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MANAGEMENT SCIENCE 
Vol. 14, No. 3, November, 1967 

Printed in U.S.A. 

A PRIMAL METHOD FOR MINIMAL COST FLOWS WITH 
APPLICATIONS TO THE ASSIGNMENT AND 

TRANSPORTATION PROBLEMS*t 

MORTON KLEIN$ 

Columbia University 

A simple procedure is given for solving minimal cost flow problems in which 
feasible flows are maintained throughout. It specializes to give primal algo- 
rithms for the assignment and transportation problems. Convex cost problems 
can also be handled. 

1. Introduction 

Suppose we have a network with vertices V = { 1, * , n}, directed edges E = 

{ (i, j) - V X V}, a non-negative integral valued function k giving the maximum 
allowable flow ki1 over every edge, and a non-negative cost function a giving the 
cost aij associated with a unit of flow over any edge. A flow X of value v is an 
integral valued function defined on E satisfying 

(1.1) < xij kii I (ij j) eE. 

(1.2) V=I (zi - - i - 1, 

= 0, i= 2,**,n-1, 

- -=n. 

Vertices 1 and n are, respectively, called the flow source and sink. 
The minimal cost flow problem is to find, among all flows X of value v, one 

which minimizes 

(1.3) Q(X) == J(i j)ZE xii aij . 

The main computational procedures developed to date for solving this problem 
are the primal-dual type algorithms of Ford and Fulkerson [7], Busacker and 
Gowen (described in [3]), and Jewell [12]. These are dual methods in which 
feasible flows (those satisfying (1.1) and (1.2)) become available when the 
computations terminate. A similar method for convex cost flow problems has 
been given by Hu [9]. Fulkerson's "Out-of-Kilter" algorithm (described in [7]) 
is essentially a primal method in that it can be started with a feasible flow or 
one becomes available at an early stage. Another primal approach for problems 
with convex costs has also been suggested recently by Menon [14]. 

The assignment and transportation problems can be thought of as special 
minimal cost flow problems in the sense that their networks have a particular 

* Received September 1966, revised April 1967, and accepted May 1967. 
t This research is supported by the Army, Navy, Air Force, and N.A.S. under a contract 

administered by the Office of Naval Research; Contract Nonr 266(55). Reproduction in 
whole or in part is permitted for any purpose of the United States Government. 

j The author is indebted to T. C. Hu and M. Florian for helpful suggestions. 
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bipartite form. Kuhn's "Hungarian Method" [13], a primal-dual type algorithm, 
and two variants: ([15] and one given in [7]) provide the most popular methods 
for solving these problems. Other methods are described by Flood [5] and Hoff- 
man and Markowitz [8]. Primal methods are also available: Dantzig's adaptation 
of the simplex method (described in [4]), the methods given by Beale [2], Flood 
[6], and, most recently, by Balinski and Gomory [1]. 

The purpose of this paper is to suggest that one more primal method can be 
added to the above arsenal for both minimal cost flow and assignment-trans- 
portation problems. With slight modification it can also be used for problems 
involving convex costs. It shares, with other primal methods, the property that 
it can be started with a "good" solution and a better one is always available 
in case early termination of computations is required. 

2. A Minimal Cost Flow Algorithm 

In this section we give a procedure for solving the minimal cost flow problem. 
We assume a familiarity with the maximal flow and shortest route problems 
together with the Ford-Fulkerson [7] methods for solving them. 

The method suggested here is to first find a flow satisfying (1.1) and (1.2) by, 
say, the Ford and Fulkerson maximum flow routine [7] (pp. 17-18). Given such 
a flow X, we then construct an associated network G(X) which has the same 
vertices as the original network and directed edges, as follows: 

(2.1) E(X): (ij ), if xij < kij and xji - 0, 

(j, i), if Xii > 0, 
with revised capacities: 

(2.2) k': kij = kij - xij, if xi; < kij and xji = 0, 

ji = xii, if x) > 0, 
and with revised edge costs: 

/ / 
(2.3) a': ad = aij, if xii < kij and xji = 0, 

aji = -aij, if Xij > O. 

