
Mathematical Appendix

Ramsey Pricing

PROOF OF THEOREM 1:

I maximize social welfare V subject to π > K . The Lagrangian is

V + κ(π − K )

the associated first-order conditions are that for each I

(1+ κ)
(

PI
− CI

− cNJ
)
− κµI

+

(
bJ + κ b̃J

)
NJ
= 0

or

PI
− CI

− cNJ
−

(
κ

1+ κ

)
µI
+

([
1

1+ κ

]
bJ +

[
κ

1+ κ

]
b̃J
)

NJ
= 0

or letting λ ≡ κ
1+κ

PI
= CI

+ cNJ
+ λµI

−

(
[1− λ]bJ + λb̃J

)
NJ

Then solve for λ by substituting into the desired profit condition π = K :

λ
(
µANA

+ µBNB
+

[
bA + bB − b̃A − b̃B

]
NANB

)
= K +

(
bA + bB − c

)
NANB

I now turn to the two alternative forms of the Ramsey problem mentioned in the text.

PROPOSITION 8: Interior Ramsey prices maximizing user surplus subject to the constraint

that the firm makes a rate of return r on her variable costs must solve

(A 1) PI
= (1+ r)

(
CI
+ cNJ

)
︸ ︷︷ ︸

cost-plus

− NJ
(
λb̃J + [1− λ]bJ

)
+ λµI︸ ︷︷ ︸

two-sided classical Ramsey pricing (Theorem 1

where λ ≡

subsidy (in cost-plus terms) required for Pigouvian prices︷ ︸︸ ︷(
bA + bB − [1+ r ] c

)
NANB

NAµA
+ NBµB

+

(
bA + bA − b̃A − b̃B

)
NANB︸ ︷︷ ︸

demoninator from Theorem 1

1
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PROOF:

The Lagrangian is

V − (1− κ)π − rκ
(

cNANB
+ CANA

+ CBNB
)

with corresponding first-order conditions

κPI
− κ(1+ r)(CI

+ cNJ )+ (1− κ)µI
+

(
bJ − [1− κ]b̃J

)
NJ
= 0

or letting λ ≡
(

1− 1
κ

)

PI
= (1+ r)

(
CI
+ cNJ

)
+ λµI

− NJ
(
λb̃J + [1− λ]bJ

)
Plugging into the rate-of-return constraint π = rC yields

α
(
µANA

+ µBNB
+

[
bA + bB − b̃A − b̃B

])
=

(
bA + bB − [1+ r ]c

)
NANB

which yields the desired solution.

Thus user Ramsey pricing with a required rate of return over variable costs is a natural com-

bination of classical cost-plus regulation and the classical two-sided Ramsey pricing of Theorem

1. Prices mark-up costs by the required rate of return, incorporating two-sided internalization

of cross-benefits and market power in the weighted-average fashion of classical Ramsey pricing

above. Now that there is no required profit threshold, the weighting is given the amount neces-

sary to offset the subsidy needed to achieve cost-plus Pigouvian pricing while maintaining the

required rate of return. As noted earlier, if r = 0 and the platform must simply break even, the

solution is identical to the break-even classical OT pricing.

PROPOSITION 9: Interior Ramsey prices maximizing social surplus subject to the constraint

that the firm makes a rate of return r on her variable costs must solve

(A 2) PI
= (1+ λr)(CI

+ cNJ )︸ ︷︷ ︸
cost-plus

− NJ
(
λbJ + [1− λ]b̃J

)
+ λµI︸ ︷︷ ︸

two-sided classical Ramsey pricing (Theorem 1)
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where λ ≡

target profits︷ ︸︸ ︷
r
(

CANA
+ CBNB

+ cNANB
)
+

Pigouvian subsidy︷ ︸︸ ︷(
bA + bB − c

)
NANB(

rCA
+ µA

)
NA
+

(
rCB
+ µB

)
NB
+

(
bA + bB − b̃A − b̃B + 2rc

)
NANB︸ ︷︷ ︸

(local) profit gain from moving towards rate-of-return maximization

PROOF:

The Lagrangian is now

V + κ
(
π − r

[
CANA

+ CBNB
+ cNANB

])
giving first-order conditions

(1+ κ)PI
− (1+ κ[1+ r ])CI

− κµI
+

(
bI + κ b̃I

)
NJ
− (1+ κ[1+ r ]) cNJ

Letting λ ≡ κ
1+κ this takes the form in the text. Plugging this back into

(
PA
− [1+ r ]CA) NA

+(
PB
− [1+ r ]CB) NB

− (1+ r)cNANB
= 0 yields the definition for λ.

