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Abstract 
The last few years have seen major advances in our understanding of 
the organisation and function of the corticospinal tract (CST). These 
have included studies highlighting important species-specific 
variations in the different functions mediated by the CST. In the 
primate, the most characteristic feature is direct cortico-
motoneuronal (CM) control of muscles, particularly of hand and finger 
muscles. This system, which is unique to dexterous primates, is 
probably at its most advanced level in humans. We now know much 
more about the origin of the CM system within the cortical motor 
network, and its connectivity within the spinal cord has been 
quantified. We have learnt much more about how the CM system 
works in parallel with other spinal circuits receiving input from the CST 
and how the CST functions alongside other brainstem motor 
pathways. New work in the mouse has provided fascinating insights 
into the contribution of the CM system to dexterity. Finally, 
accumulating evidence for the involvement of CM projections in motor 
neuron disease has highlighted the importance of advances in basic 
neuroscience for our understanding and possible treatment of a 
devastating neurological disease.
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The cortico-motoneuronal (CM) system is unique to dexterous  
primates. It provides a direct pathway from motor cortex to 
the alpha motoneuron. It has long been associated with skilled  
use of the hands and with tool-making in particular1. Recent 
advances have allowed a better definition of its origin within  
the cortical network and its connectivity within the spinal cord.

‘New’ M1: the origin of the cortico-motoneuronal 
output
We know from the work of Rathelot and Strick2,3, using  
retrograde transneuronal tracers, that in the macaque monkey, CM 
neurons are found in two main cortical areas: ‘new’ M1 and area 
3a, part of primary somatosensory cortex (S1). Primary motor  
cortex (M1) is the same as Brodmann area 4; Rathelot and 
Strick coined the term ‘new’ M1 to define the caudal area of M1 
which is restricted to the anterior bank of the central sulcus; very  
few CM neurons were found more rostrally in the ‘old’ M1 
region, on the convexity of the gyrus. This rostral region also 
gives rise to corticospinal projections, projections that do not ter-
minate on motoneurons, and it also projects to the pontine nuclei  
and brainstem centres, giving rise to descending motor pathways, 
including the reticulospinal tract4. Witham et al.5 used single  
intracortical stimuli to activate ‘new’ versus ‘old’ M1 in anaes-
thetised macaques. Then the authors made intracellular record-
ings from forelimb and hand motoneurons and found some fast,  
short-latency monosynaptic responses from ‘new’ M1; no such 
responses were found from ‘old’ M1. Long-latency monosynap-
tic excitation, presumably mediated by more slowly conducting  
CM neurons, was far more common. We know that CM cells  
have a wide range of soma sizes2 and are certainly not derived 
solely from the largest (Betz) cells. Long-latency monosynap-
tic effects were evoked from both regions of M1, as were other  
more complex, oligosynaptic effects.

The extent of the CM projection in humans, which has been 
investigated by using non-invasive cortical stimulation6,7, may  
well be more widespread than in non-human primates. For  
example, there is new evidence for a CM projection from ven-
tral premotor cortex in humans8, which in macaques gives rise to  
corticospinal but not CM projections.

Quantification of the cortico-motoneuronal output
In 2013, the extent of the CM projection from the hand area 
of primary motor cortex was quantified by Morecraft et al.9.  
They first identified the hand/arm regions of macaque M1 by 
intracortical microstimulation (ICMS) and then made injections 
of anterograde tracers into the cortex close to the central sul-
cus, and much of the injection site involved the anterior bank of  
the sulcus. After a recovery period, they sacrificed the ani-
mals and carried out a detailed stereological analysis of labelled  
boutons in the contralateral and ipsilateral spinal cord, analysing 
tissue taken from C5 to T1 spinal segments. The main conclu-
sions were that almost all labelled boutons (98%) were found in 
the contralateral cord. This agrees with the finding that stimulation  
of the pyramidal tract on one side rarely evokes any postsynap-
tic effects on upper limb motoneurons10. Fibres from hand/arm  
M1 that terminated contralaterally gave only sparse labelling in 
the dorsal horn laminae. The largest proportion of contralateral 