These revised edge costs are simply those associated with increasing or cancelling 
the flow by one unit on these edges: The revised capacities indicate the extent to 
which this can be done. 

Now, we use a result proved in Busacker and Saaty ([3], pp. 256-257). 
Theorem. X is a minimal cost flow if and only if there is no directed cycle C in 

G(X) such that the sum of the costs around C's edges are negative. (A directed 
cycle is a sequence of distinct directed edges of the form { (io, i1) (il, i2) ** 

(ip, jq) (iq, io) } involving distinct vertices.) 
An immediate consequence of this theorem is that a test of the optimality of 

the flow X is at hand if G(X) can be checked for the existence of a negative cost 
directed cycle. Further, if such a cycle is found an improved flow is obtained by 
sending a positive unit flow around this cycle. Such a flow alteration obviously 
leads to a lower total cost and also leaves the flow value v unchanged. 
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Fortunately, there are known methods for locating negative cost directed 
cycles. The Fulkerson "Out-of-Kilter" procedure [7] (pp. 162-169) is one. Various 
shortest route algorithms may also be used; of these, we shall use a "Matrix 
Multiplication" procedure due to Murchland [16) (as described by Hu [10]) 
which is designed to find the shortest routes between every pair of vertices in a 
network. Although this method (in common with other shortest route algorithms) 
requires the assumption of non-negative directed cycle costs; it also may be used 
to locate such a cycle. 

We need only put the above observations together to obtain an 

Algorithm for Minimal Cost Flows 

1. Use the Ford-Fulkerson maximal flow routine (or any other) to find a flow 
X of value v. 

2. Form the associated network G(X) according to (2.1), (2.2), and (2.3). 
3. Test for the existence of a negative directed cycle C in G(X) using the 

matrix multiplication method described in [10] as follows: 
a) Form an n X n matrix D(X) in which each row and column is associated 

with a vertex of G(X), with entries dij = alj as given by (2.3), andwithall other 
entries equal to infinity. 

b) Pivot Steps: For each value k = 1, 2, * , n, in turn, perform the replace- 
ment operation, 

(2.4) dij = min (dij, dik + dkj) 

for all i, j 7 k. 
c) Repeat b) until some entry drr becomes negative (indicating the existence of 

a negative cost cycle involving vertex r) or until the replacement operation has 
been completed for k = n with all dii > 0. If the latter occurs, it indicates that 
G(X) does not contain a negative cycle and that the flow being tested is optimal. 

d) If a negative cost directed cycle C is found to involve vertex r, we shall call 
r the initial point. We now suggest that it is computationally convenient to use 
the Ford-Fulkerson shortest route index reduction method to trace the edges of 
C by using it to find the shortest route from the initial point to every other vertex 
in G(X). (Step 4, below) (It is possible to keep track of the edges which give 
rise to the negative cycle in the matrix multiplication method as indicated by 
Hu in [11]. However, "keeping track" is cumbersome and requires the storage of 
much unneeded data. The index reduction routine appears to be more economical 
for this purpose.) 

4. The negative cycle tracing routine is as follows: 
a) Let r be the initial point. Assign it the label (-, 7r(r) = 0). Assign all other 

vertices labels of the form (-, -r(i) = co). 
b) Search for an edge (j, k) such that 

7r(j) + dJk ? r(k) 

and then either change the label on vertex k to (j, 7r(j) + djk), if the inequality is 
strict (case a) or, change the label to ({k, j}, 7r(k)) if equality holds (case b). 
Continue until the initial point receives a label of the form (i*, 7r(r) < 0). 
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c) The negative cycle C can now be found by tracing backwards from r to 
i* * , to r. If vertices are encountered with more than one label (case b in (b)), 
then sub-cycles of cost zero will be encountered; these are discarded. For ex- 
ample, if tracing yields a sequence of the form (r, i1) (il , i2) (i2 , i1) where vertex 
ii had the double label, say, ({i2, i3}, d), the sub-cycle (il, i2) (i2, i1) has as- 
sociated cost zero. The tracing process is then continued from vertex i3. Since 
there may be more than one negative cycle, one can, in tracing, encounter a 
negative cycle which does not involve the initial point. In this case, this cycle can 
be used as a basis for the improved flow. 