The social Ramsey pricing problem with a required rate of return over variable costs is a slight

modification of user-optimal Ramsey pricing in Proposition 9.

Generalization

PROOF OF THEOREM 2:

I compute V I
J . By definition

V I (N)) =
∫
θI∈2I (N) uI

(
N; θI

)
f I
(
θI
)

dθI

=
∫
θI :uI

(
N;θI

)
≥PI (N) uI

(
N; θI

)
f I
(
θI
)

dθI

Because 2̃I is the boundary of 2I , by the Leibnitz Integral Rule

V I
J =

∫
θI∈2I uIJ

(
N; θI

)
f I
(
θI
)

dθI+∫
θI∈2̃I

(
uIJ

[
N; θI

]
− PI

J [N]
)

uI
(
N; θI

)
f I
(
θI
)

dθI =

(A 3) uIJ NJ
+ PI

∫
θI∈2̃I

(
uIJ

[
N; θI

]
− PI

J [N]
)

f I
(
θI
)

dθI

By the implicit function theorem for J 6= I and letting ÑI
1 ≡

∂ ÑI

∂PI

PI
J = −

ÑI
J

ÑI
1

=︸︷︷︸
The Leibnitz Integral Rule

∫
θI∈2̃I (N) uIJ

(
N; θI

)
f I
(
θI
)

dθI∫
θI∈2̃I (N) f I

(
θI
)

dθI
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Thus term second term in A 3 vanishes for I 6= J . On other other hand for I = J by the implicit

function theorem

PI
I =

ÑI
J − 1

ÑI
1

=

∫
θI∈2̃I (N) uIJ

(
N; θI

)
f I
(
θI
)

dθI − 1∫
θI∈2̃I (N) f I

(
θI
)

dθI

So the second term of A 3 is simply PI (as the gross utility of all users in 2̃I ) is PI . Thus the

first-order condition that marginal social benefit equal marginal cost becomes

∑
J

V I
J = CI ⇐⇒

PI
= CI −

∑
J

uJI NJ

which is the Pigouvian condition reported in the text.

PROOF OF THEOREM 3:

Here I begin by computing marginal revenues. For J 6= I :

RI
J =

∂PI (N) NI

∂NJ = PI
J NI

=

∫
θI∈2̃I (N) uIJ

(
N; θI

)
f I
(
θI
)

dθI∫
θI∈2̃I (N) f I

(
θI
)

dθI
NJ
= ũIJ NJ

while

RI
I = PI

+ PI
I NI

= PI
+ ũII NI

−
PI

εI

where εI ≡ ∂ ÑI

∂PI
PI

ÑI is the price elasticity of participation (holding fixed anticipated participa-

tion). As usual, let µI
≡

PI

εI
be the market power, that is the difference between price and

classical marginal revenue. Then equating marginal revenue to marginal cost requires

PI
− µI

+

∑
J

ũJI NJ
= CI

which can easily be re-arranged to yield either of the formulae in the theorem.

Comparative Statics

I begin by showing that ρI = − µI

NI ∂2π

∂NI2

and that local strict concavity of profits is equivalent

to the local version of 2SC, while violation of local weak 2SC implies local non-concavity. Then
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taking these facts as given, I establish Theorem 4.

ρI ≡
d PI

dCI

∣∣∣∣∣
NJ

= PI
1

d NI

dCI

∣∣∣∣∣
NJ

= −
µI

NI ∂2π

∂NI2

Thus ρI > (≥)0 ⇐⇒ ∂2π2

∂NI2 < (≤)0 and

∂2π

∂NA2

∂2π

∂NB2 > (≥)
∂2π2

∂NA∂NB ⇐⇒
µAµB

NANB > (≥)ρAρBχ2

which shows that strict local 2SC implies local concavity (by the classical Hessian test) and weak

2SC is necessary for local concavity. Based on these, Theorem 4 is easy to establish.