labelled boutons was in lamina VII (59%), confirming a heavy 
projection to the intermediate zone. However, the second high-
est proportion of boutons was found amongst the motor nuclei of  
lamina IX (18%), suggesting that the CM projection is a very sig-
nificant component of the total corticospinal projection, influenc-
ing motoneurons innervating flexors acting on the shoulder and  
elbow rostrally (C5–C7), along with flexors, extensors, abduc-
tors and adductors acting on the digits, hand and wrist caudally  
(C8–T1). It should be stressed that these motoneurons have 
widespread dendritic trees that extend well into the intermediate  
zone, including lamina VII11, which could mean that many 
of the boutons in that lamina labelled after M1 injections are 
still CM boutons, terminating on proximal dendrites of target  
motoneurons.

A somewhat different picture emerges for the corticospinal pro-
jection from the leg area of M1, where around 10% of the fibres 
terminate ipsilaterally, especially among motoneurons of more 
proximal leg muscles, confirming a number of physiological  
studies showing bilateral effects on the lower limb12.

Rather than defining a neuron by a single target with which its 
axon establishes a synaptic connection (for example, projection  
to spinal motoneurons), one should recognize that most cen-
tral nervous system neurons have axons which arborise to con-
tact multiple targets, the sum of which represents the neuron’s  
‘connectome’. To date, most of this work has involved rodents, 
in which it is possible to use genetic manipulations to recog-
nize all parts of a neuron’s connectome. There is some evidence 
that the corticospinal connectome is more restricted in primates  
than in rodents; for example, the cortico-striatal projection appears 
to be separate from the corticospinal projection in macaques 
but is shared in rodents13. Again, in primates, a significant part  
of the corticopontine projection is quite separate from the  
corticospinal projection, which is much less marked in rodents14.

Functional relationship between cortico-
motoneuronal cell activity and target muscles
Although CM cells have been identified in many different  
studies, using the method of spike-triggered averaging15,16, the con-
tribution made by CM cell discharge to the activity of its target 
muscles, and the postures and movements in which those mus-
cles are recruited, is far from simple17. Whereas approaches to the 
analysis of populations of motor cortical activity have become  
more and more sophisticated, how these dynamic representations  
lead to precise patterning of muscle output is not clear.

Some CM cells do appear to behave like ‘upper motoneu-
rons’ in that their activity closely parallels that of their target  
muscles18,19. However, in many cases, CM cell activity can be 
clearly dissociated from that of their target muscles17–19. So, for  
example, Muir and Lemon20 showed that macaque CM cells 
facilitating intrinsic hand muscles showed strong task-specific  
effects and that both CM cell and target muscle were active dur-
ing one task (precision grip) but not during another (power grip).  
In the latter task, the CM cell was deactivated while the muscle  
was still active and therefore clearly driven by inputs other  
than the CM cell being tested.
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CM cells rarely facilitate single muscles, and most have a com-
plex ‘muscle field’ which often includes a number of functional  
synergists15,21,22. In a recent study, Griffin et al.22 recorded CM 
cells during performance of a forelimb task in which it is possible  
to dissociate cortical activity which is ‘muscle-like’ (that is,  
resembles the timing and pattern of muscle activity) from that 
which is ‘extrinsic-like’ (that is, resembles the direction of  
movement produced, independent of arm posture). They found 
that nearly all of 40 CM cells investigated were ‘muscle-like’.  
However, it was relatively uncommon for a CM cell to exhibit a 
pattern of activity similar to that of its target muscle when this 
was employed as a simple agonist. These authors concluded that 
the broad distribution of the cell-target muscle vectors, found dur-
ing performance of the task in three different forearm postures, 
were such that agonist, synergist, fixator and antagonist functions 
of target muscles were each well represented by the activity of  
different CM cells. Indeed, CM outputs organised along these 
lines show how this system operates to provide a great deal of  
functional flexibility in the manner of muscle recruitment, a flex-
ibility that cannot be afforded by the relatively fixed synergies 
represented in spinal motor mechanisms.

Joint fixation can be achieved by co-contraction of antagonis-
tic muscle groups and is crucial for stabilisation of the long, 
bony articulatory chain from proximal arm to distal phalanx23. 
The role of the CM system as a muscle fixator has probably been  
underplayed compared with its role during dynamic, individu-
ated movements. However, many CM cells show sustained activ-
ity during the ‘hold’ period of motor tasks18,24 and so their inputs  
may be important for maintaining the muscle set for that task.

