On classification of maps of a css complex into a css group

By
Yoshiro Inoue
(Communicated by Prof. A. Komatu, Aug. 8, 1962)

Introduction

Let G be a reduced 0 -connected css group (for the definition, see [5]) and (K, L) be a css pair. Denote by e_{n} the unit of G_{n} and by e the css subgroup of G consisting of all $e_{n}, n \geqq 0$. The set $\Pi(K, L ; G)$ of all homotopy classes of maps $f:(K, L) \rightarrow(G, e)$ has a natural group structure. Then, we have a filtration

$$
\begin{equation*}
\Pi(K, L ; G)=D_{0}^{1} \geq D_{1}^{1} \geq D_{2}^{1} \geq \cdots, \tag{1}
\end{equation*}
$$

by normal subgroups $D_{n}^{1}(n \geqq 0)$ defined in $\S 3$. On the other hand, for each $n \geqq 1$, there are sequences of subgroups:
$H^{n-1}\left(K, L ; \pi_{n}(G)\right)={ }^{\prime} P_{n}^{n} \geq{ }^{\prime} P_{n+1}^{n} \geq \cdots \geq P^{\prime} P_{\infty}^{n}$
(the reduced ($n-1$)-st cohomology group),
$H^{n}\left(K, L ; \pi_{n}(G)\right)=P_{n}^{n} \geq P_{n+1}^{n} \geq \cdots \geq P_{\infty}^{n} \geq R_{1}^{n} \geq{ }^{\prime} R_{2}^{n} \geq \cdots \geq R_{n}^{n}=0$, $H^{n+1}\left(K, L ; \pi_{n}(G)\right) \geq R_{1}^{n} \geq R_{2}^{n} \geq \cdots \geq R_{n}^{n}=0$
which are defined in $\S 2$. Our purpose of this paper is to show that, for $1 \leqq m<n$, there are homomorphisms

$$
\begin{aligned}
\theta_{m}^{n-m}: P_{n-1}^{m} & \rightarrow H^{n+1}\left(K, L ; \pi_{n}(G)\right) / R_{m+1}^{n}, \\
\theta_{m}^{n-m}: P_{n-1}^{m} & \rightarrow H^{n}\left(K, L ; \pi_{n}(G)\right) / R_{m+1}^{n},
\end{aligned}
$$

which induce isomorphisms

$$
P_{n-1}^{m} / P_{n}^{m} \approx R_{n}^{n} / R_{m+1}^{2}, \quad P_{n-1}^{m} / /^{\prime} P_{n}^{m} \approx{ }^{\prime} R_{m}^{n} / R_{m+1}^{n}
$$

($\S 2$, Theorem 1) and to show that

$$
D_{n-1}^{1} / D_{n}^{1} \approx P_{\infty}^{n} /^{\prime} R_{1}^{n}
$$

(§3, Theorem 2). The homomorphisms θ_{m}^{n-m} and ${ }^{\prime} \theta_{m}^{n-m}$ are generalized cohomology operations.

In the paper [4] S. T. Hu gave a filtration (1) of $\Pi(K, L ; G)$ for a finite cell complex (K, L) and a topological group G. Our filtration (1) is defined by the same manner as that of $\mathrm{S} . \mathrm{T} . \mathrm{Hu}$, i.e., D_{n}^{1} is the set of homotopy classes of maps which are n homotopic with 0 relative to L (see (5.2) of [4]). Then, our Theorem 2 corresponds to Theorem (5.7) of [4].

As an application, we derive some results for $\Pi(K, L ; G)$ which correspond to those of F. P. Peterson [6] in the case of cohomotopy groups. We assume that (K, L) is of finite dimension and $\Pi(K, L ; G)$ is abelian. If $\pi_{r}(G)$ and $H^{r}(K, L)$ are finitely generated for $r \geqq 1, \Pi(K, L ; G)$ is finitely generated (§4, Proposition 1). Let \boldsymbol{C} be a class of abelian groups in the sense of J. P. Serre [7]. If $H^{r}\left(K, L ; \pi_{r}(G)\right)$ and $H^{r-1}\left(K, L ; \pi_{r}(G)\right)$ belong to \boldsymbol{C} for $r<n$, $j_{n}^{*}: \Pi\left(K, L ;{ }^{n} G\right) \rightarrow \Pi(K, L ; G)$ induced by the injection $j_{n}:{ }^{n} G \rightarrow G$ is a \boldsymbol{C}-isomorphism (for the definition of ${ }^{n} G$, see $\S 2$). If $H^{r}(K, L$; $\left.\pi_{r}(G)\right)$ and $H^{r+1}\left(K, L ; \pi_{r}(G)\right)$ belong to \boldsymbol{C} for $r>n$ and $\Pi(K, L$; $\left.G /{ }^{n+1} G\right)$ is abelian, $p_{n}^{*}: \Pi(K, L ; G) \rightarrow \Pi\left(K, L ; G /^{n+1} G\right)$ induced by the natural map $p_{n}: G \rightarrow G /{ }^{n+1} G$ is a \boldsymbol{C}-isomorphism (§4, Proposition 2).