Two-sided contraction

PROOF OF THEOREM 4:

The forward direction of the proof follows directly from above: global concavity of profits

(which is equivalent to the negative definiteness of profits, which is 2SC) in
〈
NA, NB〉 is inde-

pendent of
〈
CA,CB〉 by inspection. For the converse, suppose that 2SC were violated at some

pair of participation rates
〈
ÑA, ÑB

〉
. Let

C̃I ≡ PI
− µI

+ b̃J NJ
− cNJ

be evaluated at
〈
ÑA, ÑB

〉
. Then clearly equation (2) given costs

〈
C̃A, C̃B

〉
has a solution at〈

ÑA, ÑB
〉
. However because 2SC is violated here, this must be a local minimum or saddle-point

of the firm’s profits. Therefore it cannot be the optimal participation pair.

In the Armstrong case, from equation (12) χ = bA + bB so 2SC becomes

µAµB

NANB > ρAρB
(

bA + bB
)2

In the special case of linear demand that is typically analyzed, µ
I

NI =
1
φI

where φI is the (con-

stant) slope of demand. If we parameterize demand by NI (PI , NJ )
=

QI
(

2P̃I−PI
−bI NJ

)
2P̃I

so that QI demand at price 0 and P̃I is the optimal price when there is no two-sidedness and
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CI
= 0 then 1

σI
=

QI

2P̃I so the condition simplifies, after a bit of algebra, to

(
bA + bB

)
QAQB√

QAQB P̃A P̃B

4

< 8

which is that the surplus generated by two-sidedness at zero price should not be more than 8

times the geometric mean of optimal profits on the two sides if there were no two-sidedness, as

optimal profits for linear demand with this parameterization are QI P̃I

2 .

Pigouvian second-order conditions

Now I derive the second-order conditions for the Pigouvian problem. The first derivative of

social welfare V with respect to participation on side I is

PI
− CI

− cNJ
+ bJ NJ

Taking the derivative with respect to NI yields

PI
1 + bJ 2 NJ

= −
µI

NI +
∂
∫
∞

−∞

∫
∞

PJ (NJ ,NI )−bJ NI bJ f J (BJ , bJ )d BJ dbJ

∂NI =

−
µI

NI +
∫
∞

−∞

(
bJ − b̃J

)
bJ f I

(
PJ [NJ , NI ]− bJ NI , bJ

)
dbJ

= −
µI

NI +
NJ

µJ

(
b̃J 2
− b̃J

2
)
= −

µI

NI +
NJ

µJ

(
b̃J 2
− b̃J

2
)

Thus the own-second derivative condition for concavity is that on both sides I

µAµB

NANB > σ̃I

where σ̃I is the variance of interaction benefits among marginal users on side I. The cross partial

is then

PA
2 − c +

∂ b̃BNB

∂NB = b̃A − c +
∂
∫
∞

−∞

∫
∞

PB(NB,NA)−bBNA bB f B(BB, bB)d BBdbB

∂NB =

b̃A − c +
µB ∫∞

−∞
bB f I

(
PB[NB, NA]− bBNA, bB

)
dbB

NB = b̃A + b̃B − c
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So the positive determinant condition requires

(A 4)
µAµB

NANB >

(
b̃A + b̃B − c

)2

(
NANB σ̃A

µAµB − 1
) (

NANB σ̃B

µAµB − 1
)

If imposed globally, just as with 2SC, these ensure sufficiency of first-order conditions. By the

same argument as in Section III for 2SC, these conditions are weak in the sense of Theorem 4. In

the RT2003 case, heterogeneity is unidimensional so all marginal users have the same preferences

and σ̃A = σ̃B = 0. Therefore inequality A 4 becomes

mAmB >
(

pA + pB − c
)2

as pI = b̃I as there are only interaction values. By the first-order condition for the Pigouvian

problem in the RT2003 case pA + pB − c = −sA = −SB so this becomes

mAmB > sA · sB = ρA · ρBmAmA
⇐⇒ 1 > ρA · ρB

which is my social second-order condition from E. Glen Weyl (2009). In the Armstrong case

µAµB

NANB >
(

bA + bB
)2

In the linear case, when ρI = 1
2 this is exactly the private 2SC, except four times stronger.

