together at a rather fast rate. Kramer [80]
used this changing peak separation, along with the predicted precession rate and a simple conal
model of the pulse beam, to estimate a spin-orbit misalignment angle of about 22◦ and to predict
that the pulsar will disappear from view in about 2025 (see Figure 13), in good agreement with
an earlier prediction by Istomin [64] made before the peak separation began to change. Recent
results from Arecibo [143] confirm the gist of Kramer’s results, with a misalignment angle of
about 21◦. Both sets of authors find there are four degenerate solutions that can fit the profile
separation data; two can be discarded as they predict an unreasonably large misalignment angle
of ∼ 180◦ − 22◦ = 158◦ [13], and a third is eliminated because it predicts the wrong direction of
the position angle swing under the Rotating Vector Model [111]. The main area of dispute is the
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Figure 13: Top: change in peak separation of the relativistic double-neutron-star binary
PSR B1913+16, as observed with the Arecibo (solid points, [141]) and Effelsberg (open circles, [80])
telescopes. Bottom: projected disappearance of PSR B1913+16 in approximately 2025. (Taken
from [80]; used by permission.)
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Figure 14: Hourglass-shaped beam for PSR B1913+16 derived from the symmetric-component anal-
ysis of [143]. (Taken from [143]; used by permission.)
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actual shape of the emission region; while Weisberg and Taylor find an hourglass-shaped beam
(see Figure 14), Kramer maintains that a nearly circular cone plus an offset core is adequate (see
Figure 15). In any event, it is clear that the interpretation of the profile changes requires some
kind of model of the beam shape. Kramer [81, 82] lets the rate of precession vary as another
free parameter in the pulse-shape fit, and finds a value of 1.2◦ ± 0.2◦. This is consistent with the
GR prediction but still depends on the beam-shape model and is therefore not a true test of the
precession rate.

Figure 15: Alternate proposed beam shape for PSR B1913+16, consisting of a symmetric cone
plus an offset core. The red lines indicate an example cut through the emission region, as well as
the predicted pulse peak ratio and separation as functions of time. (After [81], courtesy Michael
Kramer.)

PSR B1534+12, despite the disadvantages of a more recent discovery and a much longer pre-
cession period, also provides clear evidence of long-term profile shape changes. These were first
noticed at 1400 MHz by Arzoumanian [5, 8] and have become more obvious at this frequency and
at 430 MHz in the post-upgrade period at Arecibo [124]. The principal effect is a change in the
low-level emission near to the main pulse (Figure 16), though related changes in polarization are
now also seen. As this pulsar shows polarized emission through most of its pulse period, it should
be possible to form a better picture of the overall geometry than for PSR B1913+16; this may
make it easier to derive an accurate model of the pulse beam shape.

As for other tests of GR, the pulsar–white-dwarf binary PSR J1141−6545 promises interesting
results. As noted by the discoverers [72], the region of sky containing this pulsar had been observed
at the same frequency in an earlier survey [70], but the pulsar was not seen, even though it is now
very strong. It is possible that interference corrupted that original survey pointing, or that a
software error prevented its detection, but it is also plausible that the observed pulsar beam is
evolving so rapidly that the visible beam precessed into view during the 1990s. Clearly, careful
monitoring of this pulsar’s profile is in order.
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Figure 16: Evolution of the low-level emission surrounding the main pulse of PSR B1534+12, over
a period of nearly 10 years, as measured with the Arecibo telescope [96]. (Stairs et al., unpublished.)

Living Reviews in Relativity (lrr-2003-5)
http://relativity.livingreviews.org

http://relativity.livingreviews.org


Testing General Relativity with Pulsar Timing 37

5 Conclusions and Future Prospects

The tremendous success to date of pulsars in testing different aspects of gravitational theory
leads naturally to the question of what can be expected in the future. Improvements to the
equivalence-principle violation tests will come from both refining the timing parameters of known
pulsars (in particular, limits on eccentricities and orbital period derivatives) and the discovery
of further pulsar–white-dwarf systems. Potentially coalescing pulsar–white-dwarf binaries, such
as PSRs J1141−6545, J0751+1807 [88], and 1757−5322 [46], bear watching from the point of
view of limits on dipolar gravitational radiation. Another worthy, though difficult, goal is to
attempt to derive the full orbital geometry for ultra-low-eccentricity systems, as has been done
for PSR J0437−4715 [139]; this would quickly lead to significant improvements in the eccentricity-
dependent tests.

The orbital-period-derivative measurements of double-neutron-star binaries are already limited
more by systematics (Galactic acceleration models for PSR B1913+16, and poorly known distance
for PSR B1534+12) than by pulsar timing precision. However, with improved Galactic modeling
and a realistic expectation of an interferometric (VLBI) parallax for PSR B1534+12, there is still
hope for testing more carefully the prediction of quadrupolar gravitational radiation from these
systems. The other timing parameters, equally important for tests of the quasi-static regime,
can be expected to improve with time and better instrumentation, such as the wider-bandwidth
coherent dedispersion systems now being installed at many observatories (see, e.g., [68, 129]).
Especially exciting would be a measurement of the elusive Shapiro delay in PSR B1913+16; the
longitude of periastron is now precessing into an angular range where it may facilitate such a
measurement [144].

In the last few years, surveys of the Galactic Plane and flanking regions, using the 64-m Parkes
telescope in Australia [9], have discovered several hundred new pulsars (see, e.g., [91, 48]), including
several new circular-orbit pulsar–white-dwarf systems [46, 47, 26] and the eccentric pulsar–white-
dwarf binary PSR J1141−6545 [72]. A complete reprocessing of the Galactic Plane survey with
improved interference filtering is in progress; thus there is still hope that a truly new system such
as a pulsar–black-hole binary may emerge from this large survey. Several ongoing smaller surveys
of small regions and globular clusters (see, e.g., [25, 113]) are also finding a number of new and
exotic binaries, some of which may eventually turn out to be useful for tests of GR. The possible
recent appearance of PSR J1141−6545 and the predicted disappearance of PSR B1913+16 due to
geodetic precession make it worthwhile to periodically revisit previously surveyed parts of the sky
in order to check for newly-visible exotic binaries. Over the next several years, large-scale surveys
are planned at Arecibo [97] and the new 100-m Green Bank Telescope [98], offering the promise of
over 1000 new pulsars including interesting binary systems. The sensitivity of these surveys will of
course be dwarfed by the potential of the proposed Square Kilometre Array radio telescope [63],
which will be sensitive to pulsars clear through our Galaxy and into neighbouring galaxies such
as M31. The next 10 or 20 years promise to be exciting times for pulsar searchers and for those
looking to set ever-more-stringent limits on deviations from general relativity.
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