5. Given C, an improved flow X' is given by 

xij =xij 7 if (i, i) 'VC, 

(2.5) = xij - 3, if (j, j) e C and ale < 0, 
- xj + 3, if (i, j) e C and ad > 0, 

where a = min ij)ec {k'j}, i.e., a is the largest amount of flow which can be sent 
around C. 

Return to Step 2. 
Example. Suppose a minimal cost flow of value 4 is to be imposed on the follow- 

ing network from vertex 1 to vertex 5. Costs and capacities are indicated accord- 
ing to the legend { cost, capacity} on each edge. 

We start with an arbitrary flow X of value 4, indicated in Figure 2 (omitting 
Step 1 for a problem of this size). 

Step 2. G(X) is then as shown in Fig. 3, where negative cost edges are indi- 
cated by dashed lines. 

Step 3. The matrix multiplication routine starts with D(X) as given below. 
1 2 3 4 5 

1 00 4 1 00 00 

2 X 00 00 00 1 

3 - 1 2 00 3 00 

4 00 00 -3 00 00 

5 00 0o0 o -2 00 

It ends (at pivot step k = 4) when d55 = -2, 
1 2 3 4 5 

1 0 3 -1 -4 4 

2 oo oo oo oo 1 

3 - 1 -2 0 3 3 

4 -4 -1 -2 0 0 

5 -6 -3 -4 pi-2 -2 

Hence, vertex 5 is the initial point for the cycle tracing routine. 
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Source 9 fSink 

\11,8} {2, 5} {2 X 4} 

FIGURE 1 

\ 0 

3 4 

FIGURE 2 

?4{1,2i 51 

{-1 4}\I 
3%,_ {3,6} 

{-3, 4} 

FIGURE 3 

Step 4. After application of the cycle tracing routine G(X) has vertex labels 
as indicated in Figure 4. C is found bytracingback from vertex 5 to 2, from 2 to 3, 
from 3 to 4, and from 4 to 5. That is, C = {(5, 4) (4, 3) (3, 2) (2, 5)}. 

Step 5. 

a = min {ks4, k 3, k12, k15} 

= min {4, 4, 5, 2 } = 2 

and the new flow X' is 

4= 4 - 2 = 2 

=34 4 - 2 = 2 
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{4 ,IQ} (3 'I3) {1, 2} (-2) - --Initial Point 

{1 14} {2, 5} l{24 

3lk_ 

4}\ ~ 3 

3_ {3X6}= _ g 

(4.-5 ) {-3, 4} (X2 

FIGURE 4 

FIGURE 5 

X32= 0 + 2 - 2 

X25= 0 + 2 = 2 

X13 X13 = 4 

X12 - X12 = 0. 

All other flow values are unchanged. The new flow is shown in Figure 5. Now 
G(X') is as shown in Figure 6. 

The matrix multiplication routine yields 

1 2 3 4 5 
1 0 3 14 6 

2 -3 0 -2 1 3 

3 -1 2 0 3 5 

4 -4 1 -3 0 2 

5 -6 3 -5 -2 0 

Since none of the elements on the main diagonal is negative, the new flow X' is 
optimal. 
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1 2\{-3,2} 

FIGURE 6 

Men Jobs 

{4,IO} 5a i 

\?' } {-26,4}I {21 {2 2} 

1 4 

{-3, 2} 

sou J ensJob 

{0,\ I/ d <0,1 

FIG. 7. Network representation of an assignment problem 

3. Application to the Assignment Problem 

In this section we show how the method described above specializes for solving 
the assignment problem. 

