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One of the data structures generated by medical imaging technology
is high resolution point clouds representing anatomical surfaces. Stereopho-
togrammetry and laser scanning are two widely available sources of this kind
of data. A standardised surface representation is required to provide a mean-
ingful correspondence across different images as a basis for statistical analy-
sis. Point locations with anatomical definitions, referred to as landmarks, have
been the traditional approach. Landmarks can also be taken as the starting
point for more general surface representations, often using templates which
are warped on to an observed surface by matching landmark positions and
subsequent local adjustment of the surface.

The aim of the present paper is to provide a new approach which places
anatomical curves at the heart of the surface representation and its analysis.
Curves provide intermediate structures which capture the principal features of
the manifold (surface) of interest through its ridges and valleys. As landmarks
are often available these are used as anchoring points, but surface curvature
information is the principal guide in estimating the curve locations. The sur-
face patches between these curves are relatively flat and can be represented
in a standardised manner by appropriate surface transects to give a complete
surface model.

This new approach does not require the use of a template, reference sam-
ple or any external information to guide the method and, when compared with
a surface based approach, the estimation of curves is shown to have improved
performance. In addition, examples involving applications to mussel shells
and human faces show that the analysis of curve information can deliver more
targeted and effective insight than the use of full surface information.

1. Introduction. One of the interesting types of data generated by medical
imaging is in the form of anatomical surfaces. These can arise through the thresh-
olding of three-dimensional (3D) voxel data, for example, to identify the transition
between soft tissue and bone. They can also be generated through techniques such
as laser scanning or stereophotogrammetry, where surface locations are measured
directly through optical methods. Each observational unit consists of a 3D point
cloud which provides a discrete, and to some extent noisy, representation of the
target surface or manifold.
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An immediate issue in the analysis of manifold data is the need to create stan-
dardised (homologous) representations which have anatomical and geometrical
correspondence across images. A traditional approach to this has been through
landmarks which identify key point locations; see, for example, Farkas (1994) for
a discussion of this in the context of the human face. There is, necessarily, substan-
tial loss of information in reducing the representation to a small number of points,
however well chosen, but the wide availability of statistical tools for the analysis
of this type of shape information has given landmarks a central role in the study of
shape. Dryden and Mardia (2016) give an authoritative account of this topic.

At the other end of the spectrum, a variety of approaches can be taken to the con-
struction of full surface representations. A common approach employs a surface
template, which is deformed or warped, so that landmark positions on the tem-
plate match exactly those on the manifold of interest. Paulsen and Hilger (2003)
used thin plate spline warping of landmarks with subsequent adjustment through
Markov random field methods, while Hammond et al. (2004) developed a dense
point correspondence model where standardised nonlandmark locations on the im-
age of interest are identified as the closest points to the corresponding positions on
the warped template. In a similar manner, Mao et al. (2006) used local surface
curvature to guide further deformation of a template warped by landmarks so as to
increase the quality of the match with the manifold in geometrical terms.

Many methods for more general comparison of surfaces have been proposed.
Davies, Cootes and Taylor (2001) and Meier and Fisher (2002) described how
this can be performed for 2D outlines or 3D surfaces using piecewise linear or
smooth functions constructed from appropriate bases. Srivastava et al. (2009) used
a Riemannian framework to produce a coordinate system which allows both de-
formation and comparison using a single elastic metric. A Darcyan curvilinear
coordinate system, based on the geodesic distance function from a fixed reference
point, allows a facial surface to be represented as an indexed collection of level
curves. Rustamov et al. (2013) took a different approach by deriving surface oper-
ators which are able to describe the differences between two shapes. In particular,
this allows effective interpolation between very different shapes or between very
different poses of the same intrinsic shape. Raviv et al. (2014) and Raviv and Kim-
mel (2015) introduce an equi-affine metric, which creates a form of geometric
invariance between nonrigid shapes, while Raviv, Bayro-Corrochano and Raskar
(2017) uses a similar approach which allows an average of a collection of surfaces,
as well as interpolations and extrapolations of surface sequences, to be computed.

The present paper tackles the problem from a new perspective by focusing at-
tention on anatomical curves which identify ridges and valleys. These are interme-
diate structures which provide a richer description of manifold data than landmarks
but which, as inherently one-dimensional objects, provide simpler representations
than a full surface approach. Ridge and valley curves often capture many of the key
features of a manifold, as discussed by Koenderink (1990) and many other authors.
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For example, in the context of the human face a large proportion of the informa-
tion on shape is captured in the locations of the ridges and valleys, such as the
nose profile or where closed lips meet. Curves may incorporate anatomical land-
marks; indeed, Katina et al. (2016) argue that the definitions of anatomical land-
marks should, wherever possible, be based on geometrical properties, particularly
through the crossing points of anatomical curves or the locations with maximum
geodesic curvature. Full surface representations can be approached by relatively
straightforward in-filling of areas between curves as the curvature of these inter-
vening regions will be relatively low.

There are therefore strong arguments that ridge and valley curves are the key
features to target in constructing representations of shape for manifolds. Indeed,
it is one of the aims of the paper to assess the importance of the role of curves in
the landmark-curve-surface hierarchy of shape representation. This will be done
under the assumption that the curves to be used are present, and homologous,
across all the individuals in the study. This corresponds to the standard assumption
underlying the analysis of landmarks. Removal of this assumption presents a very
interesting but much more challenging situation where different individuals are
represented by different sets of curves. However, in the anatomical settings to be
discussed in the paper and in many other applications, the assumption of a standard
and homologous set of curves is a reasonable one; indeed, this is the basis of the
curve definitions proposed by Katina et al. (2016).

In general, the estimation of the locations of ridge and valley curves on a mani-
fold is a challenging problem in the absence of prior information on the nature of
the curves to be located. One broad approach is to exploit the definition of ridge or
valley points in terms of locally extreme curvature and then to combine candidate
points into a curve. Examples of this include Pennec, Ayache and Thirion (2000),
Ohtake, Belyaev and Seidel (2004) and Stylianou and Farin (2004) who develop
marching lines and other forms of algorithm for tracing ridge lines through candi-
date locations. Che et al. (2011) took a similar approach but assumed the surface
of interest to have a smooth parametric form rather than a discrete representa-
tion. Bowman et al. (2015) used repeated scans along surface transects to locate
points of discontinuity in first derivatives, or sharp change in direction, using sta-
tistical methods. Again, ridge and valley curves were created by combining can-
didate points, although the principal curve (Hastie and Stuetzle (1989)) methods
employed do not guarantee a curve which lies on the manifold.

The problem of ridge and valley curve estimation is tackled in the present paper
by a new approach which uses basic information on surface curvature to iden-
tify regions of interest, transforms these locally to a 2D space and exploits the
expected smoothness of the curves to estimate these directly in this new domain.
This exploits well-known statistical tools, such as smoothing techniques, but in
a formulation which allows these ideas to be used in the novel setting of surface
data.
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The paper reviews elementary ideas of differential geometry in Section 2 to pro-
vide some basic tools for characterising manifolds. Methods for the estimation of
ridge and valley curves are described in detail in Section 3 by using the human face
as an important example. This leads to the construction of a full surface model in
Section 3.4. The properties of the method are evaluated computationally and com-
pared with an existing approach in a simulation study in Section 4. The methods
developed are used to study the effects of climate change on the shapes of mussel
shells and to quantify human facial sexual dimorphism in Section 5. In both of
these examples, analysis based on curve data is found to deliver more targeted and
informative insight than the use of full surface information. Some final discussion
is given in Section 6.