Positive comparative statics

PROOF OF THEOREM 5:

Letting RI (NI , NJ )
≡ PI (NI , NJ ) NI be revenue on side I the cross partial is

χ = RA
12 + RB

12 − c =
∂M RA

∂NB +
∂M RB

∂NA − c =
∂
(
PA
+ PA

1 NA)
∂NB +

∂
(
PB
+ PB

1 NB)
∂NA − c =

PA
2 + PA

12 NA
+ PB

2 + PB
12 NB

−c = b̃A+ b̃A1 NA
+ b̃B+ b̃B1 NB

−c = b̃A+ b̃B−c−
µA

b̃

NB −
µB

b̃

NA

where M RI is the classical marginal revenue on side I. Thus there are substitutes (complements)
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if b̃NANB > (<)µb̃. But by equation (7), µI
= PI

− CI
+

(
b̃J − c

)
NJ thus

µ = 2b̃NANB
+

(
B̃A − CA

)
NA
+

(
B̃B − CB

)
NB
= π + b̃NANB

Clearly µ, π > 0 so dividing through there are substitutes (complements) if

b̃NANB

π + b̃NANB < (>)
µb̃
µ

⇐⇒ 1−
b̃NANB

π + b̃NANB > (<)1−
µb̃
µ
⇐⇒

π

π + b̃NANB > (<)
µB̃
µ

If µB̃ < 0 then we clearly have substitutes. Otherwise this is equivalent to

π + b̃NANB

π
< (>)

µb̃ + µB̃
µB̃

⇐⇒
b̃NANB

π
< (>)

µb̃
µB̃

Normative comparative statics

PROOF OF THEOREM 6:

By implicit differentiation of equation (1)

d NI

dCJ = −
NIρIχ d NJ

dCJ

µI

So
d NI

dCJ

d NJ

dCJ

= −
NIρIχ

µI

dV I

dCJ = V I
1

d NI

dCJ + V I
2

d NJ

dCJ ∝ −NI
(
ρIχ + bI − b̃I

)
where the constant of proportionality is positive by concavity of profits. Clearly the effect of

an exogenous increase in side J participation, driven by cost, is the opposite of the effect of an

increase in cost (in sign, which is all I am concerned with).
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The Scale-Income Model

In the SI model bIi = β
I BI

i . I therefore index a user’s type by her membership benefit BI
i . A

user i on side I will participate if

BI
i + β

I BI
i NJ > PI

that is if BI
i > PI

1+βI NJ =
νI
(
NJ )PI

βI
if νI

βI
is positive and if BI

i <
νI
(
NJ )PI

βI
if νI

βI
is nega-

tive. Intuitively, νI (roughly) represents the fraction of heterogeneity that is along the interaction

dimension; if νI is negative, then as prices rise interaction values tend to fall. Dividing by βI

converts this into membership benefits. It may be either the large or small scale users that partici-

pate and they may have either positive or negative membership benefits. In what follows, I derive

everything from first principles, as in unidimensional models my assumption of smoothness of

f I fails. All the results would follow identically from directly specializing my more general

results, as they did in the RT2003 and Armstrong cases; however, for expositional purposes it

is useful to show how direct analysis of a unidimensional model leads to the same results as

specializing general results from the RT2006 model.

