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Bayesian Survival Tree Ensembles with
Submodel Shrinkage

Antonio R. Linero∗, Piyali Basak†, Yinpu Li‡, and Debajyoti Sinha§

Abstract. We consider Bayesian nonparametric estimation of a survival time
subject to right-censoring in the presence of potentially high-dimensional pre-
dictors. We argue that several approaches, such as random survival forests and
existing Bayesian nonparametric approaches, possess several drawbacks, includ-
ing: computational difficulties; lack of known theoretical properties; and ineffec-
tiveness at filtering out irrelevant predictors. We propose two models based on
the Bayesian additive regression trees (BART) framework. The first, Modulated
BART (MBART), is fully-nonparametric and models the failure time as the first
occurrence of a non-homogeneous Poisson process. The second, CoxBART, uses a
Bayesian implementation of Cox’s partial likelihood. These models are adapted to
high-dimensional predictors, have default prior specifications, and require simple
modifications of existing BART methods to implement. We show the effective-
ness of these methods on simulated and benchmark datasets. We also establish
that, for a simplified variant of MBART, the posterior distribution contracts at a
near-minimax optimal rate in a high-dimensional sparse asymptotic regime.

Keywords: Bayesian additive regression trees, data augmentation, proportional
hazards, nonparametric Bayes, survival analysis.

1 Introduction

We consider the nonparametric conditional survival analysis problem, where our goal
is to assess the impact of P predictors x = (x1, . . . , xP ) on the survival function
S(t | x) = Pr(T > t | X = x) and the hazard function h(t | x) = − d

dt logS(t | x).
The time-constant predictors x may include treatments and prognostic markers in a
clinical study. A popular semiparametric model in survival analysis is the Cox propor-

tional hazards model (Cox, 1972) h(t | x) = λ(t) ex
�β , where λ(t) is a nonparametric

baseline hazard model. Instead of this restrictive assumption, methods based on decision
trees (Breiman et al., 1984) construct a partition of the predictor space X and estimate
S(t | x) separately for each equivalence class. Decision trees are also used as building
blocks for ensemble methods. For example, the random survival forests algorithm (Ish-
waran et al., 2008) aggregates many decision trees together to obtain a flexible estimate
of S(t | x). Models based on Bayesian additive regression trees (BART) have also been
proposed.
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While Bayesian nonparametric methods for survival regression analysis exist, we
argue that they often lack the following properties we feel to be desirable:

(i) An argument for using Bayesian nonparametrics is that it allows us to use a prior
which centers on a specified parametric model (similar to a “prior guess”), effec-
tively “shrinking” the fitted model towards the parametric structure while allowing
the model to adapt to lack-of-fit when the parametric structure is incorrect. For
example, parametric accelerated failure time (AFT) models and the semiparamet-
ric Cox models are two examples of such “prior guesses.” This gives us the best
of both worlds: the flexibility of a nonparametric model and (when the guess is
supported by data) the stability of a (semi) parametric model. Arguments for
the desirability of this property include: maintenance of interpretability when the
prior guess is accurate (Müller and Mitra, 2013); increased stability of inference
with small sample sizes; losing the minimal amount of predictive accuracy when
the prior guess is accurate; and guarding oneself from under-fitting when the prior
guess is inaccurate (Dunson, 2009).

(ii) The prior should be able to adapt to structure in the data, such as low-order
interactions in the predictors, sparsity, or smoothness of the hazard as a function
of time.

(iii) The posterior should be computationally tractable.

(iv) The prior should have “large support,” with the posterior ideally concentrating at
a near-minimax rate adaptively over a variety of function spaces.

We propose two models using the BART framework. The first approach, which we refer
to as Modulated BART (MBART), is fully nonparametric and satisfies (i)–(iv) above.
The MBART model sets h(t | x) = λ(t | x, θ) Φ{g(t, x)} where λ(t | x, θ) is the hazard
of a (semi) parametric model parameterized by θ that we wish to shrink towards, while
g(t, x) is a decision tree ensemble that controls deviations from the base model through
the link function Φ : R → [0, 1]. The second approach, which we refer to as CoxBART,
is based on a Bayesian interpretation of the Cox partial likelihood. CoxBART is less
computationally intensive than MBART and retains the simpler interpretation of the
Cox proportional hazards model; CoxBART is also a useful point of comparison for
MBART because we will often shrink the MBARTmodel towards a proportional hazards
model.

We provide the first theoretical guarantees for BART survival models. We show that
a simplified version of our MBART model, when combined with the smooth decision
trees used by Linero and Yang (2018), adapts to sparsity in h(t | x) when x ∈ R

P is
high dimensional but h(t | x) depends on D � P predictors. MBART also adapts to the
smoothness level of h(t | x). In both cases, we obtain near-minimax rates of convergence
with respect to a type of Hellinger distance.
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1.1 Related Methods

There are several existing approaches to using the BART framework with survival data.
Sparapani et al. (2016) developed a fully nonparametric regression method for discrete
survival data. This approach can be used for continuous survival data only after dis-
cretizing the N observed survival times to a grid of Ngrid times, and the fitted model
depends on both the number and location of the Ngrid grid points. The Gibbs sampler
developed by Sparapani et al. (2016) has computational complexity Ω(MNNgrid) where
M is the number of trees in the ensemble; this is substantially more computationally in-
tensive than usual BART algorithms, which have complexity Ω(MN), and forces Ngrid

to be small. It also violates (i) by not being centered on any (semi)parametric submodel.

Bonato et al. (2010) proposed a variety of semiparametric models based on BART,
including semiparametric accelerated failure time models of the form log Ti = g(Xi)+εi
and a Weibull regression model. Most important for our purposes, they considered the
proportional hazards model h(t | ωi) = λ(t) exp(ωi) conditional on the latent variable
ωi ∼ Normal{g(Xi), σ

2
ω}. This latent variable structure is imposed only to allow for

existing Gibbs samplers to be used with ωi as the response; the ωi’s can then be up-
dated by Metropolis-Hastings during Gibbs sampling. This model is essentially a frailty
model h(t | x, z) = λ(t) exp{g(x) + z} where exp(Zi) is a log-normal frailty. Similar to
the identifiability issues of the frailty distribution and marginal regression structure for
semiparametric univariate survival models (Oakes, 1989; Hougaard, 2000), the distri-
bution of ωi is not identifiable and the marginal distribution of Ti given Xi does not
preserve the proportional hazards structure (thus g(x) fails to describe a proportional
hazards relationship between Ti and Xi). By contrast, our CoxBART model induces
a proportional hazards model marginally. Henderson et al. (2020) introduced an AFT
model with large support in the class of all AFT models log Ti = g(Xi)+εi by modeling
the residual distribution εi ∼ F as a Dirichlet process mixture; this accomplishes a
similar goal as our CoxBART model by allowing for the use of BART in a large class
of nonparametric survival models.