Studies looking at the natural activity of CM cells are still 
needed to understand how they contribute to the executed move-
ment. Old-fashioned electrical or modern optogenetic stimula-
tion are extremely useful adjuncts to this approach but cannot  
simulate the natural activity of CM cells. For example, recent 
work suggests that long trains of ICMS, rather than simulating 
motor cortex output, give misleading accounts of motor organisa-
tion because they ‘hijack’ intracortical circuits and override normal  
patterns of CM output25.

Even single intracortical shocks can evoke high-frequency, repeti-
tive firing from corticospinal neurons26. Therefore, the results are 
possibly more difficult to interpret than the effects seen in spike-
triggered averages based on the natural, movement-related dis-
charge of CM cells. Nevertheless, careful use of single-pulse  
ICMS by Cheney et al. has been important in determining the 
complex maps of muscle outputs in primary27,28 and secondary29,30  
motor areas. These studies have helped to demonstrate the direct, 
short-latency influence of M1 over forelimb muscles, compared 
with slower effects evoked from secondary motor areas.

Fast and slow conduction in the corticospinal tract
The primate corticospinal tract (CST) is remarkable in displaying 
a 100-fold range of axon diameters31. Most mammals have a very 
large number of small corticospinal fibres, ranging from around  
3 µm to as small as 0.5 µm4,32. Larger primates (including the 
macaque, spider monkey, gibbon and human) also possess large-
diameter fibres, up to around 12 µm in macaques and up to  

22 µm in humans. Body size alone is clearly not the key factor 
since much larger mammals such as cows and whales have rela-
tively small corticospinal fibres. A number of different explanations 
have been put forward for large, fast axons in primates, includ-
ing the branching pattern of the ‘connectome’, the need to main-
tain high firing rates, and the importance of reducing conduction  
delays during transitions from movement to posture in skilled 
grasp33,34.

These fast fibres are very much in the minority, comprising a 
small percentage of the total, but with an importance out of all  
proportion to their numbers. (It has been estimated that, in the 
macaque tract with around 600,000 fibres, about 18,000 fibres 
have diameters greater than 3 µm31.) The larger fibres are par-
ticularly vulnerable to disease and trauma (for example, during  
spinal cord injury)35,36. M1 gives rise to some of the fastest 
fibres, and there is a bias towards faster fibres from ‘new’ versus  
‘old’ M15,37. Long-latency monosynaptic effects generated by 
M1 stimulation5 had latencies up to around three or four times  
longer than that of the fastest CM effects, so if these fastest effects 
were conducted by axons with conduction velocities around  
70 m/s, the slowest effects would derive from axons conducting 
at around 17 m/s, still well above the velocity (~7 m/s) for the  
median axon diameter of M1 corticospinal neurons of around  
1.2 µm37.

There is a problem in understanding the function of the slow-
est fibres; they are largely missing from neurophysiological  
studies in primates using antidromic activation of CST neu-
rons from the pyramidal tract5,31,38, and there are a number of  
possible explanations for this39. Until a better means of electro-
physiologically identifying the neurons giving rise to the slowest  
CST fibres can be found, the function of these slow neurons  
will remain a mystery.

The cortico-motoneuronal system in the wider 
context of cortical control of movement
It has been emphasised that the CM system does not work 
alone but rather in concert with other descending and spinal  
segmental systems40,41. Nevertheless, there is accumulating evi-
dence that the CM system adds the characteristic capacity for 
skilled hand movements, including the ‘individuation’ of finger  
movements40. Early, classic studies showed that complete pyra-
midotomy permanently abolished relatively independent finger  
movements (RIFMs)42–44. However, if the pyramidotomy was 
incomplete, there was often substantial recovery43, suggesting 
that sparing a relatively small proportion of the total corticospinal 
and CM outflow can be the basis of a return of hand function.