§ 1. Preliminaries

Let G be a css group, N be a css normal subgroup of $G, G / N$ be the css factor group and $q: G \rightarrow G / N$ be the natural map. The triple $(G, G / N, q)$ is a principal fibre bundle with fibre N (IV, Definition 2.1 of [1]). Then, there is a dimension preserving function $\beta: G / N \rightarrow G$ such that
(1) $q \beta a=a, \beta e_{0}=e_{0}$,
(2) $\beta_{s_{i}} a=s_{i} \beta a, \quad i \geqq 0$,
(3) $\beta \partial_{i} a=\partial_{i} \beta a, \quad i>0$,
(4) if N is ($n-1$)-connected, $\beta \partial_{0} a=\partial_{0} \beta a$ for $a \in(G / N)_{k}$, $k=1, \cdots, n$ (IV, 2 of [1]). Then

$$
\xi a=\left(\beta \partial_{0} a\right)^{-1}\left(\partial_{0} \beta a\right) \quad(\in N)
$$

is a twisted function of $(G, G / N, q)$. Let $\bar{W} N$ be the W-construction of N (IV, 5 of [1]). Then ξ induces a map $k_{\xi}: G / N \rightarrow \bar{W} N$ defined by

$$
k_{\xi} a=\left[\xi \partial_{0}^{m-1} a, \xi \partial_{0}^{m-2} a, \cdots, \xi a\right] \quad\left(a \in(G / N)_{m}\right) .
$$

Consider the case where N is a reduced ($n-1$)-connected $K(\pi, n)$ $(n \geqq 1)$, i.e., $\pi_{n}(N)=\pi, \pi_{n}(N)=0$ for $k \neq n$ and $N^{n-1}=\left\{e_{k}, k=0,1, \cdots\right.$, $n-1\}$. Let (K, L) be a css pair. Since $\bar{W} N$ is a $K(\pi, n+1)$, there is a natural one-to-one correspondence

$$
T: \Pi(K, L ; \bar{W} N) \rightarrow H^{n+1}(K, L ; \pi)
$$

which is defined as follows. Let $t: N_{n} \rightarrow \pi$ be a homomorphism defined by

$$
t(x)=\text { the element of } \pi \text { represented by } x
$$

Let $g:(K, L) \rightarrow(\bar{W} N, *)(*$ is the base point of $\bar{W} N)$ be a map. Since N is $(n-1)$-reduced, $g(\sigma)$ is written by $\left[e_{0}, e_{1}, \cdots, e_{n-1}, g_{n}(\sigma)\right]$ for $\sigma \in K_{n+1}$. Then the function $\operatorname{tg}_{n}: \sigma \rightarrow \operatorname{tg}_{n}(\sigma)$ defines a cocycle of $Z^{n+1}(K, L ; \pi)$ which represents $T[g]$. Then k_{ξ} induces a transformation

$$
k_{\xi}^{\sharp}: \Pi(K, L ; G / N) \rightarrow H^{n+1}(K, L ; \pi)
$$

which is defined by

$$
k_{\xi}^{*}=T \circ k_{\xi}^{*},
$$

where $k_{\xi}^{*}: \Pi(K, L ; G / N) \rightarrow \Pi(K, L ; \bar{W} N)$ is the transformation induced by k_{ξ}.

Lemma 1. The transformation $k_{\xi}^{\#}$ is a homomorphism.
Proof. Define a function $\omega:(G / N \times G / N)_{n+1} \rightarrow \pi$ by

$$
\omega(a \times b)=t \xi a b-t \xi a-t \xi b \quad\left(a, b \in(G / N)_{n+1}\right) .
$$

Then ω is a cochain of $C^{n+1}(G / N \times G / N, G / N \cup G / N ; \pi)$. Define a cochain $c \in C^{n}(G / N \times G / N, G / N \cup G / N ; \pi)$ by

$$
c\left(a^{\prime} \times b^{\prime}\right)=t\left(\left(\beta a^{\prime} b^{\prime}\right)^{-1}\left(\beta a^{\prime}\right)\left(\beta b^{\prime}\right)\right) \quad\left(a^{\prime}, b^{\prime} \in(G / N)_{n}\right)
$$

For $a, b \in(G / N)_{n+1}$, we have

$$
\begin{aligned}
& \sum_{i=0}^{n+1}(-1)^{i} c\left(\partial_{i}(a \times b)\right)=\sum_{i=0}^{n+1}(-1)^{i} t\left(\left(\beta \partial_{i}(a b)\right)^{-1}\left(\beta \partial_{i} a\right)\left(\beta \partial_{i} b\right)\right) \\
& =\sum_{i=0}^{n+1}(-1)^{i} t\left(\partial_{i}\left((\beta a b)^{-1}(\beta a)(\beta b)\right)\right) \\
& \quad+t\left(\left(\beta \partial_{0}(a b)\right)^{-1}\left(\beta \partial_{0} a\right)\left(\beta \partial_{0} b\right)\right)-t\left(\left(\partial_{0} \beta a b\right)^{-1}\left(\partial_{0} \beta a\right)\left(\partial_{0} \beta b\right)\right) .
\end{aligned}
$$