2. Tools from differential geometry. The local shape at a 3D location m =
(x, y, z) on a differentiable manifold M can be characterised through the quadratic
surface

(2.1) z = 1

2

(
κ1x

2 + κ2y
2)

,

where z lies in the normal direction to the surface and the orthogonal axes x and
y lie on the tangent plane, associated with the directions of maximum (κ1) and
minimum (κ2) curvature. This is clearly described by Koenderink (1990) and many
others, along with a wide variety of other key tools for studying surface shape.
The principal curvatures, κ1 and κ2, and their associated principal directions, d1
and d2, provide the essential information for characterising curvature across the
manifold.

An observation of a manifold consists of M 3D points, each of which is a
noise-corrupted version of a point mi on the manifold M. Specifically, O = {oi =
(xi, yi, zi); i = 1, . . . ,M}, where each element can be written as oi = mi + εi , and
εi describes the error term associated with the rather complex process of stereopho-
togrammetric reconstruction. An associated 3D surface triangulation can be con-
structed from O through generalisations of the Delaunay approach; see Cohen-
Steiner, De Verdiere and Yvinec (2002) or de Berg et al. (2000) for examples. In
order to estimate the principal curvatures at an observed point m, a surface normal
direction can be constructed as the average of the normal vectors associated with
the set of triangles which contain m; see Koenderink and van Doorn (1992). By fit-
ting a quadratic model of the form (2.1) to a local neighbourhood of points through
ordinary least squares with arbitrary orthogonal axes in the tangent plane, the prin-
cipal curvatures and directions can be estimated through the eigen decomposition
of the Weingarten matrix. Goldfeather and Interrante (2004) provide all of the de-
tails. An important choice is the size of the neighbourhood to which the quadratic
surface is fitted. In general, this needs to be adapted to the characteristics of the
manifolds being studied. Working with human faces, which at a broad level have
very strong shape correspondences across people, allows the effects of different
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neighbourhood size to be explored. This resulted in the recommendation of using
connected triangulation points within a radius of 1 cm of the point of interest.

There are many useful ways in which the principal curvatures can be condensed
into a single number to express particular curvature properties. For example, Gaus-
sian curvature, defined as κ1κ2, is a very commonly used measure where positive
values correspond to peaks, wells, ridges or valleys, while negative values corre-
spond to saddle points. A particularly useful summary in the present setting is the
shape index (Koenderink and van Doorn (1992)) which gives a helpful characteri-
sation of the type of curvature at any point. This is defined as

(2.2) S(m) = 2

π
tan−1

(
κ2(m) + κ1(m)

κ2(m) − κ1(m)

)
,

where the notation emphasises that the principal curvatures vary with the point of
interest m. Values of S close to −1 indicate a ‘spherical cup’ where both principal
curvatures are positive. As S increases, the corresponding surface shape bends
smoothly through ‘trough’ and ‘rut’ and reaches ‘saddle’ shapes around 0. The
process is reversed as S increases and the associated surfaces move through ‘ridge’
and ‘dome’ to arrive at a ‘spherical cap’ when S reaches 1. This helpful typology
of surface shape is illustrated in the upper plot of Figure 1 which is modelled on

FIG. 1. The upper plot illustrates the local surfaces associated with the shape index on the scale
from −1 to 1, with colour coding to identify each shape category. The lower images show manually
placed anatomical landmarks (23 red points), and anatomical curves (467 black points), on facial
surfaces coloured by natural texture (left) and shape index (right).
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a similar figure in Koenderink and van Doorn (1992) and uses the same verbal
descriptors and colour coding. Notice that the shape index S is a function of the
ratio of κ1 and κ2, so that it describes the type of local curvature but not its strength.

The lower images of Figure 1 show a human face with the right-hand image
coloured by shape index. This highlights key features of the face, such as the ridge
of the nose and the valleys and wells around the eyes. The positions of manually
placed landmarks and curves align well with key curvature features. This provides
encouragement for the use of the shape index and principal curvatures more gener-
ally in the estimation of anatomical curves. This topic is developed in the following
section.

3. Estimation of ridge and valley curves. Working in a space defined by
a manifold requires careful adaptation of the standard procedures used in lin-
ear spaces. Patrangenaru and Ellingson (2016) discuss this in detail. To estab-
lish notation, it will be useful to refer to a curved path over a manifold as
p(s) = {x(s), y(s), z(s)}, where the functions x, y, z describe the movement of
the 3D coordinates as functions of an arc length argument s. The aim is to define
paths in the true manifold through curvature and then to estimate these paths by
applying the same definitions to the curvature information constructed from the
observed manifold. In a repeated sampling framework, or as the image noise is
reduced, the convergence of the observed manifold to the true one will ensure that
the estimated path also converges to the true one.

Kent, Mardia and West (1996), Stylianou and Farin (2004) and Ohtake, Belyaev
and Seidel (2004) discuss the definition of a ridge (or valley) curve. This is most
commonly expressed through the characterisation of individual points. A point m

with principal curvatures κ1 > κ2 and corresponding principal directions d1, d2
lies on a valley curve if κ1 > 0 and is locally maximal along the direction d1.
The characterisation Dd1κ1 = 0, where Dd1 denotes the derivative in direction d1,
has consequently promoted methods of estimation based on the determination of
zero crossings through numerical and computational techniques. Ridge and valley
curves are then estimated through the collection of identified points.

A novel alternative approach is developed here by considering curves from
the start. Denote, by p(s), s ∈ [0,L], a valley curve on a surface of interest. As
each point on p(s) satisfies the local optimality condition described above, the
integral

∫
κ1(p(s)) ds is also locally maximal in the sense that minor perturba-

tions of p(s) must necessarily reduce the contributions made to the integral. Of
course, the value of the integral can be increased by allowing the length of p(s)

to increase, for example, permitting rapid oscillations which accumulate lower
curvatures over longer paths. The optimality of

∫
κ1(p(s)) ds is therefore over

curves of fixed length. An appropriate estimation strategy then seeks to maximise∫
κ1(p(s)) ds over curve paths p, subject to suitable constraints on path length

or smoothness. To allow the simultaneous treatment of ridge curves, where the
strongest principal curvature is negative, the notation

∫
ν(p(s)) ds will be used

where ν(p(s)) = κ1(p(s)) for valleys and ν(s) = −κ2(p(s)) for ridges.



A HIERARCHICAL APPROACH TO THE ANALYSIS OF MANIFOLD DATA 2545

FIG. 2. The upper images show a 3D manifold of lips coloured by texture (left), shape index (mid-
dle) and maximum curvature values (right). The lower images show three plane cuts to determine the
linear path which maximises the length-standardised integral of maximum curvature.

