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52425 Jülich, Germany

(September 13, 1995)

Abstract

We theoretically study the behavior of vesicles filled with a liquid of higher

density than the surrounding medium, a technique frequently used in exper-

iments. In the presence of gravity, these vesicles sink to the bottom of the

container, and eventually adhere even on non - attractive substrates. The

strong size-dependence of the gravitational energy makes large parts of the

phase diagram accessible to experiments even for small density differences.

For relatively large volume, non-axisymmetric bound shapes are explicitely

calculated and shown to be stable. Osmotic deflation of such a vesicle leads

back to axisymmetric shapes, and, finally, to a collapsed state of the vesicle.
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Lipid vesicles are simple models for many membrane-bounded compartments occuring

in biology, such as cells or transport vesicles [1]. From a physical point of view, they can be

understood as flexible closed surfaces whose shapes and dynamics are controlled primarily by

the bending energy. Frequently, however, additional interactions are relevant for a particular

experimental situation. The interactions of two vesicles have been studied with micropipet

experiments [2]. Weak adhesion of a single vesicle to a substrate can be used to reduce

translational and rotational diffusion and thus to facilitate data analysis [3]. In this case,

one prefers a small contact area, in order to reduce effects exerted by the substrate. In

other experiments, however, adhering vesicles with a large contact area serve as a model of

a bound planar membrane whose fluctuations can be analyzed [4–6].

In order to stabilize the vesicle at the bottom of the measurement chamber, a difference

in density between the fluids inside and outside the vesicle is often employed. Mostly, this is

done by solvation of different sugars with equal osmolarity, but different specific weights [3].

However, while bending and adhesion energies have been taken into account, gravitational

energies have so far been neglected in the analysis of experiments [4,3]. We will show that

this is not justified even for the small density differences usually employed.

A simple scaling argument reveals that the contribution of the gravitational energy can-

not be neglected for large vesicles: Whereas the curvature energy is scale invariant [7], adhe-

sion energies behave as Fadh ∝ R2
0. However, the gravitational energy scales as Fgrav ∝ R4

0,

because it is proportional to the volume multiplied with the height of the center of mass of

the vesicle above the substrate. Here, R0 ≡ (A/(4π))1/2 is the radius of a sphere with the

same area, which sets the length scale. The energy scale is set by the bending rigidity, κ, of

the membrane. We introduce the dimensionless gravity parameter

g ≡ g0∆ρR4
0

κ
, (1)

where g0 ≃ 9.81 ms−2 is the acceleration of gravity and ∆ρ denotes the density difference

between the fluids inside and outside the vesicle. Typical values for the latter are around

0.01 . . . 0.1 g cm−3, i.e. a few percent of the density of water. Giant vesicles can reach a size
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of R0 ≃ (5 − 50)µm. With κ ≃ 10−19J ≃ 25kBT , one obtains values of 0.5 − 5 × 104 for g.

Thus, for giant vesicles, the gravitational energy can be varied over a large range and may

be of the same order of magnitude as the curvature energy.

Previous work has successfully explained the observed shapes of freely floating giant

vesicles in solution by calculating shapes of minimal bending energy with given constraints

[7–11]. The membrane-substrate interaction for vesicle adhesion was modeled by a contact

energy W [12], which is justified on a macroscopic scale since the range of most interactions

is orders of magnitude smaller than typical vesicle sizes. Our effective energy,

F =
κ

2

∫

dA (C1 + C2 − C0)
2 + g

∫

dV Z −WAadh −W ′Aself , (2)

consists of these energies augmented by gravitational and membrane self-adhesion energies.

Here, C1 and C2 are the principal curvatures, and C0 denotes the spontaneous curvature of

the membrane. Furthermore, Z denotes the height of a volume element above the substrate,

and Aadh is the contact area of adhesion at the substrate. The membrane adheres to itself

with a contact area Aself and contact energy W ′.

