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ABSTRACT: Renal hypoplasia, defined as abnormally small kid-
neys with normal morphology and reduced nephron number, is a
common cause of pediatric renal failure and adult-onset disease.
Genetic studies performed in humans and mutant mice have impli-
cated a number of critical genes, in utero environmental factors and
molecular mechanisms that regulate nephron endowment and kidney
size. Here, we review current knowledge regarding the genetic
contributions to renal hypoplasia with particular emphasis on the
mechanisms that control nephron endowment in humans and mice.
(Pediatr Res 68: 91-98, 2010)

enal hypoplasia is a common, yet poorly understood and
misused term describing congenital renal anomalies.
Renal hypoplasia is defined as abnormally small kidneys (<2
SD below the expected mean when correlated with age or
parameters of somatic growth) with normal morphology and
reduced nephron number. This definition predicts that ~2.2%
of the population exhibit renal hypoplasia, whereas epidemio-
logic studies suggest an estimated incidence of 1 in 400 births (1).
Much confusion and the misapplication of this definition have
arisen because the majority of congenitally small kidneys also
exhibit evidence of tissue maldifferentiation, defined as renal
dysplasia. The exact incidence of pure renal hypoplasia (without
dysplasia) is difficult to define as renal dysplasia has often been
incorrectly described as hypoplasia. This has predominantly been
due to the lack of noninvasive diagnostic tools (i.e. Ultrasound)
with resolution power adequate enough to discriminate dysplasia
from hypoplasia in such settings. Severe reductions in nephron
number that are characteristic of renal hypoplasia/dysplasia are
the leading cause of childhood end stage renal disease. Indeed, if
severe enough, these conditions can lead to significant impair-
ment of intrauterine renal function which can in turn lead to the
oligohydramnios sequence, a condition not compatible with ex-
trauterine life. This includes severe and modest bilateral renal
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hypoplasia. More subtle defects in nephron number, such as
those at the lower end of the normal range caused by mild
bilateral renal hypoplasia, have been associated with the devel-
opment of adult-onset hypertension and chronic renal failure
(2-6). Here, we focus on knowledge derived from the study of
human syndromic forms of renal hypoplasia and mouse mutants
that provide insights into the molecular mechanisms that
underlie renal hypoplasia and control nephron endowment.
Congenital renal abnormalities characterized by nephron number
and other renal pathologies including renal dysplasia, hy-
droureter, cystic dysplasia, and agenesis are reviewed in detail
elsewhere (7-9).

OVERVIEW OF KIDNEY DEVELOPMENT

Development of the mammalian metanephric kidney is
dependent on reciprocal inductive interactions between two
distinct cell lineages, the ureteric cell lineage and the meta-
nephric mesenchyme (MM) cell lineage (Fig. 1). At the onset
of metanephric development, signals emanating from the mass
of uninduced MM initiate the formation of an epithelial bud
(the ureteric bud) from the adjacent Wolffian duct (Fig. 1A).
Reciprocal inductive interactions between the ureteric bud
(UB) tip and adjacent MM result in continued/successive
branching of the UB, ultimately forming the mature collecting
duct system of the kidney (Fig. 1B). Simultaneously, the UB
tips signal to the adjacent MM cells causing them to aggre-
gate, undergo a mesenchymal-epithelial conversion, and
progress through a series of maturation steps to form a fully
functional nephron (Fig. 1C and D). This iterative cycle of
ureteric branching morphogenesis and nephron induction re-
sults in the formation of ~60,000 collecting ducts and an
average of ~785,000 (range: 210,332-1,825,380) nephrons in
humans (10). Human metanephric development commences at
~5-6 wk after fertilization, and nephrogenesis is completed
by 36-wk gestation. Therefore, final nephron endowment is

Abbreviations: FGF(R), fibroblast growth factor (receptor); HH, Hedgehog;
MM, metanephric mesenchyme; Rar, retinoic acid receptor; UB, ureteric
bud; UBM, ureteric branching morphogenesis
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Figure 1. Morphogenesis of the metanephric kidney. A, Metanephric kidney development commences with metanephric mesenchyme (MM) induced formation
of the ureteric bud (UB) from the caudal aspect of the Wolffian duct (WD). B, The UB grows toward and invades the MM and reciprocal inductive interactions
between the two result in reiterative branching of the UB, ultimately forming the mature collecting duct system of the kidney. C, Simultaneously, the UB tips
signal adjacent MM cells to condense (CM) and undergo a mesenchyme-epithelial transformation forming the aggregate (A), renal vesicle (RV), comma-shaped
body (C), and S-shaped body (S). D, The S-shaped body undergoes further differentiation to form the functional nephron. Ascending loop of Henle (ALH),
cortical stroma (CS), capillary tuft (CT), distal loop of Henle (DLH), distal tubules (DT), medullary stroma (MS), parietal cell layer (PCL), podocyte cell layer

(Pod), proximal tubule (PT).

