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                         A BSTRACT  
 In the central nervous system, vesicular monoamine trans-
porter 2 (VMAT2) is the only transporter that moves cyto-
plasmic dopamine (DA) into synaptic vesicles for storage 
and subsequent exocytotic release. Pharmacologically 
enhancing DA sequestration by VMAT2, and thus prevent-
ing the oxidation of DA in the cytoplasm, may be a strategy 
for treating diseases such as Parkinson ’ s disease. VMAT2 
may also be a novel target for the development of treat-
ments for psychostimulant abuse. This review summarizes 
the possible role of VMAT2 as a therapeutic target, VMAT2 
ligands reported in the literature, and the structure-activity 
relationship of these ligands, including tetrabenazine ana-
logs, ketanserin analogs, lobeline analogs, and 3-amine-2-
phenylpropene analogs. The molecular structure of VMAT2 
and its relevance to ligand binding are briefl y discussed.  

   K EYWORDS:     vesicular monoamine transporter 2  ,   Parkinson ’ s 
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   INTRODUCTION 
 The vesicular monoamine transporter (VMAT), a member of 
the vesicular neurotransmitter transporter family, is respon-
sible for the translocation of monoamines (serotonin, dopa-
mine, norepinephrine, and histamine) from the cytoplasm 
into synaptic vesicles via a proton electrochemical gradient 
generated by the vacuolar type H + -adenosine triphospha-
tase. 1  Two pharmacologically distinct VMAT isoforms, 
VMAT1 and VMAT2, have been cloned and described. 2-4  
Adult human and rodent monoaminergic neurons of the cen-
tral nervous system (CNS) and sympathetic postganglionic 
neurons express only VMAT2, 5-7  while VMAT1 is predomi-
nantly expressed in neuroendocrine cells such as chromaffi n 
cells of the adrenal medulla and enterochromaffi n cells of the 
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intestinal tract. 5-7  VMAT2 is also expressed in at least 2 
endocrine cell populations and in neurons. 6  Both VMAT1 
and VMAT2 are more widely expressed during embryonic 
development. 8  Substrate recognition and inhibitor sensitivi-
ties for differences between VMAT1 and VMAT2 have been 
studied using membrane vesicles prepared from stable trans-
formed cell lines from Chinese hamster ovaries (CHO) that 
express the respective proteins. 9  VMAT2 has a consistently 
higher affi nity for all of the monoamine substrates tested, 
particularly histamine, and has a greater sensitivity than 
VMAT1 to the inhibitor tetrabenazine (TBZ). 
 The natural alkaloid reserpine and TBZ are considered 2 clas-
sical VMAT inhibitors. 10  Reserpine inhibits the transport of 
amines into chromaffi n granules and synaptic storage vesi-
cles 11  ,  12  by binding with high affi nity to VMAT, presumably at 
the amine recognition site. It has been suggested that TBZ, on 
the other hand, binds to a site on VMAT that is different from 
the substrate binding site at which reserpine interacts. 12-14   