The assignment problem is to fill n jobs by as many men at least total cost. If 
aij represents the cost of using man i in job j, then a mathematical statement of 
the problem is to find a permutation matrix X = (xi1) of order n, which mini- 
mizes the total cost Q(X) = E xijaij, where xij = 1 implies that man i (i = 
1,... , n) is assigned to job j (j = n + 1, .. ., 2n). 

The equivalent minimum cost flow problem (following Ford and Fulkerson) 
is illustrated for the case v = n = 3 in Figure 7. 



212 MORTON KLEIN 

Algorithm for Assignment Problem 

1. The algorithm can be started with any feasible (trial) solution. (This cor- 
responds to finding a flow of value v = n.) It is frequently advantageous to try 
to choose a "good" solution using some heuristic rule, e.g. the "Least-Cost Rule" 
given by Dantzig in [4] (p. 309). 

Let X be a trial solution and A'(X) an associated matrix with elements 

(3.1) a = -aii, if xij > 0, 

- aij, if Xii = O. 

where i = 1,* * *, n and j = n + 1, ***,2n. 
Further, let D(X) be the (2n) X (2n) matrix with rows and columns each 

corresponding to both the men and the jobs of the problem and with elements. 

(3.2) diq = co, i, j = 1, .., n or i, j = n + 1, ** , 2n, 

= ai, =1,***,n, j = n + 1, ***,2n, 

= -aji, xji > i = n + 1, ***,2n; j = 1, **,n 

= 00 X Oji = " " cc 

2. Test for the existence of a negative cycle as in step 3 of the algorithm for 
minimal cost flows using D as described in (3.2) above as the cost matrix. 

If all dii > 0, the algorithm terminates and the trial solution is optimal. Other- 
wise, let drr be the first negative element encountered and use r as the initial 
point for the cycle tracing routine next. 

3. Because of the special bipartite form of the network interpretation of the 
problem (the source and sink can be dropped since their associated edges have 
zero costs) it is convenient to do the cycle tracing routine using the matrix A'(X). 
This is done by means of a series of alternate row and column labelings on A' 
with each successive row (column) label giving the cost associated with following 
a traceable route from the initial point to the column (row) from which the 
current cost is measured. 

Let (Mi, di) be a label assigned to column j of A'. Then the implication is 
that there is a directed route from the initial point to Mi and a directed edge to 
(job) column j such that the total cost is di . The row labels (Jj, dj) are defined 
similarly. 

A convenient notational device is to write ax; if aj' < 0 and xi; > 0. 
Let Jr be the initial point.' Label column r (-, 0). 
1. Label each row (Jr ar I )a 
2. Label each columnj # r, (Mi, di + a-). 

1 If a row vertex Mr is the indicated initial point, the labeling routine can be followed 
as written by interchanging the rows and columns of A'. 
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3. Label each row ({ Jk}, m1nj (dj + I a )j 1)) where each Jk represents a column 
at which the minimum is attained. 

4. Label each column (Mi, di + a-d). 
5. Continue steps 3 and 4 until the initial point's label becomes negative. 
The negative cost cycle, C, can be identified by tracing back from the initial 

point according to the succession of adjacent row and column labels until the 
initial point is encountered for the second time or some other vertex is encoun- 
tered twice indicating a negative cycle not involving the initial point. Then, an 
improved trial solution X' is given by 

(3.3) ;= xiJ, if (Mow Jj) q C, 

= 0, if Mi, Jj e C and xij = 1, 

= 1, if lM, Jj I C and xij = 0, 

where the notation I M., Jj I indicates that either (Mi, Jj) or (J,? Mi) is an 
element of C. 

