THE JOURNAL OF CHEMICAL INDUSTRY, TOKYO, JAPAN.

Vol. XIX.

.

NOVEMBER, 1916.

No. 225.

ABSTRACTS FROM THE ORIGINAL ARTICLES.

ON SOURCES OF POTASH IN FORMOSA.

By Manroku Yatsugi.

The author has examined the several ashes for the sources of Potash in Formosa. The results obtained are as follows:

	Potash	Sulphuric acid	Chlorine	Carbonicacid
	(K_2O) (%)	(SO ₃) (%)	(Cl) (%)	(CO ₂) (%)
Ash of tobacco-refuse (of the island)	18.45	6.55	14.47	
Ash of tobacco-refuse (of China)	35.56	3.05	17.30	
Ash of bagasse	1.94-10.87	0.97-4.27	00. 28	0 0,68
Ash of molasses	35-53	18.98	9.93	
Ash of alcohol-waste, from molasses	41.23	22.91	10.78	4.16
Ash of fruit banana (Musa Supientum L.)-Stalk	18.14	1.89	9.9 3	7.90
Ash of wild banana (<i>Musa Paradiaca</i> L.)-Stalk	56.23	1.73	9.93	13.69
Ash of Alpima Metans Rose	23.56	3.37	7.66	5.60
Kinyu i.e. lixiviation-liquor of ash of plant-refuses	30.25		5.85	9.53
Kintõ i.e. raw crystals from Kinyu	59.76	1.58	4.26	20.73
Ash of Eichhornia paniculata Spreng.	3 2.4 4	2.37	23.83	8.33

From the above figures and their quantities, Kinyu and Kintō obtained especially from wild-banana stalk, and the tobacco-refuse from the Monopoly Bureau, Government of Formosa, will be noticed as the chief sources of potash in the island.

(Sep. 1916, Institute of Science, Government of Formosa).

- 47 -

ON SEAWEEDS.

By Kisaburo Miyama. Kogakuhakushi.

Near the seacoast of Japan, there are many kinds of seaweeds, especially *laminaria* and *arthrothamnus*.

In Yezo, different species of *laminaria* and *arthrothamnus* are collected as eatables and an important material of iodine in a large quantity; and manufacturing of pottasium salts as a by-product is very common.

Cost of pottasium chloride is less than four pounds per ton. Iodine contents of *laminaria* and *arthrothamnus* are the largest among the Japanese seaweeds; for an example, dried *Arthrothamnus Bifidus Rupr* contains 0.6 % of iodine.

Excellent material of iodine are Brthrothamnus Bifidus Rupr., Arthrothamnus Kurilensis Rupr., Laminaria Coreacea Miyabe, Kjellmaniella Gyrata Miyabe and Ecklonia Cava Okam.:

Near the seacoast of *Karafuto* (Saghalin), there are as abundan. seaweeds as in Yezo, and they are equally rich in iodine.

In the inland *Ecklonia Cava*, and *Ecklonia bicyclis* are commonly used as a material of iodine.

Kelp made from seaweeds in Japan is not porous, but obviously overroasted.

The author's experiment shows that when roasted three hours at 750° C, seaweeds lose no iodine, but when roasted three hours at 750° C they lose 12.5 % of their iodine content.

At present, Japan produces 1700 tons of pottassium salts, that is only a quarter of her total consumption of the salts; but it is liable that production of the salts will exceed 6000 tons, if seaweeds of Yezo and Karafuto are well utilized.

- 48 -