Our proposed modeling strategy is similar in spirit to recent work of Li et al. (2020)
on nonparametric conditional distribution estimation. In concurrent work by the authors
of this paper, the methodology is extended to the setting of interval-censored clustered
survival times (Basak et al., 2020); the present work differs by incorporating targeted
smoothing, centering the nonparametric model on a “prior guess,” providing theoretical
justification, and by introducing the CoxBART model. A similar data augmentation
algorithm to the one described here is used with Gaussian processes to perform survival
analysis (Fernández et al., 2016). More generally, there is a sizable literature on Bayesian
nonparametric survival analysis based on Dirichlet processes and Gaussian processes.
See, for example, De Iorio et al. (2009), who develop an ANOVA-DDP model to perform
fully-nonparametric Bayesian survival analysis.

1.2 Outline of the Paper

In Section 2 we describe the MBART and CoxBART models. In Section 3 we propose
several base models that MBART can be shrunk towards. In Section 4 we study the
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theoretical properties of a special case of the MBART model, establishing posterior
concentration rates. In Section 5 we illustrate MBART and CoxBART on simulated
data and on publicly available data on liver disease. We conclude in Section 6 with a
discussion. Additional computational details, proofs of the main theorems, and auxiliary
results are given in the Supplementary Material (Linero et al., 2021).

2 Survival Models Using Bayesian Tree Ensembles

Let (Ti, Ci) denote the survival and censoring times respectively for i = 1, . . . , N . We
observe data D = {(Yi, δi, Xi) : i = 1, . . . , N} where Yi = min(Ti, Ci) is the observed
(right-censored) survival time, δi = I(Ti ≤ Ci) is the censoring indicator, and Xi ∈ R

P

is a vector of covariates. Our goal is to model the conditional survival function S0(t | x)
of Ti conditional on Xi. Other relevant quantities include the corresponding cumulative
hazard function H0(t | x) = − logS0(t | x) and the hazard function h0(t | x) = d

dtH0(t |
x). Throughout this paper we assume that the censoring time Ci is independent of Ti

given Xi.

2.1 Review of Bayesian Additive Regression Trees

BART models an unknown function g(x) as a sum of M trees
∑M

m=1 Tree(x; Tm,Mm)
where Tm denotes the tree topology and splitting rules of the tree and Mm denotes the
predicted response for each leaf node. For detailed reviews of BART, see Linero (2017);
Hill et al. (2019). The function Tree(x; Tm,Mm) returns μm� if x is associated to leaf
node � of tree m. Each tree induces a partition of the predictor space X such that g(x)
is constant on each equivalence class of the partition. A schematic showing a particular
decision tree with the induced partition over X = [0, 1]2 is given in Figure 1. We divide
the decision tree nodes into a collection of leaf nodes � ∈ L and branch nodes b ∈ B,
where L consists of the nodes with no children. Associated to each branch b is a decision
rule of the form [Xjb ≤ Cb], while each leaf � is associated to a prediction μm�.

We write g ∼ BART(πT , πM) for the BART prior with prior Tm iid∼ πT and μm�
iid∼

πM given {Tm}. It is standard to take πM to be Normal(0, σ2
μ) where σμ ∝ M−1/2;

this is conditionally conjugate, and ensures that Var{g(x)} = Mσ2
μ does not depend

on the number of trees M . We take πT to be the prior described by Chipman et al.
(1998), which can be sampled from by initializing Tm with a single root note of depth
d = 0. This node is then made branch with probability γ/(1 + d)β and a leaf node
otherwise; if the node is a branch node, we add its two children at depth d + 1. This
process then iterates over all the nodes of depth d = 1, 2, . . . until all of the nodes at
some depth are leaf nodes. We use the following prior on the splitting rules through
this paper. First jb ∼ Categorical(s) for some probability vector s. Then, given jb
and the values of (jb′ , Cb′) for the ancestor nodes of b, we set Cb ∼ Uniform(Ljb , Rjb)

where
∏P

j=1(Lj , Rj) is the hyperrectangle of x-values which are associated to branch
b. Following Linero (2018), we set s ∼ Dirichlet(α/P, . . . , α/P ) and in our illustrations
use α/(α + P ) ∼ Beta(0.5, 1). This prior for s encourages the model to concentrate on
models with a small number of relevant predictors.
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Figure 1: Left: an example of a decision tree with two variables X = (X1, X2). Right:
the piecewise-constant function induced from the decision tree, taking values η1, η2, and
η3 depending on the value of X.

We also review the soft Bayesian additive regression trees (SBART) prior defined by
Linero and Yang (2018). Note that g ∼ BART(πT ,MT ) can equivalently be expressed
as

g(x) =

M∑
m=1

∑
�∈Lm

wm�(x)μm�, (1)

where wm�(x) = 1 or 0 according as x is associated with leaf � of tree m or not. SBART
has the form (1), but uses smooth weights wm�(x) =

∏
b∈A(�) ψ(x;Cb, τb)

1−Rb{1 −
ψ(x;Cb, τb)}Rb where Rb is the indicator that leaf � of tree m is associated to the
right path of branch b. The function ψ(x;C, τ) is the cumulative distribution func-
tion of a continuous symmetric random variable; throughout this work, we will take
ψ(x;C, τ) = expit{(x − C)/τ} where expit(x) = (1 + e−x)−1. We note that, in the
limit as τ → 0, we revert to the usual (non-soft) decision trees. Trees which use smooth
weights wm�(x) are referred to as soft decision trees; see, for example, Irsoy et al.
(2012). When g(x) has an SBART prior we will write g ∼ SBART(πT , πM). Using
SBART makes the function g(x) continuous in x, which leads to better theoretical and
practical performance (Linero and Yang, 2018). A drawback of SBART is that it is more
computationally intensive to fit.

2.2 Modulated BART

Modulated BART (MBART) models hazard function h0(t | x) as the random function

h(t | x) = λ(t | x, θ) Φ{g(t, x)} where g(t, x) = a+

M∑
m=1

ψm(t) Tree(x; Tm,Mm),

(2)

where Tree(x; Tm,Mm) is a smooth decision tree, and λ(t | x, θ) is either a parametric
or semiparametric model which serves as the “best guess” at h0(t | x). Under (2), a
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random variable T can be generated by simulating a Poisson process with intensity
λ(t | x, θ) on (0,∞), thinning the points with probability Φ{g(t, x)}, and setting T to
be the smallest accepted point.

We treat t different in g(t, x) in order to facilitate shrinkage towards a semipara-
metric proportional hazards model (See Section 3). In particular, we use the targeted
smoothing framework of Starling et al. (2020). This also ensures that estimated survival
functions will be smooth in time even if we replace SBART with BART for computa-
tional purposes, and removes the need to standardize Ti to be supported on [0, 1] (which
may be difficult due to right-censoring).