The behavior for very small and very large gravitational energies may be understood by

simple arguments. Vesicles filled with a fluid that is only slightly denser than the surrounding

fluid, i.e. for small g, will always touch the bottom of the measurement chamber but will not

necessarily form a finite contact area. We will call this state ’pinned’ if the vesicle touches

the wall only in a single point [13]. A contact area of finite size will be formed, as soon as

the cost in bending energy which is necessary in order to form this area is balanced globally

by a gain in gravitational energy. In the axisymmetric case, C1 will denote the principal

curvature along the contour. The criterion for the transition from the pinned state to a

bound state then follows from the local boundary condition at the contact point S1 of the

contour [12] as given by

R0C1(S1) =
√
2w , (3)

where w ≡ WR2
0/κ. For vanishing adhesion energy, i.e. w = 0, this condition becomes

C1(S1) = 0. Then, the continuous adhesion transition between the pinned state and a
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bound state with finite contact area happens, when g reaches a critical value where the

vesicle is deformed into a shape which has vanishing mean curvature at the contact point.

Varying w yields a whole line of adhesion transitions at g = gadh(w). Numerically, we find

gadh(w = 0) ≃ 0.45 for C0 = 0 without volume constraint. For g = 0, adhesion happens at

w = 2 induced just by the contact potential [12].

The behavior for large g is different from the large-w-limit. In the latter limit, the

bending energy may be neglected, and the vesicles will attain the shape of maximal contact

area for given constraints, which is a spherical cap with a finite contact angle determined

by the Young-Dupré-equation [12]. In the limit of high gravitational energy, bending is also

irrelevant, but now - given that the volume is fixed - the shape of least energy is that of a

flat disc, as can be seen from an expansion of the gravitational energy as a function of the

reduced volume, v ≡ V/(4R3
0/3π), for small volumes [14].

We now want to discuss the details of the shape transformations for general g, which

requires the calculation of shapes and their energies. In order to keep the number of pa-

rameters small, we introduce a few simplifications. First, we consider vanishing spontaneous

curvature, i.e. C0 = 0, assuming that the different compositions of the solutions do not affect

the symmetry of the bilayer. Second, we will focus on w = 0 for the membrane-substrate

adhesion and w′ = 0 for the membrane self-adhesion contact energies [15]. The case with

w 6= 0 and w′ 6= 0 will be discussed in more detail in another publication [16]. Axisymmetric

shapes can be calculated numerically by solving the Euler-Lagrange equations resulting from

Eq. (2) with appropriate boundary conditions [10,16]. A simple argument, however, shows

that non-axisymmetric shapes are also relevant.

For large reduced volume, i.e. for shapes close to a sphere, free prolate vesicles have

smaller energy than the corresponding discocytes [10]. When these shapes adhere under

gravity, they will orient their long axis parallel to the wall. For any finite g, the vesicle

will be flattened, thus giving rise to non-axisymmetric shapes. In order to conserve volume,

the asphericity in the plane parallel to the wall has to be reduced. As discussed above, we

expect the limit shapes for large density difference to be axisymmetric with the symmetry
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axis perpendicular to the wall. In general, such an axisymmetric shape should be reached

asymptotically for large g. In addition, we expect a discontinuous shape transition between

adhering discocytes and non-axisymmetric prolates for small g and v >∼ 0.65, since the free

vesicle with C0 = 0 exhibits a discontinuous transition between discocytes and prolates at

v ≃ 0.65 [10].

In order to calculate the energy of these non-axisymmetric shapes a numerical method

can be employed, which minimizes the discretized curvature energy of a triangulated surface

subject to given constraints. We have used Brakke’s Surface Evolver [17] program, which

also allows incorporation of the gravitational energy easily. Since numerical minimization

for a hard wall constraint is more problematic than for a soft wall, we have used the latter by

exposing the vesicle to the additional potential Vw(z) = V0w exp(−Z/Z0), with V0w/κ = 5

and Z0/R0 = 0.1 which leads to a numerically stable algorithm and induces only minor

deformation of the vesicle shape.

The Surface Evolver data shown in Fig. 1 indicate a ’tricritical’ point at v = vtr ≃ 0.88.