3.1. A linear reference path. The optimisation of integrated maximal curva-
ture is greatly assisted by the assumption of smoothness. The strategy described
below is to identify a local region of interest, use shape index to identify the loca-
tion of relevant surface shapes and then identify an initial reference curve using an
appropriate planar cut. In order to illustrate the issues involved, consider the case
of estimating the valley curve where closed lips meet in a human face, as displayed
in Figure 2 with two standard landmarks, l1 and l2, located at the corners of the
mouth. The aim is then to optimise

∫
ν(p(s)) ds over smooth curves p which have

l1 and l2 as end-points.
For objects such as human faces, a strong degree of smoothness in ridge and val-

ley curves is to be expected, and this can be quantified in the requirement that the
optimal p should lie within the cylinder with axis (l2 − l1) and radius r . Empirical
investigations with human faces led to the choice r = ‖l2 − l1‖/2 as an effective
method of identifying the local region of interest. The top-left images of Figure 2
give an example of the localised region for the lips.

The shape index S over the manifold, illustrated in the top middle image of
Figure 2, can now be used to identify those points within the local manifold which
indicate valley behaviour. In order to be inclusive at this stage, all points with
negative shape index, corresponding to blue-green colour in the standardised scale
of Koenderink and van Doorn (1992), are of interest. At locations with positive
shape index, ν can be assigned the value 0. The top right-hand image of Figure 2
illustrates the result using topographic colour coding.

An initial reference path can now be identified by considering the set of planes
containing l1 and l2 and indexed by an angle of orientation γ . The lower images of
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FIG. 3. The left hand image shows lips with anatomical landmarks (red), a linear reference curve
(black), some illustrative points on the manifold (yellow), and the corresponding perpendicular dis-
tances (blue) to the closest points on the reference curve (green). The middle image shows the points
from the manifold in the 2D space defined by signed distance to the closest point on the reference
curve and arc length along the reference curve to the location of the closest point. The colour coding
of the points shows the relative strengths of the maximum curvature at each location, on a topographic
scale. The right hand image shows a smooth surface representation, with the flexible estimate of the
ridge curve in this 2D space indicated by the red line.

Figure 2 illustrate this. For each γ , the intersection of the plane with the manifold
describes a path pγ from l1 to l2 with length Lγ . The standardised integral of the
maximum curvature along the path pγ is

{∫
ν
(
pγ (s)

)
ds

}
/Lγ ≈

{ np∑
j=2

wjν(pγj )

}
/

{ np∑
j=2

wj

}
,

where the right-hand expression shows the discrete approximation based on the
path intersection points {pγj ; j = 1, . . . , npγ } on the observed manifold and the
weights wj = ‖pγj − pγ (j−1)‖ measure the distances between successive inter-
section points. The curve associated with the γ which maximises this expression
then ‘mops up’ as much curvature as possible. The standardisation by curve length
Lγ serves to penalise curves which accumulate large amounts of curvature by trav-
elling long distances.

The resulting curve is ‘linear’ in the sense that it lies in a 2D plane embedded in
3D space, but it describes a curved path over the manifold. The black points in the
left-hand image of Figure 3 illustrate the resulting path for the lip valley example.

There are occasions when it is useful to identify a curve across a region
which has little strong curvature, such as the cheek from ear to nose landmarks.
A linear reference path can easily be constructed simply by minimising over
Lγ ≈ ∑np

j=2 wj to locate the planar cut with minimum length.

3.2. A more flexible estimate. The problem of finding a path p to maximise∫
ν(p(s)) ds has been approached through a first approximation which finds the

angle γ ∗ which maximises
∫

ν(pγ (s)) ds over the planar paths pγ . The use of
pγ ∗ as a reference path allows us to create a helpful coordinate system for further
adjustment. Specifically, at any point s, the plane which is orthogonal to pγ ∗ at
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s intersects with the manifold to create a new path qs(d), where d is a signed
distance which indexes the deviations from the reference path in the two possible
directions of travel from pγ ∗(s). This formulation exploits the intrinsically 2D
nature of the manifold by creating two new coordinate axes: the signed distance
(d) of each point on the manifold from its closest point on the reference path, and
the arc length (s) of these closest points along the reference path.

The linear reference path pγ ∗ can now be adjusted by operating in the (s, d)

space to find a function, r(s) say, which describes the magnitude and direction
of the orthogonal deviations required to track curvature more effectively. In other
words, the function r(s) is chosen to maximise

∫
ν(pγ ∗(s) + qs(r(s))) ds.

This is illustrated in the left-hand image of Figure 3. The distance (d) of a
point on the manifold (yellow) to its closest point on the reference path (green)
can be measured along the manifold, but simple Euclidean distance is a very good
substitute because of the localisation to a region of the manifold very close to the
curve of interest. The middle image of Figure 3 uses colour shading to display the
values of νi at the locations (si, di) for each mesh point (i = 1, . . . , n). This now
allows the integral of curvature to be maximised in a standard Euclidean coordinate
system.

To address the problem in a continuous rather than a discrete manner, the curva-
ture surface can be conveniently represented in 2D p-spline form (Eilers and Marx
(1996)) as

(3.1) ν(s, d) = ∑
i

∑
j

β̂ijφi(s)φj (d),

constructed from the product of two one-dimensional cubic b-spline bases {φi; i =
1, . . . , b} and a set of basis weights {β̂ij ; i, j = 1, . . . , b}. The presence of the ‘hat’
symbol on each β̂ij reflects the fact that these have been estimated by fixing the
equivalent degrees of the estimator to be 12, which allows a good degree of flex-
ibility for the fitted surface. The aim is to locate the optimal curve, for which
a one-dimensional p-spline representation could also be used. However, an even
simpler approach is to represent the optimal curve r at a grid of arc length posi-
tions {sk;k = 1, . . . , ng} as

r(sk) = αk, k = 1, . . . , ng.

Following the earlier principle that the integral of curvature along the optimal
curve is locally maximal, the aim is to identify r(s) to maximise∫

ν
(
s, r(s)

)
ds.

By adopting a discrete approximation and by exploiting the assumption of smooth-
ness in the optimal curve through a penalty function, this translates into the prob-
lem of identifying the α (the vector of αk values), which maximises the penalised
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discrete integral

(3.2)

G = 1

ng

∑
k

ν(sk, αk) − λαT Pα

= 1

ng

∑
k

∑
i

∑
j

β̂ijφi(sk)φj (αk) − λαT Pα,

where λ denotes a penalty parameter and P = DT D denotes the penalty matrix
constructed from the matrix D, which generates second-order differences of the
elements of α as Dα. As the expression G is not linear in α, Newton’s method
provides a suitable solution. This requires the evaluation of the derivatives

∂G

∂αk

= ∑
i

∑
j

β̂ijφi(sk)φ
′
j (αk) − 2λ(Pα)k,

∂2G

∂α2
k

= ∑
i

∑
j

β̂ijφi(sk)φ
′′
j (αk) − 2λ(P )k,k,

∂2G

∂αk ∂αl

= −2λ(P )k,l (k �= l),

where the notation (Pα)k denotes the kth element of the vector Pα and (P )k,l

denotes the (k, l)th element of the matrix P . B-splines have the very convenient
property that their derivatives are scaled b-splines of lower order. Specifically,

φ′
i,a(x) = (

φi,a−1(x) − φi+1,a−1(x)
)
/b,

where the second subscript on φ denotes the order of the b-spline function and b

denotes the distance between the (regularly spaced) knots. Second derivatives can
then be computed by a further application of this formula.