Since $\sum_{i=0}^{n+1}(-1)^{i} t\left(\partial_{i}\left((\beta a b)^{-1}(\beta a)(\beta b)\right)=0\right.$, then

$$
\begin{aligned}
\sum_{i=0}^{n+1}(& -1)^{i} c\left(\partial_{i}(a \times b)\right)=t\left(\left(\beta \partial_{0}(a b)\right)^{-1}\left(\partial_{0} \beta a b\right)\left(\partial_{0} \beta a b\right)^{-1}\left(\beta \partial_{0} a\right)\left(\beta \partial_{0} b\right)\right. \\
& -t\left(\left(\partial_{0} \beta a b\right)^{-1}\left(\beta \partial_{0} a\right)\left(\beta \partial_{0} b\right)\left(\beta \partial_{0} b\right)^{-1}\left(\beta \partial_{0} a\right)^{-1}\left(\partial_{0} \beta a\right)\left(\partial_{0} \beta b\right)\right) \\
= & t \xi a b-t\left(\left(\beta \partial_{0} b\right)^{-1}\left(\beta \partial_{0} a\right)^{-1}\left(\partial_{0} \beta a\right)\left(\beta \partial_{0} b\right)\right)-t\left(\left(\beta \partial_{0} b\right)^{-1}\left(\partial_{0} \beta b\right)\right) \\
= & t \xi a b-t \xi a-t \xi b .
\end{aligned}
$$

This shows that $\delta c=\omega$. Let $g, g^{\prime} ;(K, L) \rightarrow(G / N, e)$ be two maps. Then

$$
\omega\left(g(\sigma) \times g^{\prime}(\sigma)\right)=\delta c\left(g(\sigma) \times g^{\prime}(\rho)\right) \quad \text { for } \quad \sigma \in K_{n+1} .
$$

Then $k_{\xi}^{\#}$ is a homomorphism.
Let K be a complex with base point $*$. The cone $C K$ of K is obtained from $K \times I$ by identifying the subcomplex $K \times I \cup * \times I$ to $* \times 0$. Denote by r the identification map: $K \times I \rightarrow C K$. Let (K, L) be a css pair, and π be an abelian group. A natural isomorphism.
$\tau^{*}: H^{q+1}(C K, C L \cup K ; \pi) \rightarrow H^{q}(K, L ; \pi)$ (the reduced q-th cohomology group) is defined as follows. Let (E, B, p) be a fibre complex in the sense of D. M. Kan [5] such that B is a $K(\pi, q+1)$ and E is acyclic. Then the fibre of p is a $K(\pi, q)$. An element $\alpha \in H^{q+1}(C K, C L \cup K ; \pi)$ is represented by a map $f:(C K, C L \cup K)$ $\rightarrow(B, *)$. The homotopy $h: K \times I \rightarrow B$ defined by $h=f \circ r$ is lifted to $h^{\prime}:(K \times I, L \times I \cup K \times 1) \rightarrow(E, *)$. Then τ^{*} is defined by
$\tau^{*} \alpha=$ the element of $H^{q}(K, L ; \pi)$ represented by $h^{\prime} \mid K \times 0$.
Let N be a css group. Let $W N=\bar{W} N \times{ }_{n} N$ be the twisted cartesian product whose twisted function η is defined by

$$
\eta\left[x_{0}, x_{1}, \cdots, x_{i-1}\right]=x_{i-1}
$$

(IV, 5 of [1]). The map $p: W N \rightarrow \bar{W} N$ defined by $p(w, x)=w$ is a fibre map in the sense of Kan, and $W N$ is acyclic. Then, if N is a $K(\pi, q)$, the isomorphism τ^{*} is defined by using ($W N, \bar{W} N, p$).

§ 2. Cohomology operations associated to a css group

Let G be a reduced 0 -connected css group. Denote by ${ }^{n} G$ the maximal css normal subgroup of G such that $\left({ }^{n} G\right)^{n-1}=\left\{e_{k}, k=0, \cdots\right.$, $n-1\}$. Then we have a sequence of css normal subgroups of G :

$$
G={ }^{1} G \geq{ }^{2} G \geq \cdots \geq{ }^{n} G \geq \cdots
$$

We put

$$
B_{n}^{m}={ }^{m} G /{ }^{n+1} G \quad(m \leqq n+1), \quad B_{\infty}^{m}={ }^{m} G
$$

