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The question of whether brain function is entirely genetically
determined or may be influenced by the environment or by

nutrition has been debated for decades. Several studies have associ-
ated breastfeeding with improved intelligence in later life (1–5). Of
course many confounding factors such as socioeconomic status, peri-
natal, and early childhood morbidities will influence both readiness
for breastfeeding as well as direct cognitive development. Effects of
studies rigorously controlling for maternal intelligence did not indeed
find the same major beneficial effects of breastfeeding on later intel-
ligence (6,7). Mechanisms by which breastfeeding is supposed to
exert its effects on cognitive development is mainly fatty acid (FA)
composition of human milk, containing polyunsaturated FA such as
omega-3 polyunsaturated fatty acids, docosahexaenoic acid (DHA),
and trophic factors such as insulin-like growth factor-1 (8), both
important for organ development and in particular for the brain. The
Avon Longitudinal Study of Parents and Children showed that IQ
increased by 3.2 points for every 100 ng/mL increase of plasma
insulin-like growth factor-1 levels and this in particular for the Verbal
IQ (VIQ) compared with the Performance IQ (PIQ) (9). Polyunsatu-
rated FA, such as DHA [22:6(n-3)] are important precursors of
membrane lipids and are, as such, important components of brain
growth and myelination. DHA is the most abundant (n-3) fatty acid in
the mammalian brain. DHA in the brain can be obtained either as
DHA itself or from one of its precursors, �-linolenic acid or eicosa-
pentaenoic acid. However, the rates of conversion of �-linolenic acid
to DHA is low in humans (less than 1% of dietary amount). Before
birth, DHA is transported through the placenta via pathways involving
fatty acid binding proteins and �-fetoprotein, before release into the
fetal circulation, the rate of transfer increasing during the third
trimester. High dietary intake of DHA during pregnancy results in
higher maternal-to-fetal transfer (10). After birth, the infant is pro-
vided with DHA in mother’s milk. However, the level of DHA can
vary (from less than 0.1 to 1% of milk fatty acids) depending on the
amount of DHA in the mother’s diet.

For the premature infant, nutrition regularly provided by the pla-
cental transfer during the third trimester dramatically changes after
birth at a time point when the organism is still dependent on nutrients
transferred from the placenta. Both parental nutrition as well as breast
milk of mothers after premature birth provide insufficient nutritional
support to the developing brain of the premature infant and may lead