We implement targeted smoothing over t using a random Fourier series ψm(t) =
cos(wmt + bm) where bm ∼ Uniform(0, 2π) and wm ∼ Normal(0, ρ−2) (Li et al., 2020;
Rahimi and Recht, 2008; Fernández et al., 2016). This approximates the ideal model
proposed by Starling et al. (2020) where Tree(x; Tm,Mm) is a Gaussian process with

kernel Σ(t, t′) = e−(t−t′)2/(2ρ). We cannot use the ideal model because it requires O(N3
T )

computations where NT is the unique number of observed failure times. By contrast, the
random Fourier series imposes no additional burden on the original BART algorithm.
For more details on using random Fourier series with BART, see Li et al. (2020).

Model (2) is “centered” on λ(t | x, θ) in two ways. If the prior encourages |g(t, x)|
to be small, then Φ{g(t, x)} ≈ 0.5 so that h(t | x) ≈ λ(t | x, θ)/2. If |g(t, x)| 
 0, then
Φ{(g(t, x))} ≈ 1 and the model becomes h(t | x) ≈ λ(t | x, θ). Our preference is to
choose a prior which encourages a 
 0 in (2) so that the resulting prior puts a high
weight around the event Φ{g(t, x)} ≈ 1.

Default Prior Specification of the Thinning Process

An advantage of the BART framework is that it is straight-forward to develop a default
prior which works well in practice. For our survival model we must specify πT , πM, a,
the link Φ, the base model λ(t | x, θ), and the associated prior for θ. In our illustrations
we take Φ(·) to be the probit link. We discuss specification of the base model in Sec-
tion 3. We specify a Half-Normal(1, 1) prior for a to encourage larger values of g(t, x);
as previously noted, this shrinks our model towards λ(t | x, θ). Encouraging g(t, x) to
be large has the additional benefit of improving the efficiency the data augmentation
scheme described below. We set σμ ∼ Half-Cauchy(0, 1.5/

√
M) and use the default prior

for πT described in Section 2.1.

Data Augmentation

The observed data likelihood of model (2) has the form

N∏
i=1

λ(Yi | Xi, θ)
δiΦ{g(Yi, Xi)}δi exp

{
−
∫ Yi

0

λ(t | Xi, θ) Φ{g(t,Xi)} dt

}
. (3)

This likelihood is inconvenient to work with both because of the analytically intractable
integral and because it does not cleanly allow for the use of existing Bayesian backfitting
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algorithms for fitting BARTmodels. To construct a Markov chain Monte Carlo (MCMC)
algorithm for MBART we use two steps of data augmentation. The first step removes

the intractable integral
∫ Yi

0
λ(t | Xi, θ) Φ{g(t,Xi)} dt from the likelihood by augmenting

a Poisson process with intensity λ(t | Xi, θ) [1− Φ{g(t,Xi)}].

Proposition 1. If {Wij : 1 ≤ j ≤ Ji} given (Yi, δi, Xi, g, θ) is sampled according
to a non-homogeneous Poisson process on the interval (0, Yi) with intensity function
λ(t | Xi, θ) [1−Φ{g(t,Xi)}], then the joint likelihood of (g, θ) given (Yi, δi, Xi, {Wij}Ji

j=1)
for i = 1, . . . , N is

e−
∑N

i=1 Λ(Yi|Xi,θ)

⎛⎝ N∏
i=1

λ(Yi | Xi, θ)
δi

Ji∏
j=1

λ(Wij | Xi, θ)

⎞⎠
×

⎛⎝ N∏
i=1

Φ{g(Yi, Xi)}δi
Ji∏
j=1

[1− Φ{g(Wij , Xi)}]

⎞⎠ ,

where Λ(t | x, θ) =
∫ t

0
λ(s | x, θ) ds is the cumulative hazard of the base model.

A variant of Proposition 1 is used by Adams et al. (2009) to fit non-homogeneous
Poisson processes. For completeness, we give a simple proof of this result.

Proof. The likelihood component of (Y1, . . . , YN ) is given by (3), whereas the likelihood
component of the event times {Wij : i = 1, . . . , N, j = 1, . . . , Ji} simulated indepen-
dently from our non-homogeneous Poisson processes on (0, Yi) is

∏
ij

λ(Wij | Xi, θ) [1− Φ{g(Wij | Xi, θ)}]
N∏
i=1

exp

{
−
∫ Yi

0

λ(t | Xi, θ)[1− Φ{g(t,Xi)}] dt
}
.

Multiplying these quantities and noting that the exponential terms can be combined to

give exp{−
∫ Yi

0
λ(t | Xi, θ) dt} = e−Λ(Yi|Xi,θ) establishes the result.

Proposition 1 eliminates the intractable integral
∫ Yi

0
λ(t | Xi, θ) Φ{g(t,Xi) dt} from

the likelihood. When Φ(μ) is the probit link, we can use the approach of Albert and
Chib (1993) to simplify the likelihood further. We introduce {Zij : i = 1, . . . , N, j =
0, . . . , Ji} where Zij ∼ Normal{g(Wij , Xi), 1} truncated to (−∞, 0) for j ≥ 1 and
Zij ∼ Normal{g(Yi, Xi), 1} truncated to (0,∞) for j = 0. This gives the joint likelihood

e−
∑N

i=1 Λ(Yi|Xi,θ) ×

⎛⎝ N∏
i=1

λ(Yi | Xi, θ)
δi

Ji∏
j=1

λ(Wij | Xi, θ)

⎞⎠
×

⎛⎝ N∏
i=1

Normal(Zi0 | g(Yi, Xi), 1)
δi

Ji∏
j=1

Normal(Zij | g(Wij , Xi), 1)

⎞⎠ .

(4)
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The usual Bayesian backfitting algorithm of Chipman et al. (2010) can now be applied
by treating the Zij ’s as the response. Similarly, the logistic link Φ(μ) = (1 + e−μ)−1 or
Student’s T link can be implemented using the Gaussian scale-mixture representation of
the logistic and Student’s T distribution (Holmes and Held, 2006). Detailed algorithms
are given in the Supplementary Material.

2.3 Proportional Hazards with CoxBART

We now consider the proportional hazards model h(t | x) = λ(t) exp {g(x)} where λ(t)
is the baseline hazard and g(x) is unknown, with g(x) estimated using the Cox partial

likelihood PL(g) =
∏

i:δi=1
exp{g(Xi)}∑

j∈Ri
exp{g(Xj)} where Ri = {j : Yj ≥ Yi} is the set of

subjects at-risk of failure at time Yi. Letting Π denote the prior, we define the pseudo-
posterior

Π(dg | DN ) =
PL(g) Π(dg)∫
PL(g)Π(dg)

. (5)

Expression (5) arises under an improper prior for Λ(t). Consider a discrete time pro-
portional hazards model S(t | x) = exp

{
− eg(x)

∑
ti≤t φi

}
. Sinha et al. (2003) show

that PL(g) is the integrated likelihood of g(x) when the parameters φi are given an
improper data-dependent prior where the ti’s are set equal to the observed values of the
Yi’s and π(φ1, . . . , φN ) ∝

∏N
i=1 δiφ

−1
i + (1− δi)δ0(φi), where δ0(·) is a point-mass at 0.