Hysteresis effects indicating a discontinuous transition are found only at v < vtr. In the

limit of small g, the limit of metastability for the discocytes at v = 0.75 coincides with the

results of an explicit stability analysis for free vesicles [18]. At the spinodals, the energy

difference between the unstable and the stable shape is of the order of several kBT ; e.g. at

v = 0.7, g = 11, the energy of the prolates is 1.50κ ≃ 35kBT above the energy of the stable

discocytes.

In the limit v ≈ 1, i.e. close to the sphere, we have also calculated non-axisymmetric

shapes using two simple approximations, whose results confirm the Evolver data and the

existence of a continuous transition in this regime. In the first approach, we expand the

curvature energy and geometrical quantities such as area, volume and center of mass in

spherical harmonics up to l = 2 along the lines of Ref. [19]. The influence of gravity is

computed under the assumption of ellipsoidal shapes, so that this method is only useful

for volumes v >∼ 0.98. In the second approach, we consider the restricted set of shapes

generated by ellipsoids deformed by special conformal transformations [20]. Calculation of
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both curvature and gravitational energies is now exact, but smaller-volume shapes are not

very well described by the restricted variation. Both approximations predict a continuous

symmetry-breaking transition at finite g, and give an approximation for the transition line

g∗(v), but fail to produce the tricritical point necessary to change to a discontinuous transi-

tion at smaller volumes. At v ≈ 1, however, both methods predict that g∗(v) goes to zero.

We conclude that for large v and intermediate g there are no stable adhering prolates.

For the general case of non-zero spontaneous curvature, the phase diagram becomes more

complex [16]. The trends, however, can be understood in analogy to the effect of spontaneous

curvature on free vesicles [10]. Negative C0 stabilizes bound discocytes and stomatocytes,

while positive C0 stabilizes bound prolates, and, finally, pears and budded shapes. If one

expands the shapes for g 6= 0 around the shapes at g = 0, one finds that the amplitudes

of the deformation depend linearly on g. The prefactors, however, are a non-monotonic

function of C0.

For small v, new phenomena occur: (i) Stomatocytes enter the phase diagram; (ii)

The self-avoidance of the membrane has to be taken into account. Free discocytes with

C0 = 0 self-intersect at their symmetry axis for v = 0.515 [10], while adhering discocytes

self-intersect for v between 0.4 and 0.5, depending on g and w. The physical shapes for even

smaller volumes involve membrane self-adhesion (shapes, which we denote as ’collapsed’ in

Fig. 1) even if there is no explicit membrane self-adhesion energy. For vanishing or small

self-adhesion energy, the cost in bending energy for forming a finite self-adhesion area is

high at the contact point, and there is a region of ’self-pinned’ shapes in the phase diagram.

If the self-adhesion energy is large, the possibility of a first-order collapse transition arises.

A shape sequence involving such a collapse transition as generated by osmotic deflation (see

below) is shown in Fig. 2.

For g = 0 and reduced volume v ≤ 0.45, adhering stomatocytes are stable when the

adhesion energy, w, exceeds a critical threshold value [12]. As these shapes rise higher above

the substrate than the discocytes of equal volume, they will not be stable for large g. With

increasing g, adhering stomatocytes redistribute their volume towards the substrate. As a
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consequence, the neck at the top of the vesicle closes. For all membrane self-adhesion energies

w′ > 0, we find a discontinuous self-adhesion transition. At the top of the vesicle, a finite

area around the infinitesimal neck then sticks together. The detailed order and sequence

of the transitions between collapsed and non-collapsed, free and adhering stomatocytes /

discocytes in the small-volume regime depends crucially on the values of w and w′ and will

be discussed elsewhere [16]. The energy diagram and shape sequence of a trajectory with

fixed g is shown in Fig. 3. The phase diagram might involve even more complicated shapes

such as self-adhering non-axisymmetric shapes or shapes that self-adhere in more than one

place. This should be kept in mind when one tries to understand the conformation of swollen

lipid and vesicle-like structures emerging near a substrate. Many conformations formerly

ascribed to defects in the membrane might be stable states of pure lipid membranes involving

self-adhesion.