The anchoring points correspond to α1 = 0 and αnk
= 0, so these two elements

are fixed. From a starting point, which sets all αk = 0, Newton’s method then
employs the iterations

α(m+1) = α(m) − H−1(
α(m))f (

α(m)),
where f denotes the vector of first derivatives and H denotes the matrix of second
derivatives. The iterations converge very quickly.

After experimentation on a variety of images, the penalty parameter was set to
λ = 0.5 as this achieves a good compromise between fidelity and smoothness for
the relatively simple curves in human faces. The right-hand images of Figure 4
show the end result of this process on the illustrative example of a lip valley curve.
The resulting curve has a flexibility, which is modest but sufficient to adapt to the
curvature information, which suggests that the true valley curve deviates a little
from the earlier linear reference path.

Three technical details of the estimation method are discussed in the Supple-
mentary Material (Vittert, Bowman and Katina (2019a)).
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FIG. 4. The left hand plot shows a Delaunay triangulation, which forms the basis of barycentric
interpolation. The right hand images show the final estimate of the lip valley curve, on surfaces
coloured by shape index (see Figure 1 for colour scale), maximum curvature and natural texture.

3.3. Interpolation back to 3D space. The final step is to transfer the estimate
of the valley curve from the 2D (s, d) domain back to 3D space. The existence of
a triangulation on the observed manifold means that barycentric interpolation can
provide a simple solution. There is a 1–1 correspondence between the observed
points oi on the manifold and the corresponding observed points (si, di) in the 2D
space. As the triangulation can be expressed through sets of triplets (j1, j2, j3),
which give the indices of the observed points (oj1, oj2, oj3) on the manifold which
form the vertices of the j th triangle, the triangulation can therefore also be ex-
pressed in the 2D space by forming the triangles from the same sets of indices. The
left-hand panel of Figure 4 illustrates this. For any point (s, d) in the 2D space, for
example, a point on the estimated valley curve, the first step is to find the enclosing
triangle, defined by the indices (j1, j2, j3). Barycentric coordinates allow (s, d) to
be written as (

∑3
k=1 λksjk

,
∑3

k=1 λkdjk
) for a unique set of weights (λ1, λ2, λ3),

where 0 ≤ λ1, λ2, λ3 ≤ 1. These interpolation weights for the position of (s, d)

can now be used to interpolate other values. For example, the associated 3D co-
ordinates at (s, d) can be interpolated from the 3D coordinates of (oj1, oj2, oj3).
Specifically, the x coordinate can be interpolated as

∑3
k=1 λkxjk

with the y and
z coordinates following suit. The linear form of the interpolation ensures that the
computed location lies on the 3D triangulated surface. Meyer et al. (2002) provide
the details.

The images on the right-hand side of Figure 4 display the resulting estimate of
the lip valley curve on surfaces, which are coloured by shape index and maximum
curvature, as well as by natural texture, in order to highlight the information, which
has been used in the construction of the estimate. This process can be repeated
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across all the curves of the face displayed in Figure 1. In fact, Figure 1 shows the
curves estimated by the methods described in this section.

3.4. Construction of a facial surface model. A set of anatomical curves across
the face creates a structure, which already captures a considerable amount of the
information on shape. A full representation of the facial surface can then be pro-
duced by characterising the patches which have these curves as boundaries. As
the construction of the curves targets locations of high curvature, these patches
will necessarily have lower curvature but they may still express important bio-
logical signals. Discrete representation of the anatomical curves, using suitably
spaced points along each, then allows a description through linear transects be-
tween these boundary points, using plane cuts minimised over length as described
in Section 3.1.

However, care must be taken in the construction of a discrete representation.
This is an issue which often occurs in functional data analysis, for example, where
growth curves exhibit peaks at different times across individuals. Naive averaging
across curves at each time point blurs the signals displayed in each individual
curve. Kneip and Ramsay (2008) show how ‘structural averaging’ can be achieved
by employing a transformation of the timescale for each curve to align on key
features. In the context of shape, corresponding issues arise, and Bookstein (1997)
describes a related idea of ‘sliding landmarks’ where the positions of points are
successively adjusted along the curve to minimise bending energy with respect to
a template curve. This is a widely used technique in geometric morphometrics,
and Rohr (2001) discusses the connection with principal curvatures. In general,
the problem is considerably reduced in settings where there are sufficient numbers
of landmarks to allow the intervening curves to have relatively simple, smooth
shapes. This is the case in the examples discussed in Section 5 below.

4. Evaluation of the performance of curve estimation. The key step in the
construction of the facial model described above is the estimation of the ridge and
valley curves. In order to evaluate the proposed method, a simulation study was
undertaken to compare estimated curves with known ridge locations. In addition,
estimated curves were compared with curves identified manually by a trained ob-
server on a set of real images.

4.1. Simulation study. Simulated surfaces were generated to mimic the shape
of human lips over the planar domain (x, y) ∈ [−1,1] × [−1,1]. The equations
below use simple quadratics to define the locations of a valley curve v and two
adjacent ridge curves r1, r2. The function z(x, y) then creates the surface as a
superposition of two ridges with Gaussian cross-sections, placed along the ridge
curve locations. The numerical coefficients of the curves and ridges have been
selected to create a well-defined valley between the two ridges. The parameter c
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FIG. 5. The upper left hand image shows a surface template. The right hand image shows an
example of a simulated surface, as described in the text, with parameters c = 0.3 (midline curvature),
h = 0.6 (spatial correlation range) and vr = 0.02 (variance). The true midline curve is shown in
black, while the estimates produced by the direct and template methods are shown in blue and red
respectively. In both of the images, the landmarks are shown in green. The lower plot show the
performance of the direct and template methods in terms of the average distance between the true
midline curve and the estimates, for a variety of different simulation settings.

controls the curvature of the valley curve. The top left-hand image of Figure 5
illustrates the resulting surface over a regular n × n grid with c = 0.

Surface :
v(x) = c

(
1 − x2)

,

r1(x) = v(x) + 0.01
(
1 − x2)

,
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r2(x) = v(x) − 0.01
(
1 − x2)

,

z(x, y) = 5
(
e(− 1

2 (
y−r1(x)

0.25 )2) + e(− 1
2 (

y−r2(x)

0.25 )2))(1 − x2)(
y − v(x)

)2
.

The (1 − x2) terms in r1, r2 and z(x, y) act as weight functions, which bring the
ridges and the surface down to 0 at the left- and right-hand edges, ensuring that the
landmarks l1 = (−1,0,0)T and l2 = (1,0,0)T lie on the surface.

In order to create a distribution of shapes, the surface (x, y, z(x, y)) was per-
turbed by the addition of a Gaussian spatial process ε(x, y), using a Matérn co-
variance function with shape parameter 1.5, variance parameter vr and correlation
range parameter h. A weight function wv was used to ensure that the shape of
the surface near the midline curve, and hence its definition as a valley, remained
undisturbed. The template method described below requires further landmarks,
and these were defined as l3 = (0,1,0)T and l4 = (0,−1,0)T . Further weight
functions, w3 and w4, were therefore used to ensure that these additional land-
marks lay on the surface after the addition of the spatial process. The weight func-
tions and the resulting surface definition are shown below.