NI(PI , NJ ) = 1 − FI
(
νI
[
NJ ]PI

βI

)
if νI

βI
> 0 and NI

= FI if νI

βI
< 0 where FI is

the c.d.f. of membership values. Let DI(BI) ≡ 1 − FI or FI as appropriate. Then NI
1 =

−

∣∣∣ νI
βI

∣∣∣ f I , where f I = FI ′ , and NI
2 = −

(
νI

βI

)
νI
′
PI

βI
f I . By the definition, νI

′

= −
(
νI
)2

,

yielding

NI
2 =

(
νI

βI

)
PI (νI)2
βI

= νI PI
∣∣∣∣∣ νIβI

∣∣∣∣∣
Letting PI(NI , NJ ) be the inverse of NI with respect to its first argument, by the inverse and

implicit function theorems we have PI
1 = −

µI

NI where µI
≡

NI

f I

∣∣∣βI
νI

∣∣∣ and PI
2 = ν

I PI
= b̃I =

βI DI−1 (
NI)
= βI b̃I . Surplus on side I is

(
νI
[
NJ ]
βI

)∫ (
νI [NJ ]
βI

)
·∞

νI[NJ ]PI

βI

(
BI
+ βI BI NJ

− PI
)

f I(BI)d BI

Using the change of variables φI = BIβI

νI
this becomes

V I
=

∣∣∣∣∣ νIβI
∣∣∣∣∣
∫
∞

PI

(
φI − PI

)
f I
(
νIφI

βI

)
dφI =

∫
∞

PI
DI

(
νIφI

βI

)
dφI
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by the standard integration by parts for surplus. Therefore V I
1 = µ

I and

V I
2 = −

∫
∞

PI

νI
′

φI

βI

(
νI

βI

)
f IdφI − νI PI NI

=

∫
∞

PI
νIφI

∣∣∣∣∣ νIβI
∣∣∣∣∣ f IdφI − νI PI NI

= νIV I

By E. Glen Weyl and Michal Fabinger’s (2009)’s Theorem 3, V I
= NI µ̂I ρ̂I where µ̂I is the

inverse hazard rate of DI with respect to φ at φ = PI and ρ̂I is an average of 1

1− ∂µ̂I
∂NI

1
PI

1

over

φ > PI . Therefore to establish the formulae given in the text, I must show that, in fact, µ̂I = µI

and ρ̂I = ρI .

µ̂I = −
NI

∂DI

∂φI

∣∣∣
φI=PI

=
NI

f I

∣∣∣∣∣βIνI
∣∣∣∣∣ = µI

For the equivalence of ρ̂I to an average of ρI , let me calculate ρI .

ρI = −
µI

NI ∂2π

∂NI2

= −
µI

NI (PI
1 − µ

I
1
) = ρ̂I

Following a similar logic

χ = PA
2 + ν

BNBPB
1 + ν

BPB
− µI

2 − c = νAPA
+ νBPB

− c − νBNB µ
B

NB − µ
I
2

µI
2 =

∂
NI ∣∣βI ∣∣
f I(NI)

1
|νI[NJ ]|

∂NJ =
NI ∣∣βI ∣∣

f I

∂
∣∣∣ 1
βI
+ NJ

∣∣∣
∂NJ = (νI)

NI ∣∣βI ∣∣
f I

= νIµI

therefore

χ =
∑

I=A,B

(
νI
[

PI
− µI

])
− c

Because the natural analogs of the naı̈ve simplifications from above are now apparent, I revert to

directly using these, but direct derivations are available on request.
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The sign of equilibrium network effects from side I to side J are now determined by

νJµJ ρJ + ρJ

 ∑
K=A,B

[
νK

(
P K
− µK

)]
− c


As stated in the text, if the second term is positive (as in the newspaper case) and the first term also

is (as on the advertiser side, because νB > 0) then clearly equilibrium externalities from readers

to advertisers are positive. On the reader’s side the second term is positive, but the first is negative

as νA < 0. The equilibrium network effect will tend to be positive when complementarity is large

relative to reader-side market power and when pass-through is decreasing, so that inframarginal

harms are small relative to the pass-through of marginal cost changes.

The own-side cost-welfare effect on side I

−

µAµB
+

 ∑
K=A,B

(
νK

[
P K
− µK

])
− c

 ρJ νIµIρI NANB

 ∝

−

µJ
+ νIρJ ρI NANB

 ∑
K=A,B

(
νK

[
P K
− µK

])
− c


For advertisers this is clearly negative as both terms are. For readers this is again ambiguous:

while they lose from the higher prices the gain from resulting reduction in the Spence distortion

and therefore advertising. Thus it is not clear that readers will be worse off as the newspaper

business becomes less competitive, because on both sides of the market reduced competition is

likely to lead to higher advertising rates and this may improve reader welfare.