There are several possibilities for experimentally scanning the phase diagram with a

single vesicle. Raising the temperature will expand the membrane much more than the

liquid. In this case, the actual volume and the density difference remain constant, but the

reduced volume, v, will decrease, while g will increase because of its dependence on R0. A

trajectory starting at a point (g, v) = (gs, vs) will thus continue as g(v) = gs(vs/v)
4/3.

Alternatively, one may vary the volume by exchanging the sugar concentration, Xex, of

the exterior fluid, while keeping the number of dissolved osmotically active particles inside

the vesicle, Nin = V Xin, constant. The volume will then adjust in such a way that the

osmotic pressure, Π = kBT (Xex − Nin/V ), vanishes up to a negligible contribution of the

order of κ/R3
0. In this case, an increase in the sugar content of the exterior fluid will raise

(i) the density of the exterior fluid directly, and (ii) the density of the fluid enclosed in

the vesicle by osmotically reducing its volume. The change of g with Xex thus depends on

experimental details. If min,ex denotes the molecular masses of the sugars inside and outside

the vesicle, one obtains

g =
g0R

4
0

κ

(

Nin

V
min −Xexmex

)

≈ g0R
4
0 Xex

κ
(min −mex) (4)
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in the limit of small Π. Even the sign of the response of the density difference to the

increase in sugar concentration, ∂g/∂Xex, depends on the types of sugars and the other

osmotically active substances involved. It vanishes for min = mex. A trajectory starting

at a point (gs, vs) will continue as g(v) = gs(vs/v). Alternatively, one may vary only the

density difference by exchanging sugars of different molecular weights in the exterior fluid,

while keeping Xex and the volume constant.

In conclusion, we have shown that additional energies are necessary for an experimentally

realistic description of adhering vesicles. Gravity leads to non-axisymmetric shapes, which

show continuous transitions to axisymmetric large-g shapes. For small volumes, the self-

avoidance of the membrane and the associated self-adhesion energy lead to a large variety of

’collapsed’ shapes. By osmotic deflation or exchange of sugars it is possible to study these

transitions with a single vesicle.
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FIGURES

FIG. 1. Phase diagram for adhering vesicles as a function of gravitational parameter, g, and

reduced volume, v. Non-axisymmetric shapes and the large-volume transition are computed using

the Surface Evolver program, while axisymmetric shapes are solutions of the Euler - Lagrange

equations with w = 0. The transition g∗(v) between the non-axisymmetric prolates and the

discocytes is discontinuous for v < vtr ≃ 0.88 (full line) and continuous for v > vtr (dashed)

separated by a tricritical point (black dot). For the discontinuous transition, the limit curves

of metastable states or spinodals are shown in the figure by dashed lines. At g <∼ 1 there is an

additional transition from ’pinned’ vesicles to those adhering in a finite area; the transition line is

not shown. On the small-v side of the phase diagram, collapsed shapes become relevant.

FIG. 2. Sequence of shapes for collapse transition of discocytes. Shapes are taken from a typical

osmotic trajectory generated by varying the sugar content of the exterior fluid (Eq. (4)). Param-

eters approximately matching a typical experimental situation [4] with R0 ≃ 5µm and concentra-

tions of the order 100 mM sucrose or glucose are: w = w′ = 0, Nin = 1011, g0R0min/κ = 10−10,

mex = 0.5min, xoR
3
0 ≃ 4.3·10−10(1), 4.8·10−10 (2), and 6.3·10−10 (3), leading to volumes v = 0.555

(1), v = 0.500 (2), and v = 0.379 (3), respectively.

FIG. 3. Energy F for adhering vesicles at g = 2, w = 0, and w′ = 0.05 as a function of the

reduced volume, v. Note that lines of constant F are shown diagonally and are not orthogonal to

lines of constant v. Stable shapes for the various volumes and their transition lines (dashed) are

shown in the lower part. All shapes adhere to the substrate. The non-axisymmetric shapes have

been calculated only at the marked points.
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