The likelihood of (φ, g) is

N∏
i=1

φδi
i exp

[
δig(Xi)− eg(Xi)

∑
j:Yj≤Yi

φjδj

]
=

∏
δi=1

φi exp
[
g(Xi)− φi

∑
j∈Ri

exp{g(Xj)}
]
.

The conditional distribution of (φ1, . . . , φN ,D) given g under this model is

π(φ1, . . . , φN ,D | g) =
∏

i:δi=1

exp
[
g(Xi)− φi

∑
j∈Ri

exp{g(Xj)}
]
. (6)

From (6), φi
ind∼ Gam(1,

∑
j∈Ri

exp{g(Xj)}) given (g,D). Integrating out φ, we obtain
PL(g).

We refer to this model with g ∼ BART(πT , πM) as CoxBART. CoxBART is a
nonparametric model in the sense that g(x) is nonparametric, but we do assume pro-
portional hazards. It is more flexible than the usual Cox model, where g(x) = x�β, but
is not as flexible as MBART. CoxBART is interesting both for providing a benchmark
to measure MBART against and independently due to the common use of the propor-
tional hazards assumption in practice. A related model is given by Bonato et al. (2010),
however this model only satisfies the proportional hazards assumption conditional on
latent variables.

Conveniently, as shown below, (6) can be combined with the log-linear BART prior
of Murray (2020) to construct a Bayesian backfitting algorithm for sampling g(x) and φ.
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Bayesian Backfitting for CoxBART

Let T−m and M−m denote the tree topologies and leaf node parameters for all trees
except for the mth, and let x � (�,m) mean that x is associated to leaf � of Tm. In
order to implement the generalized Bayesian backfitting approach of Hill et al. (2019)
we require π(Tm | T−m,M−m, φ,D) and π(Mm | Tm, T−m,M−m, φ,D).

For fixedm, let ζi = g(Xi)−Tree(Xi; Tm,Mm) and let ri =
∑

j:i∈Rj
φj δj . Marginal-

izing the joint distribution of (D, φ, g) from Section 2.3 over Mm gives

π(Tm | T−m,M−m, φ,D)

∝ πT (Tm)
∏
�

∫ ∏
i�(�,m)

exp
{
δi(ζi + μ)− rie

ζieμ
}
× β

αμ
μ

Γ(αμ)
exp{αμμ− βμe

μ} dμ

= πT (Tm)
∏
�

∫
β
αμ
μ

Γ(αμ)
exp {Z� + μ(αμ + S�)− eμ(βμ + E�)} dμ,

(7)

where S� =
∑

i�(�,m) δi, Z� =
∑

i�(�,m) δiζi, and E� =
∑

i�(�,m) rie
ζi . The integrand

above is the kernel of a gamma distribution, giving πT (Tm)
∏

� e
Z�

β
αμ
μ

Γ(αμ)
Γ(α�)

β
α�
�

where

β� = βμ + E� and α� = αμ + S�. Additionally, by computations identical to those
in (7), it follows that the full conditional of Mm is π(Mm | Tm, T−m,M−m, φ,D) ∝∏

� exp{μm�α� − eμm�β�}, i.e., μm�
ind∼ logGam(α�, β�).

Default Prior for CoxBART

Using the default choice of πT described in Section 2.1, the only remaining parameters
to choose are (αμ, βμ) in the prior μm� ∼ logGam(αμ, βμ). To impose that μm� has
mean 0, we set log(βμ) = ψ(αμ) where ψ(α) is the digamma function d

dα log Γ(α). The
variance of μm� is given by σ2

μ = ψ′(αμ) where ψ′(α) is the trigamma function. We

set σμ ∼ Half-Cauchy(0, 1.5/
√
M) and update σμ using slice sampling (Neal, 2003).

We note that the required special functions ψ, ψ′ and (ψ′)−1 are all straight-forward to
calculate numerically. The simple approximation αμ = σ−2

μ + 1/2 and βμ = σ−2
μ given

by Murray (2020) also works well when σμ is small.

3 Base Models for MBART

MBART can be used with essentially any base hazard λ(t | x, θ). It is ideal for λ(t | x, θ)
to be a good approximation to the true hazard h0(t | x) for two reasons. First, a good
specification of λ(t | x, θ) will encourage the model to disregard the nonparametric com-
ponent, reducing the model complexity. Second, the efficiency of the MCMC algorithm
depends on the sizes of the Ji’s, which will be large if the base model fits poorly.

Parametric Weibull A commonly used parametric subclass of the proportional hazards

model is the Weibull model λ(t | x, θ) = κ eb
�x tκ−1, where θ = (κ, b) (Ibrahim et al.,
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2001, Section 2.2). The full conditional of θ when using Proposition 1 is given by

π(κ, b | −) ∝ κ
∑

i(Ji+δi)
(∏

i

Y δi
i

∏
j

Wij

)κ−1

exp
{∑

i

(Ji + δi)b
�Xi − eb

�XiY κ
i

}
π(κ, b).

This full conditional can be sampled using Hamiltonian Monte Carlo.

Weibull-BART A semiparametric variant of the Weibull model can be developed using
the log-linear BART model of Murray (2020). This model sets λ(t | x, θ) = κ er(Xi) tκ−1

where r ∼ BART(πr
T , π

r
M), written r(x) = η0 +

∑M
m=1 Tree(x; T r

m,Mr
m). Here, θ =

(κ, r). Similar to CoxBART, we set ηm� ∼ logGam(αη, βη). As a default, we choose

αη and βη so that E(log ηm�) = 3σ̂/(2
√
M) where σ̂ is an estimate of the standard

deviation of log Y . In Section 3.1, we derive a simple Bayesian backfitting algorithm for
this model.

CoxBART2 It is possible to shrink towards a semiparametric proportional hazards
model using the Weibull-BART base model. In the special case where g(t, x) does not
depend on x, the Weibull-BART model simplifies to h(t | x) = λ�(t) er(x) where λ�(t) =
κtκ−1Φ{g(t)}, which is a Cox proportional hazards model. Because g(t) is modeled
nonparametrically, the baseline hazard λ�(t) has a very flexible prior. We can shrink
towards g(t, x) ≡ g(t) by using a prior which encourages the tree structures to consist
of only a root node. To accomplish this, we simply choose the tree parameters (γ, β)
so that most trees consist only of the root node (e.g., by taking γ small). A similar
approach is used by Hahn et al. (2020) in the context of causal inference in order to
shrink towards a homogeneous treatment effect.