Applications

In this appendix I describe formally the GASH model of duopoly, derive equilibrium condi-

tions for it and use these to state formally and prove the results I referred to in Subsection VI.C.

Armstrong only considers a linear demand, product differentiated model where all users must

choose one platform in the spirit of Harold Hotelling (1929), making it impossible to compare

monopoly to competition as under monopoly the platform would charge infinite prices.

Demand

Users on each side I have a usage benefit bI which depends only on which side of the market

they are on, not which platform they use nor their identity. users have a membership benefit for
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each platform 1 and 2, BI,1
i and BI,2

i respectively, drawn from a symmetric density function

gI : R2
→ R. Given a vector, consisting of a pair of side I prices and a pair of participation

levels on side J ,
(
PI,i , PI,−i , NJ ,i , NJ ,−i ), we can write the number of side I agents that

choose to participate on platform i . Let us call this NI,i , where

NI,i (PI,i , PI,−i , NJ ,i , NJ ,−i ) =∫
∞

PI,i−bI NJ ,i

∫ BI,i
+bI NJ ,i

−PI,i
+PI,−i

−bI NJ ,−i

−∞

gI(BI,i , BI,−i )d BI,−i d BI,i .

Let RI,i
≡ bI NJ ,i

− PI,i be the payoff an agent on side I receives from joining platform i ,

net of membership benefits. We can then express the number of side I agents that participate of

platform i as NI,i
= NI,i (PI,i , NJ ,i , RI,−i ), where

NI,i (PI,i , NJ ,i , RI,−i ) =∫
∞

PI,i−bI NJ ,i

∫ BI,i
+bI NJ ,i

−PI,i
−RI,−i

−∞

gI(BI,i , BI,−i )d BI,−i d BI,i .

Note that as NI,i is strictly decreasing in it’s first argument, it can be inverted, yielding a well

defined inverse demand PI,i (NI,i , NJ ,i , RI,−i ).
Duopoly equilibrium

Supposing that both firm 1 and firm 2 offer insulating tariffs on both sides of the market; that

is, PI,i (PJ ,i )
= bI NJ ,i

+ hI,i for some chosen hI,i as the insulating tariff for the Armstrong

model is just full insurance. We can the consider each firm i to choose participation levels on

each side, taking as given RA,−i and RB,−i . Thus, in equilibrium, each firm maximizes, with

respect to NI,i , I = A, B,

(A 5) [PA,i (NA,i , NB,i , RA,−i )− CA]NA,i
+ [PB,i (NB,i , NA,i , RB,−i )− CB]NB,i

The first-order condition for maximization of (A 5), with respect to NI,i , is

(A 6) PI,i
− CI

+ PI,i
1 NI,i

+ PJ ,i
2 NJ ,i

= 0
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Note that, by the inverse function theorem, PI,i
1 =

1
NI,i

1
, and that by the implicit function theo-

rem, PI,i
2 = −

NI,i
2

NJ ,i
1

. Calculating NI,i
1 , we find

NI,i
1 = −

∫
−RI,−i

−∞

gI(PI,i (NJ ,i )− bI N j,i , BI,−i )d BI,−i︸ ︷︷ ︸
market expansion

−

∫
∞

PI,i (NJ ,i )−bI NJ ,i
gI(BI,i , BI,i

+ bI NJ ,i
− PI,i (NJ ,i )− RI,i )d BI,i︸ ︷︷ ︸

cannibalization

.