Simulation :

wv(x, y) = e(40(δv(x,y)−0.15))

(1 + e(40(δv(x,y)−0.15)))
,

w3(x, y) = 1 − e− 1
2 (

‖(x,y,z(x,y))T −l3‖
0.2 )2

,

w4(x, y) = 1 − e− 1
2 (

‖(x,y,z(x,y))T −l4‖
0.2 )2

,

f (x, y) = z(x, y)w(3(x, y)w4(x, y) + ε(x, y)wv(x, y)w3(x, y)w4(x, y).

An example of a surface, with the midline curvature parameter set to c = 0.3, is
displayed in the top right-hand image of Figure 5.

To provide a comparison with a standard approach, the surface template method
described by Mao et al. (2006) was also used. In the absence of packaged soft-
ware to implement this routinely, an analogue of the method was constructed in a
manner which allows as close correspondence as possible between the curve and
surface approaches. The first step is to construct a template which encapsulates
the main characteristics of the surfaces to be modelled, as far as possible. The
surface described at the beginning of Section 4.1 above was used, with c = 0, as
displayed in the top left image of Figure 5. The template is then ‘warped’ onto
the surface image of interest, using thin plate splines to match the two sets of
landmarks exactly while smoothly transforming the remainder of the template sur-
face. This is a standard technique in statistical shape analysis described, for ex-
ample, by Dryden and Mardia (2016). Local deformation is then carried out by
considering how the location of each point t on the template should be further
adjusted to match the shape characteristics of the image more effectively. Specif-
ically, a measure of the dissimilarity of t and a point i on the image is computed
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as ‖t − i‖/r + cos−1(nT
t ni)/π + |St − Si |, where St , Si and nt , ni denote the

shape indices and normal vectors at t and i. All locations i within a distance R

of t were considered and the point it with minimum dissimilarity identified. (The
distance parameters were set as R = 2 and r = 0.4, following the advice of Mao
et al. (2006)). The final step is to ensure that the surface created by moving each t

to it is smooth and coherent. Mao et al. (2006) use energy minimisation to achieve
this, but, in order to achieve maximum comparability with the curve estimation
method described in Section 3, 2D p-spline smoothing, as in (3.1), of each coor-
dinate of the adjustment vector it − t was performed over the n × n grid on the
[−1,1]×[−1,1] spatial domain of the template. When this process has been com-
pleted, the valley curve in the template, represented by the points in a straight line
between the landmarks l1 and l2, now occupies a new position, and this is taken as
the estimate of the valley curve in the image.

In order to allow each method to perform to best effect in the simulations, the
mean separation (average distance between 50 equally spaced points along each
curve) of the estimated and true valley curves was computed over a variety of
settings of the smoothing control parameters. In the template method, this is con-
trolled by df t , the degrees of freedom (Eilers and Marx (1996)) used in smoothing
the adjustment vectors. In the curve method, smoothing is split across the degrees
of freedom df c used in the construction of the 2D surface (3.1) and the penalty
parameter λ used in ridge estimation, described in (3.2). The most effective over-
all performance was achieved by df t = 50, as considerable flexibility is required
to match complete surfaces, df c = 12, which confirms the value reported in Sec-
tion 3.2, and λ = 2000, which adapts to the scales of the spatial coordinates used
in the simulation study.

The two methods were then compared over a variety of parameters controlling
the shapes of the simulated surfaces, namely c (shape of the valley curve), vr and
h (variance and range of the added spatial process). In each case, 200 simulations
were created, using a regular grid of 31 × 31 points across the surface. Figure 5
shows the mean distances (on a log scale to adjust for skewness) between the true
and estimated valley curves in the case of h = 0.6. In each pair of boxplots, the
direct curve estimate shows superior performance. There are some isolated cases
of higher errors in curve estimation, but these are due to reference paths which
occasionally locate valley signals in rapidly fluctuating surfaces adjacent to the
true valley curve. This occurs only at levels of noise (vr = 0.2) which are much
higher than those exhibited in the applications later in the paper. In general, the
results highlight the benefit of estimating a curve by focussing on the curve ex-
plicitly, rather than creating the estimate as a by-product of a more general surface
matching method. The absence of any need to create a suitable template is also a
significant asset of the curve-based approach. The guarantee that the curve lies on
the image surface, as discussed in Section 3, is also a major advantage which is
not enjoyed by the template matching approach.
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Further details of bias calculations and simulation results are reported in the
Supplementary Material (Vittert, Bowman and Katina (2019b, 2019c and 2019d)).
In particular, these show that the effects of inaccurate placement of landmarks is
modest.

4.2. Manual comparison. Manual identification by trained individuals has
been regarded as the ‘gold standard’ for the production of anatomical landmarks.
It needs to be recognised that manual methods are also subject to variation and
inaccuracy, and that this will undoubtedly increase in the manual identification of
curves rather than points. Nonetheless, it is valuable to compare the curves pro-
duced by the facial model described above with those identified manually, here
using the Landmark ©IDAV software. The facial model curves and the manually
marked curves were constructed on 55 images and represented by sets of discrete
points to allow Procrustes registration of each pair of curves. This gave an overall
root mean square distance of 1.70 mm between corresponding points. Differences
between the curves were strongest in the lip borders and the nasal bridge. When
these regions are omitted, the overall root mean square distance between curves
drops to 0.60 mm.

It is instructive to consider the reasons why these two areas show the largest dif-
ferences. When marking lips, manual observers are likely to be strongly influenced
by colour change at the so-called ‘vermillion border.’ However, it is not always the
case that the ridge of the lips coincides exactly with this colour change. At the
nasal bridge, there is a tendency for manual observers to mark positions which
are slightly ‘north’ of the ridge curve. It can be very difficult to make a visual
judgement on where this ridge lies, with a great deal of examination of the im-
age required at different orientations. In contrast, the facial model employs direct
information on surface curvature and is unaffected by perceptual considerations.

5. Applications. Two examples of shape analysis are investigated in this sec-
tion involving the shapes of mussel shells and human faces. The aim is to illustrate
the curve estimation methods described in Section 3 and in particular to investigate
the information and insight delivered by the different levels of the landmark-curve-
surface hierarchy. Each of these different levels of information can be analysed by
methods which exploit their specific characteristics. For example, Cheng, Dryden
and Huang (2016) describe various approaches specific to curve data. However, in
order to allow simple and even-handed comparison across the different types of in-
formation, Principal Component Analysis (PCA) will be used as this has sufficient
generality to be applicable to all these forms.

5.1. Mussel shells and climate change. Fitzer et al. (2015) describe a study
of the potential effects of climate change on the shape of mussel shells, separated
into six different groups of four to assess the affects of growth, over a nine-month
period, under increasing environmental pressure, based on ocean acidification and
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FIG. 6. The upper images show a mussel shell (left) coloured by shape index (middle), and max-
imum curvature values (right). The lower images illustrate the central ridge (left) of the shell, the
perimeter (middle) and a surface representation based on interpolation between these (right).

temperature. The top images of Figure 6 show a 3D image of a mussel shell placed
on a flat surface, with two manually marked, anatomical landmarks, and versions
of the same image coloured by shape index and by principal curvature κ1. This last
image highlights the perimeter curve. The central ridge of the mussel shell, and
its perimeter, were identified using the ridge and valley curve estimation methods
described in Section 3. A full surface model was then created by constructing
shortest distance paths between the ridge and perimeter curves. These steps are all
illustrated in Figure 6.