As a default, we have used Weibull-BART in all of our illustrations and simula-
tions, with κ ≡ 1; equivalently, we have used an exponential distribution for the base
model. For some discussion of possible priors for κ, see Van Niekerk et al. (2020), who
recommend a penalized complexity prior.

3.1 Bayesian Backfitting for Weibull-BART

After performing the data augmentation in Proposition 1, the likelihood becomes

N∏
i=1

⎧⎨⎩(κ er(Xi) Y κ−1
i )δi

Ji∏
j=1

κ er(Xi) Wκ−1
ij

⎫⎬⎭×
∏
i

exp{−er(Xi) Y κ
i }.

Hold T r
m fixed, set ζi = r(Xi) − Tree(Xi; T r

m,Mr
m), and define the leaf node suffi-

cient statistics N� =
∑

i�(�,m) Ji + δi, E� =
∑

i�(�,m) e
ζiY κ

i , S� =
∑

i�(�,m) δi log Yi +∑Ji

j=1 logWij , and Z� =
∑

i�(�,m) ζi(Ji + δi), where we write i � (�,m) if Xi is associ-
ated to leaf � of tree m. Then the likelihood of Mr

m holding all other quantities fixed
is ∏

�

κN�β
αη
η

Γ(αη)
exp {ηm�(αη +N�)− eηm�(βη + E�)} exp{Z� + (κ− 1)S�}.
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This is proportional to a product of logGam(αη +N�, β+E�) densities. Integrating out
the ηm�’s, we obtain the conditional distribution

π(T r
m | T r

−m,Mr
−m, η0, g,D) ∝

∏
�

κN�β
αη
η

Γ(αη)
× Γ(α�)

βα�

�

exp{Z� + (κ− 1)S�}, (8)

where α� = αη + N� and β� = βη + E�. Similarly, the full conditional of ηm� is
logGam(α�, β�). We can now update (T r

m,Mr
m) by first updating T r

m using Metropolis-
Hastings and then sampling Mr

m from its full conditional.

4 Theoretical Results

We now establish convergence rates for the MBART posterior. These results are sim-
ilar in spirit to results of Linero and Yang (2018) for regression and Li et al. (2020)
for conditional distribution estimation. We operate in the Frequentist setup, with un-
coarsened data (T1, C1, X1), . . . , (Tn, Cn, Xn) sampled iid from a joint distribution F0.
Throughout, we make the independent censoring assumption.

Condition R (random censoring) The true joint distribution F0 of (Ti, Ci, Xi) is such
that Ti and Ci are conditionally independent given Xi.

We assume the Ti’s have conditional density p0(t | x) on (0,∞). The Ci’s are assumed
to be bounded by a constant Ci ≤ C (typically the time period of the study), with
conditional density fC(c | x) = pC(c | x)I(c < C) + SC(c | x) I(c = C) with respect
to the sum of Lebesgue measure on (0, C) and a point mass at C; we write ν(dt) for
this measure, and we will use it throughout this section. Without loss of generality
we assume that C ≤ 1. The constant C represents the time of the end of the study,
so that all observations with Ti > C are censored. We define Yi = min(Ti, Ci) and

δi = I(Ti ≤ Ci). We also define Ỹi = min(Ti, C), so that we can study the setting of
fixed censoring within this framework as well. Let Dn = {Yi, δi, Xi : i = 1, . . . , n} and

let D̃n = {Ỹi, Xi : i = 1, . . . , n}.
For simplicity we assume that the baseline hazard λ(t) is fixed, so that we need only

consider a prior distribution Π on g(t, x) and its associated hyperparameters. To each u :
[0, 1]P+1→R we associate a density function pu(t | x)=λ(t) Φ{u(t, x)}exp {−Hu(t | x)}}
where Hu(t | x) =

∫ t

0
λ(s) Φ{u(s, x)} ds is a cumulative hazard. We make the following

assumption about the true hazard function h0(t | x), which guarantees that we can
define the “true” value of g0(t, x) by Φ−1(h0/λ).

Condition H (on p0) For (t, x) ∈ [0, C] × [0, 1]P , the hazard ratio R(t, x) = h0(t |
x)/λ(t) is bounded away from 0 and 1, and R(·, ·) ∈ Cα,R([0, 1]P+1) where
Cα,R([0, 1]P+1) is the ball of radius R of α-smooth Hölder functions (see Ghosal and
van der Vaart, 2017, Appendix C). Additionally, R(t, x) depends on D ≤ P + 1 many
coordinates of (t, x).
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At face value Condition H is highly restrictive, as it requires an a-priori known
upper bound for h0(t | x). We stress that this is a minor technical convenience, as if
(say) h0(t | x) is bounded then the theory we develop goes through with λ(t) ≡ λ with λ
given an appropriate prior. Additionally, the restriction that x ∈ [0, 1]P is not restrictive,
as in practice we will always perform a quantile transformation to all predictors.

Condition P (on Π) The function g is given an SBART(πT , πM) prior with M trees,
conditional on (πT , πM,M). Additionally, the prior satisfies the following conditions.

(P1) There exist positive constants (CM1, CM2) such that the prior on the number of
trees M in the ensemble is Π(M = t) = CM1 exp{−CM2t log t}.

(P2) A single bandwidth τm ≡ τ is used and its prior satisfies Π(τ ≥ x) ≤
Cτ1 exp(−xCτ2) and Π(τ−1 ≥ x) ≤ Cτ3 exp(−xCτ4) for some positive constants
Cτ1, . . . , Cτ4 for all sufficiently large x, with Cτ2, Cτ4 < 1. Moreover, the den-
sity of τ−1 satisfies πτ−1(x) ≥ Cτ5e

−Cτ6x for large enough x and some positive
constants Cτ5 and Cτ6.

(P3) The prior on the splitting proportions is s ∼ Dirichlet(a/P ξ, . . . , a/P ξ) for some
ξ > 1 and a > 0.

(P4) The μm�’s are iid from a density πμ(μ) such that πμ(μ) ≥ Cμ1e
−Cμ2|μ| for some co-

efficients Cμ1, Cμ2. Additionally, there exist constants Cμ3, Cμ4 such that
Π(|μm�| ≥ t) ≤ Cμ3 exp{−tCμ4} for all t.

(P5) Let Dm denote the depth of tree Tm. Then Π(Dm = k) > 0 for all k = 0, 1, . . . , 2D
and Π(Dm > d0) = 0 for some d0 ≥ D.

(P6) The gating function ψ : R → [0, 1] of the SBART prior is such that supx |ψ′(x)| <
∞ and the function ρ(x) = ψ(x){1−ψ(x)} satisfies

∫
ρ(x) dx > 0,

∫
|x|mρ(x) dx <

∞ for all integers m ≥ 0, and ρ(x) can be analytically extended to some strip
{z : |�(z)| ≤ U} in the complex plane.