  VMAT2 AND NEUROPROTECTION 
 Oxidative deamination of monoamines by monoamine oxi-
dase is accompanied by the reduction of molecular oxygen 
to a toxic product, hydrogen peroxide. 15  Therefore, mainte-
nance of low cytoplasmic concentrations of neurotransmit-
ters by their reuptake into synaptic vesicles for storage is 
important to minimize their inherent toxicity. 16  Further-
more, storage of neurotransmitters in synaptic vesicles pre-
cludes their metabolism in the cytoplasmic compartment 
and reduces the synthetic demands on the cell. 16  In the cen-
tral nervous system, VMAT2 is the only transporter that 
moves cytoplasmic dopamine (DA) into synaptic vesicles 
for storage and subsequent exocytotic release. 1  
 Parkinson ’ s disease is a degenerative, progressive disorder 
that dramatically affects neurons of the substantia nigra and 
the basal ganglia. The etiology of Parkinson ’ s disease has 
not been elucidated, but exposure to endogenous or envi-
ronmental toxins may contribute to the development of the 
disease. 17-21  In this regard, DA may play a role as an endog-
enous toxin, since the normal metabolism of DA produces 
hydrogen peroxide as a byproduct, and the formation of 
DA-associated reactive oxygen species may contribute to 
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the loss of nigrostriatal DA neurons. 22  Accordingly, phar-
macologically enhancing DA sequestration by VMAT2, and 
thus preventing the oxidation of DA in the cytoplasm, may 
be a strategy for treatment of Parkinson ’ s disease. 
 Exposure to the neurotoxin  N -methyl-4-phenyltetrahydropyri-
dine (MPTP) results in clinical symptoms closely approximat-
ing Parkinson ’ s disease. 17   N -Methyl-4-phenylpyridinium 
(MPP + ), the active toxic metabolite of MPTP, is a substrate for 
VMAT2. 23-27  VMAT2 sequesters MPP +  in synaptic vesicles 
and thereby protects catecholamine-containing neurons from 
MPP + -induced toxicity and degeneration. 3  ,  28-32  CHO cells, 
which are normally sensitive to MPP +  toxicity, because they 
lack a plasma membrane amine transporter, can be made rela-
tively insensitive to MPP +  toxicity by transfection with VMAT 
complementary DNA. 3  In addition, when the transfected CHO 
cells are treated with reserpine, which inhibits VMAT2 func-
tion, the cells then become sensitive to MPP +  toxicity. 3  Other 
studies using heterozygous VMAT2 knockout mice show that 
the knockouts are more susceptible to the neurotoxic effects of 
MPTP compared with the wild-type mice. 28  ,  30  ,  33  Furthermore, 
heterozygous VMAT2 knockout mice are more sensitive to 
methamphetamine-induced neurotoxicity and are more vul-
nerable to the toxic effects of L-3,4-dihydroxyphenylalanine 
(L-DOPA, a DA precursor used to treat Parkinson ’ s disease) 
compared with wild-type mice. 34  ,  35  The latter results suggest 
that reduction in VMAT2 activity might attenuate the effi cacy 
of L-DOPA therapy in Parkinson ’ s patients. Finally, increased 
sequestration of DA in synaptic vesicles by VMAT2 has been 
suggested to be protective in Parkinson ’ s disease. 36  
 Recently, studies have suggested that pharmacological agents 
that increase VMAT2 activity are neuroprotective. For exam-
ple, methylphenidate increases vesicular DA uptake in rats 
and prevents persistent dopaminergic defi cits induced by high-
dose methamphetamine administration. 37  ,  38  Pramipexole, a 
DA D2/D3 agonist used as a therapy for Parkinson ’ s disease, 
increases vesicular DA uptake and protects against the loss of 
nigrostriatal DA neurons in methamphetamine-, 3-acetylpyri-
dine-, and ischemia-induced neurotoxicity. 39-41  Additionally, 
apomorphine, a DA D2/D3 agonist used in Europe as a treat-
ment for Parkinson ’ s disease and for impotence, increases 
vesicular DA uptake, and this mechanism has been suggested 
to be important for its associated neuroprotection. 42  
 Taken together, the results of the above studies indicate that 
VMAT2 expression and function are important in counter-
acting the neurotoxicity of MPP +  and perhaps of other envi-
ronmental and endogenous neurotoxins that play an etiologic 
role in neurodegenerative disease. 21   

  VMAT2 AND PSYCHOSTIMULANT ABUSE 
 Psychostimulant-induced behavioral activation and rein-
forcement are mediated, at least in part, via interaction with 

neurotransmitter transporters that regulate synaptic DA con-
centrations. 43-45  Recent studies have demonstrated that psy-
chostimulants alter VMAT2 function. 46  ,  47  Cocaine inhibits 
DA transporter function, induces a rapid and reversible 
increase in vesicular DA uptake and dihydrotetrabenazine 
(DTBZ) binding, and causes a shift in the ratio of cytoplas-
mic to vesicular DA, all of which suggests that VMAT2 
may be a novel target for the development of treatments for 
cocaine abuse. 48  Amphetamine and its analogs, such as 
methamphetamine, decrease vesicular DA sequestration by 
inhibiting vesicular uptake and promoting release from the 
vesicles. 49  ,  50  Amphetamine diffuses across the vesicular 
membrane, decreasing the pH gradient, which results in the 
loss of free energy needed for monoamine sequestration. 49-52  
Also, amphetamine that accumulates in the vesicles com petes 
with monoamines for protons, resulting in an increase in the 
diffusion of uncharged monoamines out of the vesicle. 52  
High-dose methamphetamine treatment decreases vesicular 
DA uptake and DTBZ binding, suggesting that there is a 
signifi cant alteration in VMAT2 function and localization at 
the vesicular membrane. 53  VMAT2 heterologous knockout 
mice exhibit reduced amphetamine-conditioned place pref-
erence (reward) and enhanced sensitivity to the locomotor 
effects of apomorphine, ethanol, cocaine, and amphet-
amine. 28  ,  54  VMAT2 knockout studies also indicate that 
VMAT2 plays an important role in mediating the behavioral 
effects of psychostimulants. Taken together, these results 
support the idea that VMAT2 should be considered as a valid 
target for the development of pharmacotherapies to treat 
psychostimulant abuse. Other evidence supporting the role 
of VMAT2 in psychostimulant pharmacology is the fi nding 
that benzoquinolizine derivatives, such as TBZ, which have 
high affi nity for VMAT2, decrease locomotor activity and agg-
ressiveness in monkeys 55  and decrease methamphetamine-
induced hyperactivity in rodent animal models. 55   