Let
$p_{n, m}^{l}: B_{n}^{l} \rightarrow B_{n}^{l}(l-1 \leqq m \leqq n \leqq \infty), \quad j_{n}^{m, l}: B_{n}^{m} \rightarrow B_{n}^{l}(l \leqq m \leqq n+1 \leqq \infty)$ be the natural map and the injection respectively. The map $p_{n, m}^{l}$ is a fibre map whose fibre is B_{n}^{m+1}. Especially, the fibre of $p_{n, n-1}^{m}$ is B_{n}^{n} and B_{n}^{n} is a reduced $(n-1)$-connected $K\left(\pi_{n}(G), n\right)$. Let (K, L) be a css pair. The map $p_{n, m}^{m}(m \leqq n \leqq \infty)$ induces a homomorphism

$$
p_{n, m}^{m *}: \Pi\left(K, L ; B_{n}^{m}\right) \rightarrow \Pi\left(K, L ; B_{n}^{m}\right) .
$$

Let $U: \Pi\left(K, L ; B_{m}^{m}\right) \rightarrow H^{m}\left(K, L ; \pi_{m}(G)\right)$ be the natural isomorphism. Then

$$
p_{n, m}^{m \neq}=U \circ p_{n, m}^{m, *}: \Perp\left(K, L ; B_{n}^{m}\right) \rightarrow H^{m}\left(K, L ; \pi_{m}(G)\right)
$$

is a homomorphism. Denote by $\tau_{m}^{n}: B_{n-1}^{m} \rightarrow \bar{W} B_{n}^{n}(m \leqq n<\infty)$ the map defined by a twisted fluction ξ of the principal fibre bundle $\left(B_{;,}^{m}, B_{n-1}^{m}, p_{n, n-1}^{m}\right)($ see $\S 1)$. Then τ_{m}^{n} induces a transformation $\tau_{m}^{n} *: \Pi\left(K, L ; B_{n-1}^{m}\right) \rightarrow \Pi\left(K, L ; \bar{W} B_{n}^{n}\right)$, and the transformation

$$
\tau_{m}^{n \#}=T \circ \tau_{m}^{n} *: \Pi\left(K, L ; B_{n-1}^{m}\right) \rightarrow H^{n+1}\left(K, L ; \pi_{n}(G)\right)
$$

is a homomorphism by Lemma 1. Denote by $P_{n}^{m}=P_{n}^{m}(K, L)$ the image of $p_{n, m}^{m,}$ and by $R_{m}^{n}=R_{m}^{n}(K, L)$ the image of $\tau_{m}^{n \#}$. Then we have a sequence of subgroups:

$$
\begin{aligned}
& H^{m}\left(K, L ; \pi_{m}(G)\right)=P_{m}^{m} \geq P_{m+1}^{m} \supseteq \cdots \geq P_{\infty}^{m} \\
& H^{n_{+1}}\left(K, L ; \pi_{n}(G)\right) \geq R_{1}^{n} \supseteq R_{2}^{n} \supseteq \cdots \geq R_{n}^{n}=0 .
\end{aligned}
$$

The subgroups $P_{{ }_{n}}^{m}$ and R_{m}^{n} are natural, i.e., if $f:(K, L) \rightarrow\left(K^{\prime}, L^{\prime}\right)$ is a map of css pairs, then

$$
f^{*}\left(P_{n}^{m}\left(K^{\prime}, L^{\prime}\right)\right) \subseteq P_{n}^{m}(K, L), \quad f^{*}\left(R_{m}^{n}\left(K^{\prime}, L^{\prime}\right)\right) \subseteq R_{m}^{n}(K, L)
$$

Theorem 1. For $m<n$, there is a natural homomorpnism

$$
\theta_{m}^{n-m}=\theta_{m}^{n-m}(K, L): P_{n-1}^{m} \rightarrow H^{n^{\prime \prime}}\left(K, L ; \pi_{n}(G)\right) / R_{m+1}^{n}
$$

such that the kernel of θ_{m}^{n-m} is P_{n}^{m} and the image of θ_{m}^{n-m} is R_{m}^{n} / R_{m+1}^{n}.
Proof. Consider the folloging commutative diagram:
whose row and column are exact (see [3]). Define a homomorphism θ_{m}^{n-m} by

$$
\theta_{m}^{n-m} \alpha=\tau_{m}^{n \# \circ}\left(p_{n-1, n}^{m}\right)^{-1} \alpha \quad \bmod . R_{n+1}^{n}, \quad \alpha \in P_{n-1}^{m} .
$$

This is well defined by the exactness of the row. It is clear that the image of θ_{m}^{n-m} is R_{m}^{n} / R_{m+1}^{n} and $P_{n}^{m} \leq$ kernel θ_{m}^{n-m}. If $\theta_{m}^{n-m} \alpha=0$ for $\alpha \in P_{n-1}^{m}$, there are elements $\beta \in \Pi\left(K, L ; B_{n-1}^{m}\right)$ and $\gamma \in \Pi(K, L$; $\left.B_{n-1}^{m+1}\right)$ such that $P_{n-1, m}^{m} \#_{n} \beta=\alpha, \tau_{m}^{n \#} \circ j_{n-1}^{m+1, m *} \gamma=\tau_{m}^{n} \# \beta$. By the exactness of the column, there is an element $\delta \in \Pi\left(K, L ; B_{n}^{m}\right)$ such that $\beta=\left(j_{n-1}^{m+1, m *} \gamma\right)\left(p_{n, u-1}^{m} * \delta\right)$. Then

$$
\alpha=p_{n-1, m}^{m} \beta=p_{n-1, m}^{m} \neq p_{n, n-1}^{m} \delta=p_{n, m}^{m}{ }^{\#} \delta .
$$