to postnatal growth restriction with the known consequences of
altered hormonal status including alteration of leptin expression (11).
Many recent studies have therefore assessed the effects of breastfeed-
ing and nutritional interventions on neuro-developmental outcome of
premature infants (12–16), showing advantage with early breastfeed-
ing, FA supplementation, and higher protein intake. Preterm and low
birth weight infants are often growth-restricted at hospital discharge.
Feeding infants posthospital discharge with calorie- and protein-
enriched formula milk might therefore facilitate “catch-up” growth,
but this has not been confirmed in a recent Cochrane Database review
(17). The current study by Isaacs et al. is one of the few studies that
looks at specific brain structural effects of nutritional supplementation.
Human brain growth mainly takes place during the third trimester
with whole brain volume more than doubling and cortical gray matter
volume increasing four-fold (18) and an increase in subcortical gray
matter or basal ganglia of 70% (19,20). This is also the time period in
which cortical folding and gyrification take place with an increase of
brain surface and degree of sulcation index (21). Conditions such as
severe prematurity and cerebral white matter injury have been shown
to affect brain growth and specific structural brain development with
subsequent functional consequences both at birth, in infancy, early
childhood, and adolescence (22–27). Regional brain growth has been
shown to be different with occipital regions growing much faster than
prefrontal regions and differentially affected by conditions such as
prematurity affecting growth in the central regions or brain lesions
affecting both central and frontal brain regions (19,21,28). All these
measures have been defined in vivo using advanced Magnetic Reso-
nance Image analysis tools similar to the approach taken in the study
by Isaacs et al. The authors in this study present data on a comparison
of brain structural volumes and IQ measurements in two groups of
ex-preterm infants born at a gestational age below 30 wk at adolescent
age treated with a different perinatal nutritional protocol. They used an
atlas-based segmentation technique to define total brain and cortical
gray matter volume as well as volumes of the subcortical gray matter
structures, caudate nucleus, thalamus, putamen, globus pallidum,
hippocampus, and amygdala and IQ testing with Wechsler Intelli-
gence Scale for Children defining both VIQ and PIQ. The high
nutrient group expreterm adolescents showed significantly better per-
formance on VIQ ex-preterm measures with no differences in PIQ
measures. Structurally the two groups showed significant differences
in both left- and right-sided caudate volume, with the standard nutri-
tion group showing lower caudate volumes which further correlated
with IQ scores with lower volume indicating lower VIQ. This was a
gender-specific effect with mainly male preterm infants being affected
by these differences in perinatal nutrition. Subcortical gray matter
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structures have been shown to be affected by premature birth with
correlations to later cognitive outcome (23,29–31) as well as in
neuro-psychiatric disorders such as attention deficit hyperactivity
disorder (32,33) and Depression (34). Deep nuclear gray matter
volume reduction at term age has been shown in a previous study to
be correlated with gestational age at birth and severity of respiratory
distress syndrome, so, clearly immaturity at birth and comorbidities
such as severe respiratory distress which are associated with oxida-
tive stress lead to reduction in deep cortical gray matter volume at
term. Immaturity and severity of respiratory distress syndrome on the
other hand are often associated with poor nutritional status in the
preterm infant, and therefore the findings of the current study by
Isaacs et al. would suggest that some of these effects might be due to
insufficient nutritional support and that some of these effects can be
reversed by higher nutritional support or by additional FA such as
DHA. The caudate is known to be one of the brain regions expressing
high DHA content and changes can be observed after dietary deple-
tion and repletion (35). Experimentally it is known that DHA incor-
porates into the membrane bilayer, and increases the degree of
flexibility and direct interaction with membrane proteins. This im-
pacts on the speed of signal transduction and neurotransmission (36).
Unesterified DHA acts as ligands for brain transcription factors
retinoid X receptor alpha (RXR) and peroxisome proliferator-
activated receptor (PPAR), which dimerize to regulate the expression
of genes involved in the control of synaptic plasticity, cytoskeleton
and membrane assembly, signal transduction and ion channel forma-
tion. This gene regulation function could explain the role of DHA in
many aspects of development such as neurogenesis, morphologic
differentiation of catecholaminergic neurons, and activity-dependent
plasticity (36,37). DHA also seems to inhibit the oxidative stress-
induced induction of pro-inflammatory genes and apoptosis, and
provide protection against peroxidative damage of lipids and proteins
in the developing brain (37,38). Leptin regulates human eating behav-
ior by regulating striatal brain regions (39), but is also known to regulate
neuronal excitability and cognitive function in particular by influencing
positively the hippocampal-dependent learning and memory (40).

Another condition by which brain development can be affected in
the long term is intrauterine growth restriction (IUGR) (41). Cur-
rently the IUGR rate is the highest it has been in over 20 y and is
likely to rise further due to the increasing rate of infertility treat-
ments, multiple pregnancies, older mothers, and exposure to IUGR-
inducing agents such as tobacco. All these conditions lead to poor
nutritional status of the fetus and subsequent alteration of structural
and functional brain development with reduction in cortical gray
matter volume, reduction in striatal volume, and reduction in hip-
pocampal volume, predominantly in boys (42–45). Children with
very low birth weights have multiple rather than isolated cognitive
deficits including problems with attention, memory, reading and
mathematics, as well as reasoning and self regulation (46,47). These
cognitive deficits are likely to have an overriding central nervous
impairment with underlying brain structural changes (48). Recently
epidemiologic studies assessing maternal nutrition have lead to in-
teresting observations by which maternal consumption of seafood
during pregnancy lead to higher cognitive performance in their
offspring, with again the most prominent effect on VIQ (49). Fatty
acid metabolism is therefore an important component of both prena-
tal and postnatal brain development and the current study by Isaacs
et al. illustrates how structural and functional changes in relation to
nutritional interventions can be studied. Further studies should con-
centrate on the combined effect of genetic background (50) and
nutritional interventions on both structural and functional brain de-
velopment. Understanding the effects of early antenatal, perinatal,
and neonatal events on later structural and functional brain develop-

ment, aberrant or regenerative, will no doubt be essential to develop
interventions and treatments for preventing developmental disabili-
ties that have their origin in early life. Research with the aim of
defining which nutrient favors adequate development of brain struc-
ture and functions during gestation and early childhood, with the
ultimate goal of improving cognitive development and decreasing
neuro-psychiatric disorders, will be an important task in terms of
public health of the future.
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