Calculating NI,i
2 , we find

NI,i
2 =

∫
−RI,−i

−∞

bIgI(PI,i (NJ ,i )− bI N j,i , BI,−i )d BI,−i

+

∫
∞

PI,i (NJ ,i )−bI NJ ,i
bIgI(BI,i , BI,i

+ bI NJ ,i
− PI,i (NJ ,i )− RI,i )d BI,i

= −bI NI,i
1

Thus, (A 6) can be rewritten

(A 7) PI,i
− CI

+ bJ NJ ,i
=

NI,i

−NI,i
1

≡ µI,i
o

where µI,i
o is firm i’s own-price market power on side I. Equation (A 7) can be thought of

as governing firm i’s best-response to firm −i’s choices of RI,−i . Thus the conditions for a

symmetric-across-firms (SAF) equilibrium in insulting tariffs, what I call an symmetric insulated

equilibrium (SIE), it must be the case that for I = A, B and i = 1, 2

(A 8) PI
− CI

+ bJ
NJ

2
= µI

o

where PI is the SIE price on side I, NJ is the total market participation on side J and µI
o is

the SAF own-price market power on side I.
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Monopoly

Suppose firms i and −i can act, via merger or some other means, in such a way so as to

maximize joint profits. Then, assuming the platforms choose a SAF strategy, they solve

max
NI,m

{
2
∑
I

[
PI,m(NI,m, NJ ,m)− CI

]
NI,m

}

where PI,m(NI,m, NJ ,m) is the inverse, with respect to the first argument, of

NI,m (PI,m, NJ ,m), the number of side I agents who join any one of the two symmetric plat-

forms

NI,m(PI,m(NJ ,m), NJ ,m) =
∫
∞

PI,m (NJ ,m )−bI NJ ,m

∫ BI,m

−∞

gI(BI,m, BI,−m)d BI,−md BI,m

The first-order condition of the platforms is

PI
− CI

+ bJ
NJ

2
=

NI,m

−NI,m
1

≡ µI

where µI is the joint market power and

NI,m
1 = −

∫ PI,m
−bI NJ ,m

−∞

gI(PI,m
− bI NJ ,m, BI,−m)d BI−m

Note that µI (NI , NJ ) > µI
o
(
NI , NJ ) for any pair of participation rates

(
NI , NJ ) as the

denominator of µI does not include the (strictly positive) cannibalization term of µI
o .

Merger effects

PROPOSITION 10: Assume 2SC for the Armstrong model applied to the monopoly optimum

in this context: ρI > 0 for both I and µAµB

NANB > ρAρB
(
bA + bB

)2
. Then participation and

welfare are higher on both sides of the market under duopoly than under monopoly.

PROOF:

Rewrite condition (A8) as

PI
− CI

+ bJ NJ
= µI

− µI
(

1−
MI

o

MI

)



VOL. VOL NO. ISSUE APPENDIX TO A PRICE THEORY OF MULTI-SIDED PLATFORMS 15

Let GI (NI , NJ )
= 1− MI

o
MI and let the value of GI at SIE participation rates

(
NA?

, NB?
)

be GI? . Note that GI ,GI? > 0 as noted above. Inthe monopoly problem costs are given by

CI
− tGI

for t ∈ [0, 1]. Clearly for t = 0 the solution is the same as the SAF monopoly optimum

(which is unique by the assumed second-order conditions). For t = 1, the allocation must be

the same as at the SIE equilibrium. But by my reasoning in Section III.A, participation rates on

the two sides of the markets are complements, so a fall in either cost raises both participation

rates. Thus an increase in t must raise both participation rates. Therefore participation on both

sides of the market is higher under the SIE equilibrium than under the SAF monopoly optimum.

Furthermore in the Armstrong model welfare on each side of the market depends (directly) only

on participation on that side as there is no Spence distortion, so both groups of users must be

better off. Finally, because participation rates are below their optimal level for any amount of

market power on both sides, the resulting increase in participation on both sides must be social

welfare enhancing. Thus a merger without efficiencies from a SIE equilibrium is harmful to

participation, both groups of users’ welfare and overall social welfare.

This result contrasts significantly with the RT2003 model, where competition can easily harm

one or even both groups of users. Of course the result depends on a particular assumption about

tariffs, namely that firms use insulating tariffs. In a previous version of this paper I proved that

this result was significantly more robust and holds in a very wide range of reasonable cases with

non-insulating tariffs. Those results, omitted for the sake of brevity and clarity, are available on

request.
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