This shows that kernel $\theta_{m}^{n-m} \subseteq P_{n}^{m}$. The naturality of θ_{m}^{n-m} is clear.
Corollary 1. $P_{n-1}^{m} / P_{n}^{m} \approx R_{m}^{n} / R_{m+1}^{n}$.
The homomorphism $\theta_{m}^{r}(m, r \geqq 1)$ defined in the proof in the above is a generalized cohomology operation associated to G. We say that R_{m}^{m+r} is the image of θ_{m}^{r}. If the dimension of (K, L) is s, i.e., $H^{k}(K, L ; \pi)=0$ for each $k>s$ and for any abelian group π, then θ_{m}^{r} is trivial for $m+r \geqq s$ and $P_{s-1}^{m}=P_{s}^{m}=\cdots=P_{\infty}^{m}$. If G is t-connected $(t \geqq 1), \theta_{m}^{r}$ is trival for $m \leqq t$ and $R_{1}^{n}=R_{2}^{n}=\cdots=R_{t+1}^{n}$ for $n>t$.

Let $\tau^{*}: H^{q+1}(C K, C L \cup K ; *) \rightarrow H^{q}(K, L ; *)$ be the natural isomorphism defined in $\S 1$. We put

$$
\begin{aligned}
& \prime P_{n}^{m}=\tau^{*} P_{n}^{m}(C K, C L \cup K) \subseteq H^{m-1}\left(K, L ; \pi_{m}(G)\right) \\
& \prime R_{m}^{n}=\tau^{*} R_{m}^{n}(C K, C L \cup K) \subseteq H^{n}\left(K, L ; \pi_{n}(G)\right) .
\end{aligned}
$$

We define the suspension

$$
' \theta_{m}^{n-m}:^{\prime} P_{n-1}^{m} \rightarrow H^{n}\left(K, L ; \pi_{n}(G)\right) /^{\prime} R_{m+1}^{n}
$$

of θ_{m}^{n-m} by

$$
{ }^{\prime} \theta_{m}^{n-m}=\tau^{*} \circ \theta_{m}^{n-m} \circ \tau^{*-1} \quad \text { (see [2]) }
$$

Corollary 2. ${ }^{\prime} P_{n-1}^{m} / P_{n}^{m} \approx{ }^{\prime} R_{m}^{n} / /_{m+1}^{n}$.

§ 3. Classification of maps of a complex into a css group

Let G be a reduced 0 -connected css group and (K, L) be a css pair. Denoting by $D_{n}^{m}(m-1 \leqq n)$ the kernel of $P_{\infty, n}^{m}, ~ \Pi(K, L$; $\left.{ }^{m} G\right) \rightarrow \Pi\left(K, L ; B_{n}^{m}\right)$, we have a filtration

$$
\Pi\left(K, L ;{ }^{m} G\right)=D_{m-1}^{m} \supseteq D_{m}^{m} \supseteq D_{m+1}^{m} \supseteq \cdots
$$

of $\Pi\left(K, L ;{ }^{m} G\right)$ by normal subgroups. For $m \leqq n \leqq l+1$, since D_{l}^{n} and D_{l}^{m} are the image of $j_{\infty}^{l+1, n *}$ and $j_{\infty}^{l+1, m *}$ respectively, $j_{\infty}^{n, m *}$ induces an epimorphism $\bar{j}_{\infty}^{n, m} *: D_{l}^{n} \rightarrow D_{l}^{m}$, and $\bar{j}_{\infty}^{n, m} *$ induces an epimorphism

$$
\alpha_{l+1}^{n, m}: D_{l}^{n} / D_{l+1}^{n} \rightarrow D_{l}^{m} / D_{l+1}^{m} .
$$

Since the kernel of $p_{\infty, n}^{n *}: \Pi\left(K, L ;{ }^{n} G\right) \rightarrow \Pi\left(K, L ; B_{n}^{n}\right)$ is D_{n}^{n} and the image of $p_{\infty, n}^{n}, \#=U \circ p_{\infty, n}^{n}$ is $P_{\infty}^{n}, p_{\infty, n}^{n} \#$ induces an isomorphism

$$
\beta_{n}: D_{n-1}^{n} / D_{n}^{n} \approx P_{\infty}^{n} .
$$

Then the homomorphism

$$
\gamma^{n, m}=\alpha_{n}^{l, m} \circ \beta_{n}^{-1}: P_{\infty}^{n} \rightarrow D_{n-1}^{m} / D_{n}^{m}
$$

is an epimorphism.
Lemma 2. The kernel of $\gamma^{n, m}$ is ${ }^{\prime} R_{n n}^{n}$, then