Return to step 2. 
Example. Suppose (using a least-cost rule) the first trial solution is x7 = 

X25= X38 X46 = 1, then A'(X) and D(X) are given below. 

Ji J6 J7 J8 
M1 2 3 -1 1 

M2 -5 8 3 2 
A'(X) 

M3 4 9 5 -1 

M4 8 -7 8 4 

M1 M2 M3 M4 J5 J6 J7 J8 
_ _ _ _ - _ _ _ _ _ _ _ 2 3 1 

112 5 8 3 2 

M3 4 9 5 1 

M4 8 7 8 4 
D (X) =_- _ - 

J6 -5 

J7 ~ ~ ~ ~ - 

J7 - 

(Note: All unmarked entries have values di = 

The matrix multiplication routine (step 2), at pivot step k = 5, gives 



214 MORTON KLEIN 

M1 M2 M3 M4 J6 J6 J7 J8 

Ml -3 2 3 0 -1 

2 ~ ~ 05 8 3 2 

J3 -1 4 7 2 1 

314 3 8 7 6 4 

J6 -5 0 3 -2 -3 

J6 -4 -7 1 0 -1 -2 

J7 -1 -4 1 2 -@ -2 

_____ -1 ___ __ 4 7 2 1 

Since d77 < 0, J7 is the initial point for the cycle tracing routine. The appropriate 
labels on A'(X) are shown below. 

>Initial point 

JL J6 J7 Js 

ml 2* 3 -1 * - J7,I J5 

M2 5* 8 3* 2 J7, 3 1 2 J7I 3 

M3 4 9 5 -1 2,1Li,2 

M4 8 -7 8 4 J7,_8 1 i, 6 
M2, -2 1 4,11 - 0 1 M3,4 4 
? l ! M~~~1l, -1 ! 

tStop 

The elements of C are (J7, M1), (Ml, J5), (J5, M2), (M2, J7); these are indi- 
cated by asterisks (*) above. The new trial solution is, from (3.2) x' = x2 = 

xI6 = S38 = 1. Its total cost is 13. 
The example is continued. D(X') is 

m_ _ l2 M3 M4 J5 J6 J7 J8 
M3 =_2 3 11 

312 5 8 3 2 

M3 4 9 5 1 

314 8 7 8 4 

J5 -2 

J6 -7 

J7 -3 

J o _ _ _ - 1 _ _ _ _ _ _ _ _ _ _ _ 
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and the matrix multiplication routine yields 

M1 M2 M3 M4 J6 J6 J7 J8 
l 0 -2 -1 -4 3 3 1 0 

M2 3 0 1 -1 5 -6 4 2 

M3 2 0 0 -2 4 5 3 2 

M4 5 3 3 0 7 8 6 4 

Jo -2 -4 -3 -6 0 1 -1 -2 

J6 -2 -4 -4 -7 0 0 -1 -3 

J7 0 -3 -2 -4 2 3 0 - 1 

J8 1 -1I - 1 -3 3 4 2 0 

Since all elements on the main diagonal are non-negative, X' is an optimal 
solution. 

4. An Algorithm for the Transportation Problem 

The method given here for the transportation problem is, with slight altera- 
tion, the sameQ.as that suggested for the assignment problem. The reason for 
this computational similarity is, of course, the well-known relationship between 
the two problems: each is a special case of the other. 

We suppose that the transportation problem involves shipments of a single 
commodity from n plants P1, * * *, Pn I with capacities cl, * * *, c, to m ware- 
houses Wol, . * *, Wn+m with requirements r7n+l 2 * * * . If acj represents 
the cost of shipping a unit from Pi to Wj, and xij the quantity shipped from 
Pi to Wj, the problem is to minimize the total cost 

(4.1) Q(X) Eij= Z j1 Z x-1ai 

constrained by 

(4.2) EZ=i xij = rj , i=n+ n + in; 

Zi=n+f xij = ci, i = 1, ,n; 

xij = 0 1, ... . 

where we assume that the ci's and r/'s are positive integers, and E ci = E r1. 
We omit the network formulation of the problem and go directly to the com- 

putational procedure. The terminology is the same as that used for the assign- 
ment problem except that we speak of plants and warehouses instead of men 
and jobs. 