We also make the assumption that Φ(μ) corresponds to the distribution function of
a heavy-tailed distribution.

Condition L (on Φ) The link function Φ(μ) is strictly increasing and is the cumulative
distribution function of a random variable Z which is symmetric about 0 and such that
d
dμ log Φ(μ) ≤ K.

4.1 Fixed Censoring

Fixed censoring occurs if Ti is observed as long as Ti ≤ C. We study this by conditioning
on D̃n. Given g(t, x), the Ỹi’s have conditional density given by

fg(y | x) = pg(y | x) I(y < C) + exp{−Hg(C | x)} I(y = C) (9)
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with respect to ν(dy). We measure the accuracy of the posterior distribution using the
integrated Hellinger metric H(g0, g) defined by

H2(g0, g) =

∫ ∫
{
√
fg0(y | x)−

√
fg(y | x)}2 ν(dy) FX(dx)

=

∫ [∫ C

0

{
√
pg0(y | x)−

√
pg(y | x)}2 dy

]
+ (e−Hg0 (C|x) − e−Hg(C|x))2 FX(dx),

where FX is the true distribution of the Xi’s. While not used as part of the model,
integrating with respect to FX gives a natural metric by which to judge estimation
accuracy. Our goal is to establish Π{H(g0, g) ≤ Kεn | D̃n} n→∞−→ in F0-probability for
a sequence εn ↓ 0 and some fixed positive constant K; in this case, we say that the con-
vergence rate of the posterior is faster than εn. Under the assumption that g0(t, x) is an
α-Hölder smooth function depending on D coordinates, the oracle minimax estimation
rate when α and the relevant coordinates of (t, x) are known is εn = n−α/(2α+D). The
following theorem, which is proved in the Supplementary Material, shows that we adap-
tively obtain this rate up-to a logarithmic term log(n)t and a variable selection term√
D log(P + 1)/n. This result allows P (but not D) to diverge, and permits consistent

estimation even when logP grows nearly linearly with n.

Theorem 1. Suppose that Condition H, Condition L, and Condition P hold. Let εn =
n−α/(2α+D) log(n)t +

√
D log(P + 1)/n where t = α(D + 1)/(2α+D). Then

Π{H(g0, g) ≤ Kεn | D̃n} n→∞−→ 0 in F0-probability

for some sufficiently large constant K.

4.2 Random Censoring

Our results for a fixed censoring time C extend in a straight-forward fashion to the case
where the Ci’s are bounded with Ci ≤ C. Under the independent censoring assumption,
the joint density of (Yi, δi) given Xi = x and g is

qg(y, δ | x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Sg(y | x) pC(y | x) if δ = 0 and y < C,

Sg(y | x) SC(y | x) if δ = 0 and y = C,

pg(y | x) SC(y | x) if δ = 1,

0 otherwise.

We now study posterior concentration with respect to the integrated Hellinger distance

H2
q(g0, g) =

∫ ∫ 1∑
δ=0

{
√
qg0(y, δ | x)−

√
qg(y, δ | x)}2 ν(dy) FX(dx). (10)

In addition to the covariate distribution FX , Hq also depends on the distribution of Ci.
In the Supplementary Material we prove the following result.
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Theorem 2. Suppose that Condition R, Condition H, Condition L, and Condition P
hold. Let εn = n−α/(2α+D) log(n)t +

√
D log(P + 1)/n where t = α(D + 1)/(2α + D).

Then

Π{Hq(g0, g) ≤ Kεn | Dn} n→∞−→ 0 in F0-probability

for some sufficiently large constant K.

Remark 1. Our proof of Theorem 1 is based on checking the sufficient conditions
for posterior convergence rates given by Ghosal et al. (2000). To prove Theorem 2
we use a monotonicity property of f -divergences (Ali and Silvey, 1966) to show that
the sufficient conditions used to prove Theorem 1 also suffice to prove Theorem 2; for
example, the fact that the Hellinger distance is an f -divergence can be used to show that
Hq(g0, g) � H(g0, g). This strategy works because all divergences used in Theorem 2.1
of Ghosal et al. (2000) are f -divergences, or can be made equivalent to an f -divergence
after applying some linear interpolation (see Lemma S.3 in the Supplementary Material).

Remark 2. We cannot make progress on divergences likeH2
p(g0, g) =

∫ ∫
{
√
pg0(y | x)−√

pg(y | x)}2 dy FX(dx) because there is no information in the data about g0(t, x) for

t > C. The best we can do is control
∫ ∫ C

0
{
√
pg0(y | x)−

√
pg(y | x)}2 dy FX(dx), which

is accomplished by H2(g0, g), as well as H
2
q (g0, g) when SC(y | x) (the probability that

an individual is not censored before the end of the study) is bounded away from 0.

5 Illustrations

5.1 Simulation Experiment

We conduct a simulation study to assess (i) the ability of MBART and CoxBART to
capture nonlinear relationships and (ii) to assess what one loses when CoxBART is used
when the proportional hazards assumption fails. The function f(x) = sin(πx1x2)+2(x3−
0.5)2+x4+0.5x2 used in S2 and S3 is a nonlinear function described by Friedman (1991),
having linear, nonlinear, and interaction effects. We consider the following models for
the hazard.

• S1, Cox: h(t | x) = exp{
∑P

j=1 xj}hGam(t) where P = 10.

• S2, Semiparametric Exponential: h(t | x) = exp{f(x)}, P = 10.

• S3, Nonparametric Cox: h(t | x) = exp{f(x)}hGam(t), P = 5.

• S4, SLML: Ti has a Weibull distribution with κ(x) = 0.7 + 1.3x7 and scale pa-

rameter 1 + 0.25
∑6

j=1 xj + 2.5x7 with P = 10. This simulation setting is taken
from Sparapani et al. (2016), and strongly violates the proportional hazards as-
sumption.

• S5, ZK: Ti ∼ Gam{α(x), 0.5} where α(x) = 0.5 + 0.3|
∑15

j=11 xj | and P = 25.
This simulation is taken from Zhu and Kosorok (2012) and strongly violates the
proportional hazards assumption.
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Figure 2: Samples of survival functions S(t | Xi) for 50 samples of Xi for each model.

Covariates are simulated independently from a Uniform(0, 1) distribution, with the ex-
ception of S5 where the covariates Xi are multivariate normal with mean 0 and covari-
ance matrix V with entries Vjk = (0.75)|j−k|. The function hGam(t) used in S1 and S3
as a baseline hazard denotes the hazard function of a Gam(3, 1) random variable. For
each simulation setting we took N = 500, except for the ZK setting where we took
N = 300 to match Zhu and Kosorok (2012).