PCA was performed on the shape representations at each level of the landmark-
curve-surface hierarchy, but in this case the number of landmarks is too small to
provide any useful information. For the curves and surfaces, the first four principal
components (PCs) were considered as these explain over 90% of the variability
present. Table 1 shows for each component the evidence for change in shape with
environmental pressure, expressed in the form of p-values associated with a test of
no effect based on nonparametric regression; see Bowman and Azzalini (1997) for
details. No significant effects are apparent in the surface representations, but the
second and third PCs show evidence of change in the curve shapes, particularly in
the perimeter. The nature of the shape changes in the perimeter is indicated in the
lower and upper right-hand images, respectively, of Figure 7 through the curves
associated with ±3 standard deviations from the mean in this component direc-
tion. As environmental pressure increases, the mussel perimeter tends to widen
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TABLE 1
P-values associated with nonparametric regression with environmental pressures against shape

change (PCs)

PC Ridge Perimeter Ridge and Perimeter Surface

1 0.997 0.966 0.986 0.992
2 0.470 0.024 0.030 0.156
3 0.974 0.020 0.260 0.536
4 0.414 0.831 0.994 0.995

FIG. 7. The four left hand plots relate the scores for PC 2 to environmental pressure, using infor-
mation on the perimeter curve, the ridge curve, both of these curves, and a full surface represen-
tation. The two right hand plots show the perimeter shape changes associated with PCs 2 (upper)
and 3 (lower), represented through the curves associated with +3 (dotted) and −3 (solid) standard
deviations from the mean of the corresponding scores.
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with a more rounded shape. The third PC shows a change in the orientation of the
‘pointed’ end of the mussel tip.

The absence of evidence of shape change, when a full surface model is used,
highlights the potential benefit of using the focussed information provided by
curves, which are unaffected by the variability, which may be present in the more
detailed description of the intervening surface shape.

The results reported here are broadly consistent with those reported by Fitzer
et al. (2015). Additional seawater measurements were used in the earlier paper
and a slightly larger set of data was used in this paper, as a result of improved
performance in the curve estimation methods. (Reference to surface analysis in
the earlier paper essentially corresponds to a combination of ridge and perimeter
curves.)

5.2. Sexual dimorphism of the human face. The differences in facial shape be-
tween human males and females have been studied from a variety of perspectives.
See, for example, Bruce et al. (1993) and Armann and Balthoff (2012) for one ex-
ample from visual perception. The manner in which shape is quantified clearly has
a very big influence on the information which is then available for analysis. In this
area, shape has traditionally been quantified through distances, angles and ratios
computed from landmarks in 2D and 3D images, but the information present in
landmarks is necessarily limited. A recent example of a full 3D surface represen-
tation of faces is described by Claes et al. (2012) who warp a facial template onto
the images and focus particularly on symmetric/asymmetric components of sexual
dimorphism. It is of interest to use the curve estimation algorithm reported in Sec-
tion 3 to investigate the information contained in the different levels of landmark,
curve and surface representations in this context.

A sample of 219 facial images captured from volunteers (ages 18–45 years) was
used. All analysis reported in this section compares males and females through a
permutation approach, with 1000 permutations of sex labels to avoid reliance on
distributional assumptions. A larger mean centroid size is expected for males, and
this was confirmed by a two sample t-test (p = 0.011). Procrustes registration,
with scale removed, was used to focus attention on shape free of scale. Further
analysis was based on PCs as this provides a standard mechanism to describe the
main modes of shape variation in a smaller number of dimensions, as discussed by
Dryden and Mardia (2016), for example. The first six PCs were used here as this
captures around 75% of the shape variation. A Hotelling’s T 2 test of differences
in mean facial shape between males and females, based on these components for
curves, found a significant difference (p = 0.018).

Table 2 shows the evidence of sexual dimorphism from individual PCs across
all three forms of shape representation. Each row of Figure 8 corresponds to a
particular PC with boxplots to show the differences in scores between males and
females and facial images to illustrate the nature of the associated shape change.
Topographic colours are used to show the movement between the extremes at ±3
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TABLE 2
P-values associated with a two-sample comparison of males and females

PC Landmarks Curves Meshes

1 0.390 0.446 0.523
2 0.510 0.028 0.627
3 0.202 0.001 0.000
4 0.200 0.003 0.403
5 0.000 0.000 0.000
6 0.200 0.013 0.185

standard deviations away from the mean score, starting at the end of the compo-
nent scale dominated by females and moving to the end dominated by males (The
topographic scale is shown in millimeters at the bottom of Figure 8.) The distances
here are based on curves, but a full facial image has been warped onto the curve
positions to highlight the interpretation of these changes more effectively. In the
Supplementary Material (Vittert, Bowman and Katina (2019e), Figure 9), the ex-
tremes are shown for the other two levels (landmarks and mesh) of hierarchical
analysis for PCs 2−5, clearly showing that the shape change associated with each
component is similar across all levels of the hierarchy.

Table 2 shows that PC 5 is clearly significant in all three hierarchical levels.
Figure 8 shows that this corresponds to movement in the gnathion (lower chin)
which is generally lower in males than in females. PC 3 is significant in both the
curve and mesh analyses. This corresponds to an increased relative size of the nasal
region and a higher periorbital region for males.

Table 2 also shows that PCs 2 and 4 are significant in the curve analysis but
are not significant in the mesh analysis. The shape changes in PC 2 correspond to
a more prominent jaw and supraorbital region (brow) in males. PC 4 corresponds
to a lowering of the brow ridge and strong lowering of the jaw in males. (Notice
that the oral region also shows slight forward movement.) In contrast, these shape
changes are not expressed as strongly in the components constructed from the full
surface model.

Following on from the simple example of the mussel analysis, the curve estima-
tion algorithm described in this paper delivers a clearer analysis than the prevalent
conformed mesh methods. Again, we see that the most significant facial informa-
tion is held in the facial curves and that significant shape changes can be obscured
when too much unnecessary information is introduced in a surface representation.
The analysis indicates the key role played by the facial curves, where much of the
shape information resides, in a similar manner to the effects observed in the mussel
shell analysis.
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FIG. 8. Extremes of the curve analysis: 2nd, 3rd, 4th and 5th PC respectively, the female face
coloured topographically by the shape change to male with the male curves in red and female curves
in black. The topographic scale in millimeters is shown at the bottom of the figure.
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6. Discussion. The approach proposed in the paper gives a full description
of a 3D manifold through estimation of its ridge and valley curves and subse-
quent ‘in-filling’ of the intervening surface patches. The methods used respect the
inherently 2D nature of the manifold by operating in relevant 2D spaces. The max-
imisation of curvature along path integrals is used as the guiding principle for the
estimation of the ridge and valley curves, with efficient implementation through
p-spline representations. The applications illustrate that the information contained
in the curves can inform on shape differences more effectively than representa-
tions based simply on landmarks or indeed on the complexity of full surfaces. This
endorses the viewpoint that in the point-curve-surface hierarchy of manifold de-
scriptions the curve information plays a particularly important role, achieving a
parsimonious but informative descriptor of shape. There are many other applica-
tion areas, particularly in human and wider biological anatomy, where the analysis
of surface shape is central and where we believe that a curve based approach could
be beneficial. A reviewer helpfully suggested that brain cortical surfaces would be
a fascinating application, although the lack of homologous structure across indi-
viduals and the tree structure of the curves involved introduce complexity which
would require further methodological development.