  VMAT2 LIGANDS 
  TBZ and Its Analogs 
 TBZ ( 1 ,      Figure 1 ), a benzoquinolizine compound, has been 
shown to deplete cerebral monoamines in rat brain by revers-
ibly inhibiting VMAT2. 56  First introduced in 1956 as an anti-
psychotic drug, 57  TBZ is currently used to treat hyperkinetic 
movement disorders, such as chorea associated with 
Huntington ’ s disease, tics in Tourette ’ s syndrome, and 
movement stereotypes in tardive dyskinesia. 58-60  The side 
effects associated with TBZ include sedation, depression, 
akathisia, and parkinsonism. 58  TBZ inhibits catecholamine 
uptake by VMAT2 with a  K i   of 3 nM 14  and acts as an inhibitor 
of both presynaptic and postsynaptic DA receptors in rat 
brain. 61  [ 11 C]TBZ (label on the 9- O -methyl group) has been 
synthesized 62  and used as an in vivo radioligand for positron 
emission tomography (PET) imaging of VMAT2. 63-66    
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 TBZ analogs have been synthesized with different alkyl 
groups at the C-3 position in the molecule, such as com-
pound Ro 4-1632 ( 2 ,      Figure 1 ). These analogs retain good 
amine-depleting activity. 55  
 In vivo, TBZ is rapidly and extensively metabolized to its 
reduced form, DTBZ ( 3 ,      Figure 1 ). 67  [ 3 H]DTBZ (label on 
the C-2 hydrogen) has been used as a selective radioligand 
in in vitro brain homogenate binding studies and in autora-
diographic studies, and is reported to have a  K d   value of 3.0 
nM. 13  ,  14  ,  68-70  [ 11 C]DTBZ (label on the 9- O -methyl group) 
has also been synthesized 71  and used for in vivo PET imag-
ing of VMAT2. 66  ,  72  
 TBZ contains 2 chiral carbon centers at C-3 and C-11b; 
thus, theoretically, TBZ can exist as 4 possible stereoiso-
mers (3R,11bR; 3S,11bS; 3R,11bS; and 3S,11bR). TBZ 
usually refers to the racemic compound, that is, a 1:1 mix-
ture of the 3R,11bR and 3S,11bS isomers. Synthetic DTBZ, 
the product of hydride reduction of the 2-keto group of TBZ, 
can exist in 2  a -DTBZ forms (2R,3R,11bR,  3a ; and 
2S,3S,11bS,  3b ,      Figure 2 ) and 2  b -DTBZ forms (2S,3R,11bR, 
 3c ; and 2R,3S,11bS,  3d ,      Figure 2 ).  a -DTBZ and  b -DTBZ 
can be separated by column chromatography, and the 
 a -DTBZ isomer ( K i   = 6 nM) shows slightly higher binding 
affi nity in vitro for rat brain VMAT2 than does  b -DTBZ ( K i   = 
20 nM). 73  The 2 enantiomers of  a -DTBZ have been sepa-
rated using chiral High Performance Liquid Chromatogra-