The purpose of S1 is to determine how much is lost by the nonparametric models
when a simple semiparametric model holds. The purpose of S2 and S3 is to assess how
much is lost if we use MBART instead of CoxBART when the proportional hazards
assumption holds. Settings S4 and S5 are designed to assess how well MBART performs
relative to other nonparametric techniques like random survival forests (Ishwaran et al.,
2008), as well as how much is lost using CoxBART when the proportional hazards
assumption fails.

Figure 2 displays randomly sampled survival curves for the settings S3, S4, and S5.
Setting S3 obeys the proportional hazards assumption; consequently, the shape of each
survival curve is similar and there is no curve crossing. Setting S5 also has no curve
crossing because the Gam(α, 0.5) distribution is stochastically increasing in α; the shape
of the survival curve, however, varies substantially. Depending on the value of α, both
decreasing and increasing hazard functions are possible under S5. Setting S4 allows for
both a variety of shapes for the survival curves and the possibility for the curves to
cross. We compare the following methods.

• MBART-Light: The MBART model with mild shrinkage towards a proportional
hazards model. The baseline model is an exponential BART model (i.e., Weibull-
BART with κ = 1). This is the default prior described in Section 2.2.
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Cox-Linear CoxBART RSF MBART MBART-Heavy Exp-BART

S1 1.00 3.13 10.2 2.91 2.88 28.2
S2 1.22 1.00 1.25 1.29 1.31 1.24
S3 1.33 1.00 1.50 1.13 1.06 24.9
S4 1.26 1.37 1.00 1.00 1.00 2.32
S5 2.89 1.05 1.08 1.00 1.02 1.68

Table 1: Results for the simulation study described in Section 5.1 for the settings S1–S5.
Each entry is the integrated mean squared error in estimating the survival function. All
results are relative to the best performing method, i.e., the best performing method
always has the result 1.00.

• MBART-Heavy: The same as the default MBART model, but with γ = 0.3 so
that most trees in the ensemble a-priori do not split on any covariates. This en-
courages the model to resemble the CoxBART2 base model described in Section 3.

• CoxBART: The CoxBART model with the default prior.

• Cox-Linear: The semiparametric Cox proportional hazards model fit with the
log-linear link h(t | x) = λ(t) exp(x�β). This is fit with the coxph function in the
survival package in R.

• Random Survival Forests: The random survival forests algorithm (Ishwaran
et al., 2008) fit with the randomForestSRC package in R. This fits a fully-non-
parametric model to the survival function, and does not invoke the proportional
hazards assumption.

• Exp-BART: the exponential BART base model used with our MBART models.
This is included to determine if the base model is adequate by itself.

We attempted to fit the surv.bart function in the BART package in R. Unfortunately,
because we do not coarsen the time scale, the algorithm was too memory intensive.

We assess the performance of each method according to how well they estimate
the conditional function S(t | x). As a measure of accuracy, we consider the average

integrated squared distance between the estimated survival function Ŝ(t | x) and the

true survival function S0(t | x), MSE =
∫ ∫ Tmax

0
{Ŝ(t | x)− S0(t | x)}2 dt FX(dx) where

FX denotes the true distribution of the predictors and Tmax is the maximum of all
observed survival times in the sample. Because MSE cannot be computed in closed

form, we approximate the integral numerically as N−1
�

∑N�

i=1

∫ Tmax

0
{Ŝ(t | X�

i ) − S0(t |
X�

i )}2 dt where the dt integral is computed numerically and the X�
1 , . . . , X

�
N�

are held-
out covariates sampled independently from FX . Results are averaged over 200 simulated
datasets. We used N∗ = 100 held-out covariates and approximated the dt integral using
a grid of size 500.

Results are given in Table 1. Except for S1, either CoxBART or MBART-Light
performs the best. Predictably, CoxBART performs the best when the nonparamet-
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P CoxNet CoxBART RSF MBART Exp-BART

25 1.67 1.31 1.17 1.00 2.33
50 1.56 1.24 1.25 1.00 2.17
100 1.53 1.27 1.42 1.00 2.20
200 1.46 1.27 1.47 1.00 2.22
400 1.37 1.23 1.50 1.00 2.09

Table 2: Results for the simulation experiment in Section 5.1 for setting S4 with P ∈
{25, 50, 100, 200, 400}. CoxNet refers to the Cox-Linear approach using the lasso. Each
entry is the integrated mean squared error in estimating the survival function. All results
are relative to the best performing method; if the result is 1.00, i.e., the best performing
method always has the result 1.00.

ric proportional hazards model holds, while MBART performs best when it does not.
Curiously, MBART has mediocre performance under S2, but does manage to outper-
form CoxBART under S1 despite not making the proportional hazards assumption. The
performance of Exp-BART indicates that the baseline model alone is typically not ad-
equate, and performs very poorly in S1 and S3 where the baseline hazard is far away
from an exponential.

To better understand how the presence of irrelevant predictors affects the resulting
estimators, we conducted an additional simulation under S4 with the number of pre-
dictors P being increased. To ensure that the comparison with Cox-Linear is fair, we
use a lasso penalty implemented with the glmnet package in R (Tibshirani, 1997). We
consider only MBART-Light, as the performance of MBART-Light and MBART-Heavy
is similar in Table 1. Results are given in Table 2 for P ∈ {25, 50, 100, 200, 400}. Across
all settings, we see that MBART outperforms the other methods, and that all methods
except for random survival forests are robust to the inclusion of irrelevant predictors.
The random survival forests algorithm performs poorly as the dimensionality of the
problem increases; at P = 50, random survival forests perform the same as CoxBART,
but by P = 400 it performs worse than all methods except for Exp-BART. The lack
of robustness of random forests to irrelevant predictors has been noted in other works
(Zhu et al., 2015; Linero, 2018) as well, and does not depend on the selection of tuning
parameters.

We conclude that both MBART and CoxBART are generally effective for situations
when the semiparametric Cox proportional hazards model h(t | x) = λ(t) exp(x�β)
fails. For situations where the nonparametric proportional hazards model h(t | x) =
λ(t) exp{f(x)} holds CoxBART performs best, while for situations where the non-
parametric proportional hazards model fails MBART performs best. Both methods
are highly robust to the inclusion of irrelevant predictors, which is not true of random
survival forests.
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Method CoxBART CoxLM CoxLog CoxGAM

Heldout Deviance 1014 1058 1008 1034

Table 3: The five-fold cross-validated estimate −2 log PL� for the different proportional
hazards models considered. CoxLM, CoxLog, and CoxGAM denote the semiparametric
Cox proportional hazards obtained with no transformations, log transformations, and
natural cubic splines, respectively.