$$
D_{n-1}^{m} / D_{n}^{m} \approx P_{\infty}^{n} / R_{m}^{n} .
$$

Proof. Consider the following commutative diagram:

whose rows and column are exact. Here, ∂ is defined as follows. Let $f:(C L, C L \cup K) \rightarrow\left(B_{n-1}^{m}, e\right)$ represent $\alpha \in \Pi\left(C K, C L \cup K ; B_{n-1}^{m}\right)$. The homotopy $h=f \circ r: K \times I \rightarrow B_{n-1}^{m}$ is lifted to $h^{\prime}:(K \times I, L \times I \cup K$ $\times 1) \rightarrow\left({ }^{m} G, e\right)$. Then $\partial \alpha$ is represented by $h^{\prime} \mid K \times 0: K \rightarrow{ }^{n} G$. Now, by the diagram in the above, we see that the kernel of $\gamma^{n, m}$ is

$$
\begin{aligned}
& p_{\infty, n}^{n} \neq\left(\partial \Pi\left(C K, C L \cup K ; B_{n-1}^{m}\right) \cdot j_{\infty}^{n+1, n} * \Pi\left(K, L ;{ }^{n+1} G\right)\right) \\
& \quad=p_{\infty, n}^{n} \neq\left(\partial \Pi\left(C K, C L \cup K ; B_{n-1}^{m}\right)\right) .
\end{aligned}
$$

Then, the proof is complete, if the following diagram is commutative :

Let α, f, h, h^{\prime} be as above. Then $p_{\infty, n}^{n} \circ\left(h^{\prime} \mid K \times 0\right)$ represents $p_{\infty, n}^{n *}(\partial \alpha)$. Let $\tau_{m}^{n}: B_{n-1}^{m} \rightarrow \bar{W} B_{n}^{n}$ be defined by a twisted function ξ of (B_{n}^{m}, $B_{n-1}^{m}, p_{n, n-1}^{m}$) and ξ be defined by a function $\beta: B_{n-1}^{m} \rightarrow B_{n}^{m}$ (see $\S 1$). Then the map $l: B_{n}^{m} \rightarrow W B_{n}^{2}=\bar{W} B_{n}^{n} \times{ }_{n} B_{n}^{n}$ defined by

$$
l(b)=\left(\tau_{m}^{n} \circ p_{n, n-1}^{m} b,\left(\beta \circ p_{n, n-1}^{m} b\right)^{-1} \cdot b\right)
$$

is a fibre preserving map, i.e., $\tau_{m}^{n} \circ \phi_{n, n-1}^{m}=p \circ l$. Since

$$
\begin{aligned}
p \circ \rho \circ p_{\infty, n}^{m} \circ h^{\prime} & =\tau_{m}^{n} \circ p_{n, n-1}^{m} \circ p_{\infty, n}^{m} \circ h^{\prime} \\
& =\tau_{m}^{n} \circ p_{\infty, n-1}^{m} \circ h^{\prime}=\tau_{n}^{n} \circ h,
\end{aligned}
$$

$l \circ p_{\infty, n}^{m} \circ\left(h^{\prime} \mid K \times 0\right)=l \circ p_{\infty, n}^{n} \circ\left(h^{\prime} \mid K \times 0\right)$ represents $\tau^{*} \circ \tau_{m}^{n} * \alpha$. Then

$$
p_{\infty, n}^{n} *(\partial \alpha)=\tau^{*} \sigma_{m}^{n} * \alpha .
$$

This completes the proof.
By Lemma 2 together with the definitions in $\S 2$, we have the following theorem.

Theorem 2. Let G be a reduced 0-connected css group and (K, L) be a css pair. Then, there is a filtration

$$
\Pi(K, L ; G)=D_{0}^{1} \geq D_{1}^{1} \geq D_{2}^{1} \geq \cdots
$$

by normal subgroups such that

$$
D_{n-1}^{1} / D_{!}^{1} \approx P_{\infty}^{n} /{ }^{\prime} R_{1}^{n} \quad(n \geqq 1) .
$$

If (K, L) is of finite dimension, $P_{\infty}^{*} \leq H^{n}\left(K, L ; \pi_{n}(G)\right)$ is the intersection of the kernels of the cohomology operations $\theta_{n}^{l}, l=1,2, \cdots$, associated to G. If G is $(m-1)$-connected $(m \geqq 1)$, then $D_{0}^{1}=\cdots=$ $D_{m-1}^{1}, ' R_{1}^{m}=0$, and ' $R_{1}^{n}=\cdots={ }^{\prime} R_{m}^{n}(n>m)$ is the image of the suspension ' θ_{m}^{n-m} of the cohomology operation θ_{m}^{n-m} associated to G.

§ 4. Application

Let G be a reduced 0 -connected css group and (K, L) be a css pair of finite dimension. We assume that $\Pi(K, L ; G)$ is abelian. Let \boldsymbol{C} be a class of abelian groups in the sense of J. P. Serre [7].