phy (HPLC). The (+)-isomer (2R,3R,11bR,  3a ) 74  shows 
high affi nity in vitro ( K i   = 0.97 nM) for rat VMAT2, whereas 
the ( – )-isomer shows very low affi nity for VMAT2 ( K i   = 2.2 
μM). Thus the binding of  a -DTBZ to VMAT2 is enantiose-
lective, with the (+)-isomer having higher affi nity. 75  ,  76    
 Another 4 possible DTBZ isomers (2S,3S,11bR,  3e ; 2R,3R,11bS, 
 3f ; 2R,3S,11bR,  3g ; 2S,3R,11bS,  3h ,      Figure 3 ) have been synthe-
sized and tested for inhibition of VMAT2 binding using rat vesicu-
lar membranes. Isomer  3g  showed the highest affi nity ( K i   = 28 
nM) in the [ 3 H]DTBZ binding assay. 77  ,  78    
 Methoxytetrabenazine (MTBZ) ( 4 ,      Figure 1 ) is another 
TBZ analog with high affi nity ( K d   = 3.9 nM) for VMAT2. 79  
Similar to DTBZ, [ 3 H] and [ 11 C]MTBZ have also been syn-
thesized 73  and used in in vitro and in vivo studies. 79-81  
 Nucleophilic addition of organometallic reagents to the C-2 
keto group of TBZ generated a series of 2-alkylated DTBZ 
analogs, such as the 2-Me, 2-Et, 2-Pr, 2-iso-Pr, and 2-iso-Bu 
derivatives (all racemic mixtures,      Figure 4 ). 82-85  These com-
pounds have been evaluated for inhibition of [ 3 H]MTBZ 
binding to VMAT2 in rat striatum. 85  The  b -methyl com-
pound  5a  showed the highest affi nity ( K i   = 2.6 nM) in this 
series, with a nearly 5-fold higher affi nity than its diastereo-
mer  5b  ( K i   = 12 nM), which is consistent with the fi nding 
that  a -DTBZ exhibits higher affi nity for VMAT2 than does 
 b -DTBZ. 73  Compound  5b  and compounds  6 to 9  all contain 
a  b -hydroxyl group and showed a general decrease in bind-
ing affi nity upon either lengthening or branching of the 
alkyl group at C-2. 85  These results indicate that analogs 
containing considerable steric bulk at position 2 can be tol-
erated. Thus, compound  10  (     Figure 4 ), in which an  125 I atom 
has been introduced for autoradiographic studies of VMAT2, 
has been synthesized. 86  ( ± )-Compound  10  can be separated 
by chiral HPLC into its optical isomers, and the fi rst eluted 
enantiomer binds to VMAT2 with a  K d   of 0.22 nM. 87    
 Structure-activity relationship (SAR) studies involving TBZ 
analogs have shown that quaternization of the amine nitro-
gen at position 5, aromatization of ring C, and elimination 
of the carbonyl group afforded compounds that were devoid 

 Figure 1.    Structures of tetrabenazine and its analogs ( 1-4 ).  

 Figure 2.    Stereoisomers of dihydrotetrabenazine ( 3a-d ).   Figure 3.    Stereoisomers of dihydrotetrabenazine ( 3e-h ).  
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of monoamine-depleting activity. 55  ,  88  Thus, a basic amine 
nitrogen at position 5 is a prerequisite for TBZ-like activ-
ity. 89  Also, methoxy groups at positions 9 and 10 appear to 
be essential for TBZ-like activity; the methylenedioxy com-
pound  11  (     Figure 5 ) was 3 orders of magnitude less potent 
than Ro 4-1284 ( 6 ). 90    
 Replacing the carbonyl oxygen in TBZ with a  bis -methylthio 
group (compound  12 ,      Figure 5 ) affords a compound with 
similar activity to TBZ. 91  Olefi nation of the carbonyl group 
to afford compound  13  (     Figure 5 ) (EC 50  = 14 nM) resulted 
in potent inhibition of [ 3 H]DTBZ binding. 92  
 Based upon a limited number of TBZ analogs ( 14 - 17 ,      Fig-
ure 6 ), a correlation between the lipophilicity of the analogs 
and their affi nity for the DTBZ binding site has been estab-
lished. 93  Compounds shown to have higher partition coeffi -
cients (octanol/buffer) generally exhibited a greater ability 
to inhibit the specifi c binding of [ 3 H]DTBZ (IC 50  = 6 nM 
for  14 , 47 nM for  17 , 110 nM for  16 , and 2500 nM for  15 ) 
to VMAT2. 93  Accordingly, compound  20  (     Figure 6 ), an 
iodinated and photosensitive derivative of TBZ, has been 
synthesized and exhibited an IC 50  of 428 nM to inhibit 
[ 3 H]DTBZ binding. 92  However, both its precursor (com-
pound  18 , IC 50  = 8.1 nM) and the non-iodinated analog ( 19 , 
IC 50  = 53 nM) of compound  20  showed higher affi nity at 
VMAT2 than did compound  20 . 92    
 Several derivatives of compound  16  (ie, compounds  21 - 24 , 
     Figure 7 ) have been synthesized; of these, the amino com-
pounds  21  and  22  retained affi nity for VMAT2 ( K i   = 7.6 nM 
and 72.2 nM, respectively, in the [ 125 I]iodovinyl-TBZ bind-
ing assay), whereas the amido compounds  23  and  24  exhib-
ited diminished affi nity for VMAT2 ( K i   = 730 nM and >10 
000 nM, respectively, in the [ 125 I]iodovinyl-TBZ binding 
assay). 94     