5.2 Liver Disease Data

We analyze a publicly available dataset on time to death (scaled to have standard devia-
tion 1) for patients of primary biliary cirrhosis (PBC), a chronic disease in which the bile
ducts of the liver are slowly destroyed (available as the pbc dataset in randomForestSRC).
The survival times were subject to right censoring due to either liver transplant or
survival beyond the end of the study. We select this study for re-analysis to demon-
strate the capability of our methods (MBART and CoxBART) to accommodate un-
known non-linear and time-varying effects of the covariates on the hazard function,
because it has observed in prior analyses that at least two covariates (Bilirubin and
Protime) have such effects. We first fit the usual semiparametric Cox proportional haz-

ards model λ(t | x) = λ0(t)e
x�β using the following covariates: age, baseline bilirubin

level (Bilirubin), baseline albumin level (Albumin), presence of edema, and prothrombin
time (Protime). An analysis of the martingale residuals (Fleming and Harrington, 2011,
Section 4.6) of the predictors shows that some covariates have non-linear and possibly
time-varying effects on the hazard rate; for example, the top left panel of Figure 3 sug-
gests a non-linear effect of bilirubin which can be accommodated by using a log transfor-
mation (top right panel). CoxBART detects these effects automatically, eliminating the
need to look for appropriate transformations, and also outperforms a similar generalized
additive model based on natural cubic splines. To demonstrate this, we performed 5-fold
cross-validation and computed the held-out deviance −2 log PL� = −2

∑5
k=1 log PL−k

where PL−k denotes the Cox partial likelihood obtained by regressing (Yi, δi) in the kth

fold on the estimated risk ĝ(Xi), where CoxBART used the posterior mean of g(Xi) for
ĝ(Xi). This was replicated across 10 different splits into 5-folds and averaged over the
10 splits. Results are given in Table 3. The best performing proportional hazards model
uses hand-selected transformations for the continuous predictors — in particular, taking
the logarithm of the bilirubin level — but CoxBART performs nearly as well (and much
better than the linear and GAM models).

While CoxBART is able to automatically find an appropriate transformation of the
predictors, the Schoenfeld residuals in Figure 3 (middle left) suggest a time-varying
effect of prothrombin time (Protime) which cannot be accommodated using a non-
linear transformation, implying the proportional hazards assumption does not hold.
A formal test for the violation of the proportional hazards assumption using the cox.zph
function in R gives a significant global test, primarily driven by the effect of protime
(P -value ≈ 0.003). To show that MBART is able to accommodate this failure of the
proportional hazards assumption, we use 5-fold cross validation to compare the fit of
MBART to the CoxBART2 model described in Section 3; we use CoxBART2 here
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Figure 3: Top left: plot of bilirubin against martingale residuals from the model with lin-
ear effects. Top right: plot of log-bilirubin against martingale residuals from the model
using log-bilirubin. Middle left: plot of log-protime against an estimate of the time-
varying effect of protime obtained from the cox.zph function in R. Middle right: cu-
mulative risk from the MBART model against the estimated risk from the CoxBART
model. Bottom left: mean MBART survival functions for different levels of protime
(darker means lower protime). Bottom right: estimated MBART hazard functions for
different levels of protime. Smooth solid lines for the top and middle plots are spline
estimates of the mean relationship between the variables, while dashed lines are 95%
confidence bands for the splines.
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because it admits a density and so can be readily compared to MBART using likelihood-
based criteria. We measure predictive accuracy using held-out deviance of the data
dev = −2

∑N
i=1 δi log f̂ρ(i)(Yi | Xi) + (1 − δi) log Ŝρ(i)(Yi | Xi) where f̂ρ(i) and Ŝρ(i)

denote the estimated density and survival function computed on the fold which excluded
observation i. This experiment was replicated on all 10 splits. MBART outperformed
CoxBART2 over all 10 splits, with the average difference in deviance between the two
models being devCox − devM = 7.81. Hence MBART is able to obtain a better fit by
weakening the proportional hazards assumption.

Interestingly, MBART and CoxBART give similar risk measures for each individual;
see Figure 3 (middle right), where λ̂ is the posterior mean of g(Xi) for the CoxBART

model and Λ̂ is the estimated cumulative hazard
∫max(Yi)

0
λ(t | Xi, θ) Φ{g(t,Xi)} dt.

We see that MBART detects the same risk structure as CoxBART. The bottom panels
of Figure 3 show the estimated survival function and hazard function as a function of
protime when all other variables are fixed at their sample medians. We see that the
estimated hazard functions are clearly not proportional; in particular, individuals with
high values of protime have relatively constant risk, while individuals with low values of
protime have a small risk at the beginning of the study and large risk at the end. The
corresponding survival function estimates for high values of protime are similar to what
was observed under the ZK simulation setting, which violated the proportional hazards
assumption.

We conclude that MBART is able to effectively model the PBC data. Importantly,
MBART finds the same structure as CoxBART, while also being able to account for
failure of the proportional hazards assumption. This allows MBART to be used without
needing to check assumptions regarding proportional hazards or lack of functional form
fit.

6 Discussion

In this paper we introduced two survival models for right-censored data using Bayesian
additive regression trees. The first model is based on the observation that a response
Ti with hazard h(t | x) can be modeled as the first occurrence of a non-homogeneous
Poisson process with intensity function h(t | x); by taking h(t | x) to correspond to a
thinned Poisson process λ(t | x, θ) Φ{g(t, x)} where λ(t | x, θ) is chosen to be tractable,
we were able to construct a two-layer data augmentation scheme for updating the func-
tion g(t, x). A single-layer strategy using this idea has been used for Gaussian processes
(Fernández et al., 2016), but is not applicable to our model due to our use of discrete
parameters and only shrinks towards marginal models λ(t). We also establish theoret-
ically that our thinned Poisson process model obtains near-minimax optimal rates of
posterior contraction in the high-dimensional setting.

The second model we introduced is a nonparametric variant of the Cox proportional
hazards model, which takes h(t | x) = λ(t) exp{g(x)} with the baseline hazard function
λ(t) modeled nonparametrically. Inference in this model proceeds from the Cox partial
likelihood PL(g). By using a Bayesian justification of the Cox proportional hazards
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model (Sinha et al., 2003) we were able to both construct a tractable Gibbs sampling
algorithm and obtain a nonparametric estimate of the cumulative hazard function.

An interesting avenue for future research is to develop methods for summarizing
the BART posteriors for these models. A key advantage that classical semiparametric
models have is that they reduce the effect of covariates to interpretable scalar param-
eters. One possibility in this direction is to develop tools which systematically project
the BART posterior onto more interpretable models (Woody et al., 2020).

Supplementary Material

Supplementary Material for Bayesian Survival Tree Ensembles with Submodel Shrink-
age (DOI: 10.1214/21-BA1285SUPP; .pdf). Contains proofs of our theoretical results
and explicit algorithms for our methods. Software for MBART. Contains code which
replicates our analysis of our real data example.
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