1. Trial Solutions: Although the computational procedure can be written 
so that one can work with any trial solution satisfying (4.2), it is convenient 
to restrict ourselves to the "basic feasible solutions", possibly degenerate, which 
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are used in Dantzig's adaptation of the simplex method for transportation 
problems. These solutions contain, at most, m + n - 1 positive entries. They 
also have the property that no cycles can be formed by their positive entries. 
These two properties may also be justified by simple combinatorial arguments 
[6]. 

Suppose X is a trial solution (i.e., it satisfies (4.2) and the above). We again 
define the associated matrix A'(X) by 

(4.3) atj = -ai1, if xij > O, 
- aj, if xij = 0, 

and write acj if a'ij < 0 and xii > 0. 
Let D(X) be the (m + n) X (m + n) matrix with elements 

(4.4) dij= oo, ij= 1, ,n or ij=n+1,**,n+ m 

= aij , i = 1, ... n; j = n + 1, ** n + m 

=-aji , xji > l 0+ ,in m 

= x xji = I i 

2. Matrix Multiplication Routine: Terminating with an initial point corre- 
sponding to first negative main diagonal element, or, if no such element is 
negative, with the conclusion that the trial solution is optimal. 

3. Cycle Tracing Routine: Using the matrix A'(X); suppose Wr is the initial 
point.2 Label its column (-, 0). 

1. Label each row (W7, j aI) 
2. Label each column j # r ({Pk}, mini{di + a7Q4) where each Pk is a row 

at which the minimum is attained. 
3. Label each row ({Wk}, minj{dj + I a1j I 1) 
4. Label each column (I{Pk}, mini{di + at} ) 
5. Continue steps 3 and 4 until the initial point's label becomes negative. 
The negative cost cycle is then obtained by tracing backwards from the 

initial point, discarding any zero cost sub-cycles which may be encountered. 
As indicated earlier, a negative cycle, not involving the initial point, may be 
discovered before a return to the initial point. This may be used to find an 
improved solution. 

Let X(C) be the entries of X whose subscripts correspond to those of C, 
i.e., if I Pi, Wj I e C then xij e X(C), and index these entries (with superscripts) 
as follows: assign the index 1 to any entry whose value is zero. (There is at least 
one such entry by virtue of our use of "basic feasible" trial solutions.) Now, 
following the cycle (in either direction) continue with successive positive inte- 
gers: 2, 3, * , k until all elements in X(C) have been indexed. Note that the 
index k is an even number. 

2 If a row vertex P7 is the initial point, the labeling routine can be followed with the rows 
and columns of A' interchanged. 
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A new improved trial solution X' is defined by 

(4.5) x.j x/ , if xije X(C), 

xij + 5, if x~t ? X(C) and t is odd, 

xij - , if X( ) ? X(C) and t is even, 

where a is the value of the smallest even indexed element of X(C). It is easy 
to see that X' is also a "basic feasible" solution. 

Return to step 2. 
Example. Consider the following transportation array [1]. 

W4 W5 W6 W7 W8 
P1 3 6 3 1 1 4 

P2 2 4 3 2 7 5 

P3 1 1 2 1 2 6 
2 2 3 4 4 

and the trial solution given below: 

W4 W6 w6 W7 W8 

Pi 2 2 

P2 3 2 

Ps 2 2 2 

Here we have attempted to find a "good" trial solution by trying to ship as 
much as possible along the cheapest routes. 

Steps 1-2. D(X) is given below. 