Interruption of the lateral (crossed) CST at different spinal 
cervical levels also abolishes RIFM, but again there is some  
degree of recovery45,46. Since corticospinal fibres make many dif-
ferent types of connections within the spinal cord, it is a con-
tinuing challenge to determine which of them makes critical  
contributions to RIFM. In addition to their CM connections, 
CST fibres give rise to inputs to C3–C4 propriospinal neurons 
which send descending projections to forelimb motoneurons  
located in the lower cervical segments. CST fibres exert fur-
ther indirect excitatory and inhibitory effects via interneurons in  
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these same lower segments, and these interneurons appear to 
receive the bulk of corticospinal input from M19. A lesion of the 
lateral CST at the mid-cervical level interrupts all of the CM  
and other corticospinal inputs to lower cervical segments but  
leaves the descending axons of C3–C4 propriospinal neurons 
intact45. It is noteworthy that such a lesion results in a devastat-
ing initial loss of the precision grip needed by the monkey to  
retrieve small rewards45,47,48. This is consistent with the notion that 
the CM system plays a major role in the execution of precision  
grip in the intact animal.

After this initial deficit, recovery occurs over a period of 
a few weeks. This recovery has been shown to involve the  
C3–C4 system45,47,48. It has also been demonstrated that, although 
precision grip performance returns to control levels, there are 
subtle differences in the pattern of electromyographic activity,  
suggesting that changes in control have taken place to  
compensate for the loss of CM inputs45.

Damage to the human motor cortex and CST is generally far 
more devastating than in animal models and this may be because  
the CM system is best developed in humans40. Interestingly, clas-
sic studies of the effects of mid-cervical cordotomy for pain  
relief in humans showed that lesions of the lateral funiculus 
which avoided the CST but which would have interrupted more  
ventrally located propriospinal fibres did not affect the function  
of upper limb movement49.

An important study by Zaaimi et al.10 showed that recovery after 
pyramidal lesions probably involves marked upregulation in  
reticulospinal control of hand motor nuclei. In the intact 
macaque, these inputs overlap with those from the corticospinal  
system50, although they are significantly weaker. However,  
6 months after a unilateral pyramidal lesion, there were consider-
ably higher levels of reticulospinal excitation of forelimb flexor 
and intrinsic hand motoneurons10, which may well contribute 
to the recovery of crude grasp after a pyramidal lesion or corti-
cal stroke51. These results are of great importance in trying to  
disentangle the positive and negative motor signs after a stroke 
in humans and in designing new therapies to enhance the  
reticulospinal contribution to recovery of hand function52.

The cortico-motoneuronal system, dexterity, and new 
findings from the mouse
CM connections are particularly well developed in dexterous, 
tool-using primates. In a recent study, Quallo et al.24 demon-
strated that macaque corticospinal neurons, including some CM  
cells, were just as active during tool use, involving use of a rake 
to retrieve food rewards, as they were during a precision grip.  
It might well be expected that the same neurons that are involved 
in control of skilled hand and finger movements are also recruited 
during tool use; this study was the first to demonstrate that  
to be the case.

Rodents do not possess CM connections, and their manipula-
tive skills have developed along quite different lines, well suited  
to their ecological niche. Because of the methodological advan-
tages of using the rat (and particularly the mouse) for the genetic 

dissection of neural control systems, a number of studies have  
sought to model grasp in rats or mice by training them to retrieve 
small pellets with the forepaw. These studies generally show  
that, even after training, rodents generally achieve quite low  
levels of success on such tasks, often around 50 to 60% (for  
example, 53,54). It is important to stress the fundamental difference  
between precision grip in the Old World primate, such as the 
macaque, and the grasp executed by rodents. It is noteworthy 
that macaques can be trained to perform precision grip at  
success rates close to 100%55.

Of course, it would be very interesting if ‘dexterity’ in rodents 
could be improved by supplementing their forepaw control 
system with CM connections. A fascinating piece of recent  
research has achieved just this54. This study took advantage of 
the fact that CM connections, though absent in adult rodents, are 
transiently present in the neonatal animal, before being withdrawn 
in the early postnatal period54,56. Gu et al.54 sought to interfere  
genetically with the plexin-based signalling system involved in 
withdrawal of CM projections. They developed a PlexA1 mutant 
in which CM connections established at birth are maintained into 
adulthood. Other descending pathways were not affected. Using 
ICMS, the authors demonstrated that these mutants had a fast  
motor pathway from motor cortex to forelimb muscles, which 
was lacking in the wild-type mouse. They also showed that the 
mutant mice could be trained to perform a pellet-grasping task at  
higher levels of success than wild-type animals. Because other 
descending pathways were not changed in the mutants, this  
lends further support to a main role for the corticospinal system  
in enhancing skilled grasp.