Methods based on surface templates are very dependent on the particular tem-
plate used. Even in the case of human faces, which display strong similarities
across different populations, care must be exercised in the choice of template. For
example, experimentation with a ‘White British’ template in modelling facial im-
ages from subjects with African origin led to artefacts and distortions on several
occasions. The use of curves, which are estimated directly from the image of in-
terest, are free of this complication.

A further benefit is that individual features of surfaces (nose, lips, etc.) can
easily be defined by nominating curves as boundaries. Figure 2 illustrates this in
the case of the human face where lips, nose and other features are immediately
available as subsets of the image.

The analysis here has exploited the presence of traditional landmarks by using
these to ‘seed’ the construction of the ridge and valley curves. The existence of
methods of estimating these curves opens up the possibility of informing on the
location of landmarks which can be defined in terms of curve crossings or points
of extreme geodesic curvature. The combined estimation of curves and landmarks
is therefore a natural topic for further research.
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SUPPLEMENTARY MATERIAL

Supplementary Material A: Technical details of the ridge and valley curve
estimation (DOI: 10.1214/19-AOAS1267SUPPA; .pdf). We provide additional
supporting technical details for the original curve and valley estimations.

https://doi.org/10.1214/19-AOAS1267SUPPA
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Supplementary Material B: Simulations to compare curve and surface
based methods of curve estimation (DOI: 10.1214/19-AOAS1267SUPPB; .pdf).
We provide additional details on the simulations that compare the curve based
method presented in this paper and the surface based methods by others’.

Supplementary Material C: Bias in the estimation of surface curvature
(DOI: 10.1214/19-AOAS1267SUPPC; .pdf). We document the bias that exists in
the estimation of the surface curvatures.

Supplementary Material D: Simulations to assess the influence of land-
mark placement (DOI: 10.1214/19-AOAS1267SUPPD; .pdf). We provide addi-
tional supporting tables that display the change in curve estimations based upon
initial landmark placement.

Supplementary Material E: Principal components for sexual dimorphism
(DOI: 10.1214/19-AOAS1267SUPPE; .pdf). We provide additional supporting
plots that show the further Principal Component information for the sexual di-
morphism discussion.

REFERENCES

ARMANN, R. and BALTHOFF, I. (2012). Male and female faces are only perceived categorically
when linked to familiar identities. And when in doubt, he is a male. Vis. Res. 63 69–80.

BOOKSTEIN, F. L. (1997). Landmark methods for forms without landmarks: Morphometrics of
group differences in outline shape. Med. Image Anal. 1 225–243.

BOWMAN, A. W. and AZZALINI, A. (1997). Applied Smoothing Techniques for Data Analysis: The
Kernel Approach with S-Plus Illustrations. Oxford University Press, Oxford.

BOWMAN, A. W., KATINA, S., SMITH, J. and BROWN, D. (2015). Anatomical curve identification.
Comput. Statist. Data Anal. 86 52–64. MR3312737

BRUCE, V., BURTON, A. M., HANNA, E., HEALEY, P., MASON, O., COOMBES, A., FRIGHT, R.
and LINNEY, A. (1993). Sex discrimination: How do we tell the difference between male and
female faces? Perception 23 131–152.

CHE, W., ZHANG, X., ZHANG, Y.-K., PAUL, J.-C. and XU, B. (2011). Ridge extraction of a smooth
2-manifold surface based on vector field. Comput. Aided Geom. Design 28 215–232. MR2802876

CHENG, W., DRYDEN, I. L. and HUANG, X. (2016). Bayesian registration of functions and curves.
Bayesian Anal. 11 447–475. MR3471998

CLAES, P., WALTERS, M., SHRIVER, M. D., PUTS, D., GIBSON, G., CLEMENT, J., BAYNAM, G.,
VERBEKE, G., VANDERMEULEN, D. et al. (2012). Sexual dimorphism in multiple aspects of 3d
facial symmetry and asymmetry defined by spatially dense geometric morphometrics. J. Anat.
221 97–114.

COHEN-STEINER, D., DE VERDIERE, E. C. and YVINEC, M. (2002). Conforming Delaunay trian-
gulations in 3D. In Proceedings of the Eighteenth Annual Symposium on Computational Geome-
try 199–208. ACM. New York.

DAVIES, R. H., COOTES, T. F. and TAYLOR, C. J. (2001). A minimum description length approach
to statistical shape modelling. In Biennial International Conference on Information Processing in
Medical Imaging 50–63. Springer.

DE BERG, M., VAN KREVELD, M., OVERMARS, M. and SCHWARZKOPF, O. (2000). Computa-
tional Geometry: Algorithms and Applications, revised ed. Springer, Berlin. MR1763734

https://doi.org/10.1214/19-AOAS1267SUPPB
https://doi.org/10.1214/19-AOAS1267SUPPC
https://doi.org/10.1214/19-AOAS1267SUPPD
https://doi.org/10.1214/19-AOAS1267SUPPE
http://www.ams.org/mathscinet-getitem?mr=3312737
http://www.ams.org/mathscinet-getitem?mr=2802876
http://www.ams.org/mathscinet-getitem?mr=3471998
http://www.ams.org/mathscinet-getitem?mr=1763734


2562 L. VITTERT, A. W. BOWMAN AND S. KATINA

DRYDEN, I. L. and MARDIA, K. V. (2016). Statistical Shape Analysis, 2nd ed. Wiley, New York.
MR1646114

EILERS, P. H. C. and MARX, B. D. (1996). Flexible smoothing with B-splines and penalties. Statist.
Sci. 11 89–121. MR1435485

FARKAS, L. (1994). Anthropometry of the Head and Face, 2nd ed. Raven Press, New York.
FITZER, S. C., VITTERT, L., BOWMAN, A., KAMENOS, N. A., PHOENIX, V. R. and CUSACK, M.

(2015). Ocean acidification and temperature increase impact mussel shell shape and thickness:
Problematic for protection? Ecol. Evol. 5 4875–4884.

GOLDFEATHER, J. and INTERRANTE, V. (2004). A novel cubic-order algorithm for approximating
principal direction vectors. ACM Trans. Graph. 23 45–63.

HAMMOND, P., HUTTON, T. J., ALLANSON, J. E., CAMPBELL, L. E., HENNEKAM, R.,
HOLDEN, S., PATTON, M. A., SHAW, A., TEMPLE, I. K. et al. (2004). 3d analysis of facial
morphology. Am. J. Med. Genet., Part A 126 339–348.