  Ketanserin and Its Analogs 
 Ketanserin ( 25 ,      Figure 8 ), a well-known serotonin 5-HT2 
receptor antagonist, 95  also binds to VMAT on chromaffi n 

granules and synaptic vesicles. 96-98  In the studies by Darchen 
et al, 96  Henry et al, 97  and Leysen et al, 98  ketanserin competi-
tively inhibited the binding of [ 3 H]DTBZ to VMAT2, and 
conversely, TBZ displaced [ 3 H]ketanserin binding. 
[ 3 H]Ketanserin binds to the TBZ binding site with a  K d   of 
45 nM at 30ºC and a  K d   of 6 nM at 0ºC. 96    
 A ketanserin derivative, 7-azidoketanserin ( 26 ,      Figure 8 ), 
also binds to the TBZ binding site of bovine chromaffi n 
granule membranes with a  K i   of 23 nM (inhibition of 
[ 3 H]DTBZ binding). 99  An iodinated azido derivative of ket-
anserin, 7-azido-8-iodoketanserin ( 27 ,      Figure 8 ), binds to 
the same specifi c TBZ binding site as ketanserin with a  K d   
of 5.5 nM at 0ºC 99 ; 7-azido-8-[ 125 I]iodoketanserin has been 
successfully used for photoaffi nity labeling of TBZ binding 
sites of different tissues, including rat striatum, rabbit 
 platelets, human pheochromocytoma, and human adrenal 
medulla. 99  
 Lengthening the distance between the piperidine and the 
benzoyleneurea moieties of the ketanserin molecule by 
addition of 2 methylene groups results in a compound ( 28 , 
     Figure 9 ) that exhibits a 20-fold decrease in affi nity ( K i   = 
950 nM) for the [ 3 H]DTBZ binding site. 96  Reducing the 
keto group of ketanserin (compound  29 ,      Figure 9 ) also 
decreases affi nity ( K i   = 350 nM) for this site. Additionally, 
replacing the benzoyleneurea moiety with other heterocy-
cles (eg, compounds  30-32 ,      Figure 9 ) also decreases affi nity 
( K i   = 950, 814, and 3600 nM, respectively) for the [ 3 H]DTBZ 
binding site. However, minor structural changes to the 

 Figure 4.    Structures of tetrabenazine analogs ( 5a-b  and  6-10 ).  

 Figure 5.    Structures of tetrabenazine analogs ( 11-13 ).  

 Figure 6.    Structures of tetrabenazine analogs ( 14-20 ).  

 Figure 7.    Structures of tetrabenazine analogs ( 21-24 ).  
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benzoyleneurea moiety, such as introducing a hydroxyl 
group into the ring (compound  33 ,      Figure 9 ) or replacing 1 of 
the oxygen atoms with a sulfur atom (compound  34 ,      Figure 
9 ), retains the affi nity ( K i   = 14 and 40 nM, respectively). 96     