A further fascinating part of this discovery was to demonstrate 
the existence of a CIS-regulatory system in layer V of motor  
cortex that inhibits the Plexin signalling and thereby allows CM 
connections, all of which are derived from layer V corticospinal 
neurons, to be maintained into adulthood. The authors showed  
that this inhibitory system is strongly expressed in motor cortex 
of dexterous primates such as human, chimpanzee, orangutan  
and baboon but is not present in other less dexterous primates,  
such as marmoset and bushbaby, or in rats or mice54.

The cortico-motoneuronal system and motor neuron 
disease
Although the involvement of the CST in motor neuron dis-
ease (amyotrophic lateral sclerosis, or ALS) was known from 
the earliest descriptions of the disease, accumulating evidence now 
suggests an especially important role for the CM component of 
the corticospinal system in some forms of ALS57,58. For example,  
a distinctive feature in the early stages of ALS in some patients 
is the ‘split-hand’ syndrome, in which there is much greater  
weakness and wasting of the muscles acting on the radial  
side of the hand (moving the thumb and index finger) than on the 
ulnar side (hypothenar muscles, acting on the little finger).

The main cause of this striking contrast does not appear to 
be ALS-related pathology in the peripheral neuromuscular  
system but rather a TDP43 pathology acting on the CM projec-
tion. It is well known that there is a disproportionately large  
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representation of thumb movements in M1, and electrophysi-
ological studies in both non-human primates1,59 and humans6,7 have 
shown that the largest monosynaptic excitation following cor-
ticospinal activation is found in intrinsic thumb and index finger 
muscles, and there are weaker effects on the hypothenar muscu-
lature. In early stages of the disease, the impact on CM projec-
tions results in specific, task-related deficits, including use of the  
thenar hand for a multitude of manipulative skills, including  
writing, typing and doing up buttons.

More widely, ALS pathology involving CM projections might 
affect skilled aspects of locomotion60 and speech58. It is noticeable  
that CM projections to the nucleus ambiguus, which innervates 
the laryngeal musculature, are present in humans but not in  
monkeys61.

Braak et al. have gathered evidence that the early stages of ALS 
involve TDP43 pathology in cortical layer V pyramidal neurons 
with long axons projecting to subcortical and spinal targets62.  
It has been suggested that the TDP43 pathogen is transmitted via 
these long axons to all target motoneurons of the CM system, 
which in turn results in the ‘lower motoneuron’ signs character-
istic of ALS. Interestingly, recent evidence suggests that primate  
pyramidal neurons have membrane properties quite differ-
ent from those in the rodent, including high expression levels 
of the fast potassium channel, Kv3.1b, which is not found in rat  
pyramids63. This difference, and probably others, might contribute 
to the vulnerability of the TDP43 pathology in primates, explain-
ing why the cortical stages of ALS have been more difficult  
to demonstrate in the rodent62. Understanding the species- 
specific properties of the primate CM system might provide a  
valuable model for understanding and treating ALS.

Conclusions and prospects
The CM system is unique to primates and particularly well devel-
oped in humans. It provides a fast, direct pathway to motoneurons,  
particularly those supplying muscles that subserve some of 
the most characteristic human hand movements, including 
those for tool use, music making, gesture and communication.  
CM control signals effectively bypass the more rigid networks 
provided by spinal segmental connectivity and support a much 
richer repertoire of grasping movements, based on the combina-
tion and recombination of many different CM outputs to hand and  
digit muscles. Although our knowledge of the organisation of 
this system is now much improved, we still need to know more 
about its functional contributions to skilful movement. In animal  
studies, a better definition of the molecular and genetic iden-
tity of the CM system might provide further clues, including the  
possibility of a selective CM cell blocker which might give fur-
ther insights into not only CM function but the recovery process  
involving other systems. Selective tools that could be used to  
repair or promote the CM system could be used in therapeutic  
studies.
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