Proposition 1. If $H^{r}\left(K, L ; \pi_{r}(G)\right) \in \boldsymbol{C}$ for $r \geqq 1$, then $\Pi(K, L$; $G) \in \boldsymbol{C}$. Especially, if $\pi_{r}(G)$ and $H^{r}(K, L)$ are finitely generated for $r \geqq 1, \Pi(K, L ; G)$ is finitely generated.

Proof. The first part follows from Theorem 2. The second part follows from Theorem 2.2 in Appendix of [6].

Let $p_{n}: G \rightarrow G /{ }^{n+1} G$ be the natural map and $j_{n}:{ }^{n} G \rightarrow G$ be the injection. The maps p_{n} and j_{n} induce homomorphisms $p_{n}^{*}: \Pi(K$, $L ; G) \rightarrow \Pi\left(K, L ; G /{ }^{n+1} G\right)$ and $j_{n}^{*}: \Pi\left(K, L ;{ }^{n} G\right) \rightarrow \Pi(K, L ; G)$ respectively.

Proposition 2. (i) If $H^{r}\left(K, L ; \pi_{r}(G)\right) \in \boldsymbol{C}$ for $r<n, j_{n}^{*}$ is a C-epimorphism.
(ii) If $H^{r-1}\left(K, L ; \pi_{r}(G)\right) \in \boldsymbol{C}$ for $r<n, j_{v i}^{*}$ is a \boldsymbol{C}-monomorphism.
(iii) If $H^{r}\left(K, L ; \pi_{r}(G)\right) \in \boldsymbol{C}$ for $r>n$, p_{n}^{*} is a \boldsymbol{C}-monomorphism.
(iv) If $H^{r+1}\left(K, L ; \pi_{r}(G)\right) \in \boldsymbol{C}$ for $r>n$ and $\Pi\left(K, L ; G /{ }^{n+1} G\right)$ is abelian, p_{n}^{*} is a \boldsymbol{C}-epimorphism.

Proof. (i) Since the squence $\Pi\left(K, L ;{ }^{n} G\right) \xrightarrow{j_{n}^{*}} \Pi(K, L ; G) \xrightarrow{p_{n-1}^{*}}$ $\Pi\left(K, L ; G /{ }^{n} G\right)$ is exact, the image of j_{n}^{*} is D_{n-1}^{1}. Then the proposition follows from Theorem 2.
(ii) Since the sequence $\Pi\left(C K, C L \cup K ; G /{ }^{n} G\right) \xrightarrow{\partial} \Pi\left(K, L ;{ }^{n} G\right)$ $\xrightarrow{j_{n}^{*}} \Pi(K, L ; G)$ is exact, the kernel of j_{n}^{*} is $\partial \Pi\left(C K, C L \cup K ; G /{ }^{n} G\right)$ and $\mathrm{II}\left(C K, C L \cup K ; G /{ }^{n} G\right) \in \boldsymbol{C}$ by Theorem 2.
(iii) Since the kernel of p_{n}^{*} is D_{n}^{1}, the proposition follows from Theorem 2.
(iv) Denoting by D_{m}^{\prime} the kernel of $p_{n, m}^{1 *}: \Pi\left(K, L ; G /^{n+1} G\right) \rightarrow$ $\left.\Pi(K, L ; G)^{m+1} G\right)(0 \leqq m \leqq n)$, we have a filtration

$$
\begin{equation*}
\Pi\left(K, L ; G /^{n+1} G\right)=D_{0}^{\prime} \geq D_{1}^{\prime} \supseteq \cdots \geq D_{n}^{\prime}=0 \tag{1}
\end{equation*}
$$

such that $p_{n}^{*} D_{r}^{1} \leq D_{r}^{\prime}$ and $P_{n}^{r} / R_{1}^{r} \approx D_{r-1}^{\prime} / D_{r}^{\prime}$ by Theorem 2. From the definition, the diagram
is commutative. Here, γ and γ^{\prime} are isomorphisms induced by $\gamma^{\gamma, 1}$ defined in $\S 3$ and η is the injection. Let $S=p_{;}^{*} \amalg(K, L ; G)$. Then

$$
\begin{equation*}
D_{r}^{\prime} \cap S=p_{n}^{*} D_{r}^{1} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
D_{r-1}^{\prime} / D_{r}^{\prime}+p_{n}^{*} D_{r-1}^{1} \approx P_{n}^{r} / P_{\infty}^{r} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
P_{n}^{r} / P_{\infty}^{r} \in \boldsymbol{C} \quad(\text { by Corollary } 1), \tag{4}
\end{equation*}
$$

From the filtration (1), we have a filtration

$$
\Pi\left(K, L ; G /{ }^{n+1} G\right) / S=D_{0}^{\prime}+S / S \geq D_{1}^{\prime}+S / S \geq \cdots \geq D_{n}^{\prime}+S / S=0
$$

Since $D_{r-1}^{\prime}+S / D_{r}^{\prime}+S \approx D_{r-1}^{\prime} / D_{r}^{\prime}+D_{r-1}^{\prime} \cap S$, the proof is complete by (2), (3) and (4).