  Lobeline and Its Analogs 
 A lipophilic alkaloid from  Lobelia infl ata , ( – )-lobeline 
(lobeline, 2R,6S,10S-,  35 ,      Figure 10 ), displaces [ 3 H]nicotine 
binding from native nicotinic receptors in the CNS with 
high affi nity ( K i   = 4-30 nM). 100-104  Although lobeline has 
no structural resemblance to nicotine, and SARs do not sug-
gest a common pharmacophore, 105  it has many nicotinelike 
effects, such as tachycardia and hypertension, 106  brady-
cardia and hypotension in anesthetized rats, 107  anxiolytic 
activity, 108  and improvement of learning and memory. 109  In 
contrast to nicotine, lobeline only marginally supports self-
administration in mice 110  and does not support self-admin-
istration in rats. 111  Additionally, chronic lobeline treatment 
does not increase locomotor activity in rats and does not 
produce conditioned place preference. 112  ,  113  Thus, lobe-
line and nicotine have different effects in behavioral and 

neurochemical studies, suggesting that they do not act via a 
common mechanism. Nevertheless, lobeline has often been 
considered to be a nicotinic receptor agonist. Conversely, 
we and others have established that lobeline acts as a potent, 
but nonselective, nicotinic receptor antagonist. 104  ,  114-117  
Lobeline inhibits nicotine-evoked [ 3 H]DA overfl ow from 
rat striatal slices with an IC 50  of 1 μM, suggesting that lobe-
line acts as an antagonist at nicotinic receptors mediating 
nicotine-evoked DA release (ie,  a 6 b 2 b 3* subtype). 116  Lobeline 
also inhibits nicotine-evoked  86 Rb +  effl ux from rat thalamic 
synaptosomes with an IC 50  of 0.7 μM, indicating that lobe-
line is also an antagonist at  a 4 b 2* nicotinic receptors. 116  
Moreover, lobeline also inhibits [ 3 H]methyllycaconitine 
binding to rat brain membranes with a  K i   of 6.26 μM, indi-
cating that there is an interaction with the  a 7* nicotinic 
receptor subtype. 117  Lobeline has also been reported to 
be an antagonist (IC 50  of 8.5 μM) at human  a 7* nicotinic 
receptors expressed in  Xenopus  oocytes. 118    
 In addition to interacting with nicotinic acetylcholine recep-
tors (nAChRs), lobeline inhibits [ 3 H]DTBZ binding to 
VMAT2 with an IC 50  of 0.90 μM and inhibits [ 3 H]DA 
uptake into rat striatal vesicle preparations with an IC 50  of 
0.88 μM. 119  ,  120  Therefore, lobeline is a nonselective nAChR 
antagonist that also inhibits VMAT2 function. Importantly, 
lobeline has been shown to inhibit both the neurochemical 
and the behavioral effects of amphetamine in rodents. 111  ,  121-123  
The mechanism underlying the lobeline-induced inhibition 
of these effects has been suggested to be noncompetitive 
inhibition of VMAT2 function. 114  The observation that lobeline 
is not self-administered is consistent with fi ndings that lobe-
line does not evoke DA release. 111  ,  114  ,  119  Furthermore, the 
observation that lobeline inhibits methamphetamine-evoked 
DA release from superfused rat striatal slices 116  is consis-
tent with its ability to decrease methamphetamine self-
administration in rats. 123  These studies clearly implicate 
VMAT2 as a potential target for the development of 
agents to treat methamphetamine abuse. Regardless, 
lobeline is a novel prototypical molecule from which 
subtype-selective nAChR ligands and selective VMAT2 
inhibitors may be developed following appropriate struc-
tural modifi cation. 
 Systematic structural modifi cation of the lobeline molecule 
provided 2 non-oxygen-containing lobeline analogs: 
 N -methyl-2,6-di-( cis -phenylethenyl)piperidine ( meso -trans-
diene [MTD],  36a ,      Figure 11 ) and  N -methyl-2,6-di-( cis -
phenylethyl)piperidine (lobelane,  37a ,      Figure 11 ). The latter 

 Figure 8.    Structures of ketanserin and its analogs ( 25-27 ).  

 Figure 9.    Structures of ketanserin analogs ( 28-34 ).  