P1 P2 P3 W4 W6 W6 W7 W8 

Pi 3 -6 3 1 -1 

P2 2 4 3 2 7 

P3 1 1 2 1 2 

W4 -1 

146 -1 

W6 -3 

w7 -1 - 

W 8 - 1 - 7 _ _ _ _ _ _ _ _ _ _ _ _ _ 
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The matrix multiplication routine yields, at pivot step k = 4 

P1 P2 P3 W4 W5 WI6 W7 Ws 
P1i 3 -3 -3 -1 -1 

P2 2 2 3 2 3 

P3 1 1 2 1 2 

W4 -1 0 0 1 0 1 

W5 -1 0 0 1 0 1 

W6 -3 -1 -1 0 -1 0 

W7 -1 -1 0 0 1 0 1 

W8 - 1 -7 -5 -5 -4 -5 -?G) 

Since dca < 0, Ws is the initial point. 
Step 3. 

,-Initial point 
W4 W5 W6 W7 W8 

P1 3 6 3 -1* --1* -W8, 1'W7, W8l 

------------- P2 2 4 1-3 2* -7t* Ws 2 7 1 W7 2 2 

P3 - 1 - 1 2 - 1 2 7W8,2'W7, 1 

P3,1 IP3, 1 P2, 4P1, I -,o 1 
IP2, -5' <- Stop 

Now, C is located by tracing back from the initial point: W8 to P2 to W7 to PI 
to WBs. Thus C = (TWSP2), (P2W7), (TW7P1), (P1VW8), asterisked above. 

Continuing, 

a = 2 and X' is 

TV4 WT W6 W7 W8 

P1 2 - 2 = 0(2) 2 + 2 = 40) 

P2 3 0 + 2 2(1) 2 - 2 = 0(4) 

P3 2 2 2 

with the index numbers shown. The total cost is 23. 
Now, returning to step 2 with D(X') as shown below 
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P1 P2 P3 TV4 WV W6 W7 W8 

P - 6 3 1 1 

P2 2 4 3 2 7 

P3 1 2 1 2 

W4 -1 

WT5 -1 

W6 -3 

W7 -2 -1 

the matrix multiplication routine gives us 

Pi P2 P3 TV4 TV TV6 TV7 TWs 
P1 0 -1 013 2 1 2 

P2 2 0 1 2 4 3 3 3 

P3 1 -1 0 1 3 2 2 2 

TV4 0 -2 -1 0 2 1 1 1 

W5 0 -2 -1 0 0 1 1 1 

TV6 -1 -3 -2 -1 1 0 0 0 

TV. 0 -2 -1 0 2 1 0 1 

TV8 -1 -2 -1 0 2 1 0 0 

Since no main diagonal elements are negative, the trial solution X' is optimal. 

5. Convex Cost Flows 

As indicated by Hu [9], the primal-dual type algorithms for minimal (linear) 
cost flow problems can be adapted to handle cases in which the edge cost func- 
tions are piece-wise linear convex. The basic notion, used here also, is to use the 
(changing) marginal costs associated with possible unit flow alterations in the 
associated graph. In our case, this means that cyclical flow changes will involve 
only one unit of flow (i.e., 6 = 1) and the edge costs for the associated graph 
will depend somewhat more on the current flow values on each edge than they 
did in the linear cost problem. 

If we represent each edge cost function by bij, the problem is to find the 
minimum of 
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(5.1) Q(X) = Z(i,j),E bij(xij) 

constrained by (1.1) and (1.2). 
All we need to do is to note that the network G(X) associated with a feasible 

flow X, is defined as before, except that the revised (marginal) edge costs blj 
are given by 

b= [bij(xij + 1) - bij(xij)], if xij < kij and xji = 0; 

and 

=bi = - - bij(xij-1)], if xxj > 0. 

This, plus our previous observation that 5 = 1, enables the use of the minimal 
cost flow routine. Similar alterations can be made to handle the transportation 
problem with convex costs. 
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