Let $\pi_{r}(G)$ be finitely generated for $r \geqq 1$. We assume that $\pi_{r}(G)=0$ for $1 \leqq r<m, m<r<n$ and $H^{r}(K, L)=0$ for $r>n$. Then, in the exact sequence

$$
\begin{aligned}
\Pi(C K, C L \cup K ; G) & \xrightarrow{\prime p_{m}^{*}} \Pi\left(C K, C L \cup K ; G /^{m+1} G\right) \xrightarrow{\partial} \Pi\left(K, L ;{ }^{m+1} G\right) \\
& \xrightarrow{j_{n+1}+1} \Pi(K, L ; G) \xrightarrow{p_{m}^{*}} \Pi\left(K, L ; G /^{m+1} G\right) \quad \text { (see [3]), }
\end{aligned} \Pi
$$

p_{m}^{*} is onto and $U \circ\left(j_{m-1}^{m, 1} *\right)^{-1}: \Pi\left(K, L ; G /^{m+1} G\right) \longrightarrow H^{m}\left(K, L ; \pi_{m}(G)\right)$ is an isomorphism by Proposition 2, and in the commutative diagram

$$
\begin{aligned}
& \Pi\left(C K, C L \cup K ; G /{ }^{m+1} G\right) \xrightarrow{\partial} \Pi\left(K, L ;{ }^{m+1} G\right) \\
& \approx \uparrow j_{m+1}^{m, 1} *_{\circ} p_{n, m+1}^{m} \quad \partial \quad \approx \uparrow j_{\infty}^{n, m+1} * \\
& H^{m}\left(C K, C L \cup K ; \pi_{m}(G)\right) \xrightarrow[\approx]{p_{n-1, *}^{*}} \Pi\left(C K, C L \cup K ;{ }^{m} G /{ }^{n} G\right) \xrightarrow{\partial} \Pi\left(K, L ;{ }^{n} G\right)
\end{aligned}
$$

the homomorphisms denoted by \approx are isomorphisms by Proposition 2 or by definition and the map

$$
\tau^{*} \circ \tau_{m}^{n \#} \neq\left(p_{n-1, n_{n}}^{m}\right)^{-1} \circ \tau^{*-1}: H^{m-1}\left(K, L ; \pi_{m}(G)\right) \longrightarrow H^{n}\left(K, L ; \pi_{n}(G)\right)
$$

is the cohomology operation ${ }^{\prime} \theta_{m}^{n-m}$ by definition (see $\S 2$). By putting

$$
\begin{aligned}
& \prime p^{*}=\tau^{*} \circ p_{n-1, m}^{m} \circ\left(p_{n, m+1}^{m} *\right)^{-1} \circ\left(j_{m+1}^{m, 1} *\right)^{-1} \circ{ }^{\prime} p_{m}^{*} \\
& j^{*}=j_{m+1}^{*} \circ j_{\infty}^{n, m+1} *_{\circ}\left(p_{\infty, n}^{n} *\right)^{-1}, \quad p^{*}=U \circ\left(j_{m+1}^{m, 1} *\right)^{-1} \circ p_{m}^{*},
\end{aligned}
$$

we have the following exact sequence:

$$
\begin{aligned}
& \Pi(C K, C L \cup K ; G) \xrightarrow{\prime p^{*}} H^{m-1}\left(K, L ; \pi_{m}(G)\right) \xrightarrow{\theta_{m}^{n-m}} H^{n}\left(K, L ; \pi_{n}(G)\right) \\
& \xrightarrow{j^{*}} \Pi(K, L ; G) \xrightarrow{p^{*}} H^{m}\left(K, L ; \pi_{m}(G)\right) \longrightarrow \\
& 0 .
\end{aligned}
$$

(cf. Theorem 3.8 of [6]).

Kyoto Technical University

REFERENCES

[1] M. G. Baratt, V. K. A. M. Gugenheim and J. C. Moore: On semi-simplicial fibrebundles, Amer. Jour. of Math., 81 (1959), 639-657.
[2] A. Douady: Opérations cohomologiques, in Séminaire H. Cartan, 11 (1958-59), Exp. 9.
[3] B. Eckmann and P. J. Hilton: Groups d'homotopie et dualité, Suites exacts, C. R. Acad. Sci. Paris, 246 (1958), 2555-2557.
[4] S. T. Hu: Extension and classification of the mappings of a finite complex into a topological group or on n-sphere, Ann. of Math., 50 (1949), 158-173.
[5] D. M. Kan : A combinatorial definition of homotopy groups, Ann. of Math., 67 (1958), 282-312.
[6] F. P. Peterson: Some results on cohomotopy groups, Amer. Jour. of Math., 78 (1956), 243-258.
[7] J. P. Serre: Groupe d'homotopie et classes de groupes abélinien, Ann. of Math., 58 (1953), 258-294.