 Figure 10.    Structure of lobeline ( 35 ).  
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2 analogs showed affi nity for VMAT2 at the TBZ binding 
site ( K i   of 9.88 μM for  36a , and 0.97 μM for  37a ), with 
negligible affi nity for the ligand binding sites on  a 4 b 2* and 
 a 7* nAChRs. 117  ,  124  Compounds  36b  and  36c  (     Figure 11 ) 
are 2 stereoisomers of  36a ;  36c  was equipotent with its 
 meso -isomer, MTD, but  36b  was slightly less potent (2- to 
3-fold) than MTD at VMAT2. Within the lobelane series of 
compounds (ie, compounds  37a ,  37b , and  37c ,      Figure 11 ), a 
change in C2, C6 stereochemistry from  cis  to  trans  afforded 
a modest reduction (5- to 6-fold) in affi nity at VMAT2. The 
 trans  enantiomers  37b  and  37c  exhibited comparable affi ni-
ties at VMAT2. These data indicate that the VMAT2 bind-
ing site is not sensitive to major stereochemical changes to 
the MTD and lobelane molecules at the C2 and C6 piperid-
ino ring carbons.   
 Interestingly, 2 conformationally fl exible, ring-opened com-
pounds,  38a  and  38b  (     Figure 12 ) ( K i   = 5.21 and 3.96 μM, 
respectively) and 2 acyclic compounds,  39  and  40  (     Figure 
12 ) ( K i   = 2.37 and 3.07 μM, respectively), exhibited lower, 
but comparable, affi nity for VMAT2 compared with lobel-
ane. Thus, ring opening or complete removal of the piperi-
dine ring results in only a modest reduction in affi nity at 
VMAT2 compared with lobelane ( 37a ). The presence of a 
basic amine functionality is likely a prerequisite for VMAT2 
recognition, as is evidenced by the fact that quaternized 
compounds  41  ( K i   > 100 μM) and  42  ( K i   = 16.5 μM) (     Fig-
ure 12 ) show signifi cant loss in affi nity for VMAT2. 124    
 The entire lobelane structure appears to be critical for high-
affi nity binding at VMAT2, since fragments of lobelane or 
MTD, such as compounds  43  and  44  (     Figure 13 ) (both  K i   > 
100 μM), exhibited no affi nity for VMAT2. 125    

 Isomerized lobelane analogs, such as compound  45  (     Figure 
14 ) ( K i   = 1.36  m M), retained affi nity for VMAT2, indicating 
that the position of the piperidine  N  atom relative to the C2 
and C6 side chains does not appear to be critical for VMAT2 
interaction, and that the VMAT2 binding site can tolerate 
changes in distance between the piperidine nitrogen and the 
2 phenyl rings. 125  In the lobelane structure, changes in the 
 N -substituent can also be tolerated.  Nor -lobelane ( 46 ,  K i   = 
2.31  m M),  nor - N -ethyl lobelane ( 47 ,  K i   = 3.41  m M), and 
 nor - N -n-propyl lobelane ( 48 ,  K i   = 1.87  m M) (     Figure 14 ) 
exhibit only a slight decrease in affi nity for VMAT2 com-
pared with lobelane. 125  Replacing the phenyl rings of lobel-
ane with naphthalene rings (compound  49 ,  K i   = 0.63  m M) or 
introducing substituents into the phenyl rings (eg, in com-
pounds  50 ,  K i   = 0.57  m M;  51 ,  K i   = 0.43  m M; and  52 ,  K i   = 
0.52  m M) (     Figure 14 ) retains or somewhat improves affi nity 
at VMAT2.   
 To increase the rigidity of the lobelane molecule, analogs 
were prepared in which the piperidine ring has been replaced 
with a tropene ring. The resulting compounds ( 53 ,  K i   = 1.30 
 m M;  54 ,  K i   = 1.38  m M; and  55 ,  K i   = 4.80  m M) (     Figure 15 ) 
exhibited affi nity at VMAT2 comparable with lobelane. 126     

  3-Amino-2-Phenylpropene Derivatives 
 Recently, a series of 3-amino-2-phenylpropene derivatives 
(     Figure 16 ) have been reported as novel competitive inhibi-
tors of the bovine chromaffi n granule membrane mono-
amine transporter (bVMAT2). 127  With a  K i   of 40.3  m M, 
3-amino-2-phenylpropene (APP,  56 ) inhibits DA uptake 
into bVMAT2. Introduction of a hydroxyl group into the 3 or 4 

 Figure 13.    Structures of lobeline analogs ( 43  and  44 ).  

 Figure 11.    Structures of lobeline analogs ( 36a-c  and  37a-c ).  