HASTIE, T. and STUETZLE, W. (1989). Principal curves. J. Amer. Statist. Assoc. 84 502–516.
MR1010339

KATINA, S., MCNEIL, K., AYOUB, A., GUILFOYLE, B., KHAMBAY, B., SIEBERT, P., SUKNO, F.,
ROJAS, M., VITTERT, L. et al. (2016). The definitions of three-dimensional landmarks on the
human face: An interdisciplinary view. J. Anat. 228 355–365.

KENT, J. T., MARDIA, K. V. and WEST, J. (1996). Ridge curves and shape analysis. In BMVC
Proceedings 1996 1–10.

KNEIP, A. and RAMSAY, J. O. (2008). Combining registration and fitting for functional models. J.
Amer. Statist. Assoc. 103 1155–1165. MR2528838

KOENDERINK, J. J. (1990). Solid Shape. MIT Press Series in Artificial Intelligence. MIT Press,
Cambridge, MA. MR1045203

KOENDERINK, J. and VAN DOORN, A. (1992). Surface shape and curvature scales. Image Vis. Com-
put. 10 557–564.

MAO, Z., JU, X., SIEBERT, J. P., COCKSHOTT, W. P. and AYOUB, A. (2006). Constructing dense
correspondences for the analysis of 3d facial morphology. Pattern Recogn. Lett. 27 597–608.

MEIER, D. and FISHER, E. (2002). Parameter space warping: Shape-based correspondence between
morphologically different objects. IEEE Trans. Med. Imag. 21 31–47.

MEYER, M., BARR, A., LEE, H. and DESBRUN, M. (2002). Generalized barycentric coordinates
on irregular polygons. J. Graphics Tools 7 13–22.

OHTAKE, Y., BELYAEV, A. and SEIDEL, H.-P. (2004). Ridge-valley lines on meshes via implicit
surface fitting. In ACM Transactions on Graphics (TOG) 23 609–612. ACM.

PATRANGENARU, V. and ELLINGSON, L. (2016). Nonparametric Statistics on Manifolds and Their
Applications to Object Data Analysis. CRC Press, Boca Raton, FL. MR3444169

PAULSEN, R. R. and HILGER, K. B. (2003). Shape modelling using Markov random field restoration
of point correspondences. In Biennial International Conference on Information Processing in
Medical Imaging 1–12. Springer, Berlin.

PENNEC, X., AYACHE, N. and THIRION, J.-P. (2000). Landmark-based registration using features
identified through differential geometry. In Handbook of Medical Imaging—Processing and Anal-
ysis 499–513. Academic Press.

RAVIV, D., BAYRO-CORROCHANO, E. and RASKAR, R. (2017). LRA: Local rigid averaging of
stretchable non-rigid shapes. Int. J. Comput. Vis. 124 132–144. MR3681619

RAVIV, D. and KIMMEL, R. (2015). Affine invariant geometry for non-rigid shapes. Int. J. Comput.
Vis. 111 1–11. MR3300516

RAVIV, D., BRONSTEIN, A. M., BRONSTEIN, M. M., WAISMAN, D., SOCHEN, N. and KIM-
MEL, R. (2014). Equi-affine invariant geometry for shape analysis. J. Math. Imaging Vision 50
144–163. MR3233140

ROHR, K. (2001). Landmark-Based Image Analysis: Using Geometric and Intensity Models 21.
Springer, Berlin.

http://www.ams.org/mathscinet-getitem?mr=1646114
http://www.ams.org/mathscinet-getitem?mr=1435485
http://www.ams.org/mathscinet-getitem?mr=1010339
http://www.ams.org/mathscinet-getitem?mr=2528838
http://www.ams.org/mathscinet-getitem?mr=1045203
http://www.ams.org/mathscinet-getitem?mr=3444169
http://www.ams.org/mathscinet-getitem?mr=3681619
http://www.ams.org/mathscinet-getitem?mr=3300516
http://www.ams.org/mathscinet-getitem?mr=3233140


A HIERARCHICAL APPROACH TO THE ANALYSIS OF MANIFOLD DATA 2563

RUSTAMOV, R. M., OVSJANIKOV, M., AZENCOT, O., BEN-CHEN, M., CHAZAL, F. and
GUIBAS, L. (2013). Map-based exploration of intrinsic shape differences and variability. ACM
Trans. Graph. 32 72.

SRIVASTAVA, A., SAMIR, C., JOSHI, S. H. and DAOUDI, M. (2009). Elastic shape models for face
analysis using curvilinear coordinates. J. Math. Imaging Vision 33 253–265. MR2480989

STYLIANOU, G. and FARIN, G. (2004). Crest lines for surface segmentation and flattening. IEEE
Trans. Vis. Comput. Graph. 5 536–544.

VITTERT, L., BOWMAN, A. and KATINA, S. (2019a). Supplement A to “A hierarchical curve-based
approach to the analysis of manifold data.” DOI:10.1214/19-AOAS1267SUPPA.

VITTERT, L., BOWMAN, A. and KATINA, S. (2019b). Supplement B to “A hierarchical curve-based
approach to the analysis of manifold data.” DOI:10.1214/19-AOAS1267SUPPB.

VITTERT, L., BOWMAN, A. and KATINA, S. (2019c). Supplement C to “A hierarchical curve-based
approach to the analysis of manifold data.” DOI:10.1214/19-AOAS1267SUPPC.

VITTERT, L., BOWMAN, A. and KATINA, S. (2019d). Supplement D to “A hierarchical curve-based
approach to the analysis of manifold data.” DOI:10.1214/19-AOAS1267SUPPD.

VITTERT, L., BOWMAN, A. and KATINA, S. (2019e). Supplement E to “A hierarchical curve-based
approach to the analysis of manifold data.” DOI:10.1214/19-AOAS1267SUPPE.

L. VITTERT

A. W. BOWMAN

SCHOOL OF MATHEMATICS AND STATISTICS

UNIVERSITY OF GLASGOW

15 UNIVERSITY GARDENS

GLASGOW, G12 8QW
UNITED KINGDOM

E-MAIL: Liberty.Vittert@glasgow.ac.uk
Adrian.Bowman@glasgow.ac.uk

S. KATINA

INSTITUTE OF MATHEMATICS AND STATISTICS

MASARYK UNIVERSITY

BRNO

CZECH REPUBLIC

E-MAIL: stanislav.katina@gmail.com

http://www.ams.org/mathscinet-getitem?mr=2480989
https://doi.org/10.1214/19-AOAS1267SUPPA
https://doi.org/10.1214/19-AOAS1267SUPPB
https://doi.org/10.1214/19-AOAS1267SUPPC
https://doi.org/10.1214/19-AOAS1267SUPPD
https://doi.org/10.1214/19-AOAS1267SUPPE
mailto:Liberty.Vittert@glasgow.ac.uk
mailto:Adrian.Bowman@glasgow.ac.uk
mailto:stanislav.katina@gmail.com

	Introduction
	Tools from differential geometry
	Estimation of ridge and valley curves
	A linear reference path
	A more ﬂexible estimate
	Interpolation back to 3D space
	Construction of a facial surface model

	Evaluation of the performance of curve estimation
	Simulation study
	Manual comparison

	Applications
	Mussel shells and climate change
	Sexual dimorphism of the human face

	Discussion
	Acknowledgements
	Supplementary Material
	References
	Author's Addresses