 Figure 12.    Structures of lobeline analogs ( 38a-b  and  39-42 ).   Figure 14.    Structures of lobeline analogs ( 45-52 ).  
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position of APP affords compounds  57  ( K i   = 16.7  m M) and 
 58  ( K i   = 15.5  m M), respectively, equally improved potency 
for bVMAT2. However, compound  59  ( K i   = 103  m M), which 
has a methoxyl group at the 4 position of the phenyl ring of 
APP, led to a decrease in potency. However, compound  60 , 
in which a methoxyl group is at the 3 position of the phenyl 
ring, led to a slight improvement in inhibitory potency with 
respect to APP. Methyl ( 61 ,  K i   = 55.9  m M) or fl uoro ( 62 ,  K i   = 
42.3  m M) substitution at the 4 position of the phenyl ring 
had no effect on the inhibitory potency, while chloro ( 63 ), 
bromo ( 64 ), and iodo ( 65 ) substitution led to a modest 
increase in inhibitory potency ( K i   = 18.0, 17.7, and 12.9 
 m M, respectively).     

  VMAT2 STRUCTURE AND MOLECULAR BASIS 
FOR BINDING 
 Predictions regarding the molecular structure of VMAT2 
from its protein sequence are that it comprises 12 putative 
transmembrane domains (TMDs) with both N- and C- ter-
mini in the cytoplasm and a large, hydrophobic,  N -glycosyl-
ated loop between TMDs 1 and 2 facing the vesicle lumen. 1  
Structural biology studies have identifi ed important resi-
dues that may contribute to ligand binding and monoamine 
transport. Mutagenesis studies indicate that aspartate 33, 
which contains a negative charge, in TMD1 and serines 180 
to 182 in TMD3 of VMAT2 play a critical role in substrate 
recognition, presumably by interacting with the protonated 
amino group of the ligand and hydroxyl groups on the cate-
chol or indole ring, respectively. 128  In addition, lysine 139 
in TMD2 and aspartate 427 in TMD11 of VMAT2 interact 

to form an ion pair and appear to provide a structural frame-
work for substrate recognition. 129  Experiments employing a 
chimera of VMAT1 and VMAT2 indicate that 2 domains, 
TMD5 through TMD8 and TMD9 through TMD12, cooper-
ate to confer the high-affi nity interaction of VMAT2 with 
TBZ and histamine. 130  In addition, the domain encompass-
ing TMD3 and TMD4 infl uences serotonin affi nity but not 
histamine affi nity or TBZ sensitivity. 130  The domain encom-
passing TMD5 through TMD7 of VMAT2 in the context of 
N-terminal VMAT2 sequences reduces the apparent affi nity 
for serotonin but not histamine or the sensitivity to TBZ. 130  
Tyrosine 434 and aspartate 461 in TMD9 through TMD12 
are identifi ed as being responsible for the high-affi nity inter-
action of TBZ, histamine, and serotonin, but not for DA. 131  
Photoaffi nity labeling of purifi ed rat VMAT2 indicates that 
TMD1 and TMD10/11 are possibly juxtaposed and may 
interact in a functionally signifi cant manner. 132  Cysteine 
mutagenesis and derivatization of human VMAT2 revealed 
that cysteines 439, 476, and/or 497, and possibly cysteines 
126 and/or 333, are important for [ 3 H]TBZOH binding, and 
cysteines 176, 207, and 439 together are important for 
[ 3 H]serotonin transport. 133  Furthermore, a disulfi de bond 
between lumenal cysteine 126 in loop 1/2 and cysteine 333 
in loop 7/8 has been identifi ed. 134   

  CONCLUSION 
 Signifi cant progress has been made over the last 20 years in 
elucidating the role of VMAT2 in monoamine transport and 
its potential as a therapeutic target. VMAT2 sequesters cyto-
plasmic DA and thus prevents the oxidation of DA in the 
cytoplasm; VMAT2 also sequesters neurotoxins within ves-
icles. These data indicate that VMAT2 may play a role in 
neuroprotection and that molecules that interact with 
VMAT2 may have value as treatments for diseases such as 
Parkinson ’ s disease. VMAT2 may also be a novel target for 
the development of treatments for psychostimulant abuse, 
and the discovery of molecules that modulate VMAT2 func-
tion may afford useful tools for examining the pivotal role 
of this transporter in the neurochemical and behavioral 
effects of psychostimulant drugs, thus providing potential 
pharmacotherapies.  
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