Table 1. Human gene mutations associated with renal hypoplasia

Gene Primary disease Kidney phenotype OMIM no. Reference(s)
BMP4 Isolated renal hypoplasia Hypoplasia, VUR 50
CREBBP Rubinstein-Taybi syndrome Agenesis, hypoplasia, 180849 98
DHCR7 Smith-Lemli-Optiz syndrome Agenesis, cystic dysplasia, hypoplasia 270400 37
EYAI, SIX1, SIX5 Branchio-Oto-Renal syndrome Agenesis, ectopia, cystic/dysplasia, 113650, 610896 48, 49, 99

duplication, hypoplasia,
hydronephrosis/ureter
FRASI, FREM?2 Fraser syndrome Agenesis, cystic/dysplasia, hypoplasia 219000 100
GLI3 Pallister-Hall syndrome Agenesis, cystic/dysplasia, hypoplasia, 146510 35
hydronephrosis/ureter
HNFIB Renal cysts and diabetes syndrome Cystic/dysplasia, hypoplasia 137920 32
PAX2 Renal-Coloboma syndrome Hypoplasia, VUR 120330 22-24
PAX2 Isolated renal hypoplasia Hypoplasia 25,26
RET, UPK3a Potter syndrome (oligohydramnios) Agenesis, cystic/dysplasia, hypoplasia 191830 13
Renal adysplasia
RET Isolated renal hypoplasia Hypoplasia 14
SALLI Townes-Brocks syndrome Agenesis, cystic dysplasia, hypoplasia 107480 54
SALLA Acrorenalocular syndrome (Okihiro Agenesis, ectopia, hypoplasia, 607323 53
syndrome) hydronephrosis/ureter, VUR
SIX2 Isolated renal hypoplasia Hypoplasia, VUR 50
7q 11.23 Williams syndrome Ectopia, hypoplasia, hydronephrosis/ureter 194050 101

completed during embryogenesis, after which no new
nephrons can be formed, although the kidney tubules continue
to mature into the postnatal period. The fetal metanephric
kidney begins to function at ~10-wk gestation when the first
signs of urinary output become evident.

Much of the insight into the genetics of human renal hypopla-
sia has been obtained via studies into rare syndromic conditions
(Table 1). These important genetic associations identified in
human renal hypoplasia have provided a platform for many
researchers to investigate the molecular mechanisms by which
these genes function in both normal and abnormal kidney devel-
opment. Animal model systems (predominantly murine) have
provided significant insights into the molecular mechanisms un-
derlying the development of renal hypoplasia. In turn, many of
these same mechanisms have been corroborated in the human
condition. Here, we discuss the most significant findings gener-
ated and our current understanding of how these genes interact
with each other and within different cell lineages.

CONTRIBUTION OF THE URETERIC CELL
LINEAGE TO RENAL HYPOPLASIA

Nephron formation in the MM requires reciprocal interac-
tion with the UB tips. The proper elaboration of the UB tree
and the secretion of tip-derived signals are essential for ade-
quate nephrogenesis. Multiple processes are required within
the UB for development: induction, growth and branching,
survival, and differentiation. These processes are primarily
regulated by receptor tyrosine kinase signaling pathways and
transcription factors expressed in the UB (Table 2).

Growth and branching. The interactions between the UB
tip-specific receptor RET and its ligand GDNF are crucial for
the initial UB induction from the Wolffian duct. Loss of these
interactions leads to a failure of kidney development as Ret /"~
mice present with renal agenesis (11). However, recent work
exploring the participation of the Ret signaling axis through-
out kidney development has begun to tease out a role for this
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Table 2. Targeted gene disruption leading to renal hypoplasia in mice

Gene Genetic model Mechanism Reference(s)
UB
Egfr Egfi""*”"¢° Hoxb7Cre,; Egfi'**F"1o*F Growth and branching, elongation 20
Fgfr2 Hoxb7Cre;Fgfr2'*?"~ Growth and branching 17
Frs2a Hoxb7Cre; Frs2a/**1oxF Growth and branching 16
Gli3R Hoxb7Cre;Ptc1 """ Hoxb7Cre;Ptcl ""*F; Gli3 2", Gli3~/~ Differentiation 34
Liml Hoxb7Cre;Lim]'"*"1oxF Growth and branching, differentiation 21
Met Hoxb7Cre;Met'*<F/1oP Growth and branching 19
p53 p53 MMTV Differentiation 33
Pax2 Pax2!New+ Growth and branching, survival 27
Ret RetY1062F Growth and branching 12
Hnf1B vHnfl /" (tetraploid) Growth and branching, induction 31
Wntll Wntll™"~ Growth and branching 15
MM/stroma
Bcl2 Bel2™/~ Survival 66, 67
C-myc Bmp7Cre;C-myc'®**"'*F Survival, progenitor pool 64
Eyal Eyal™*’~ UBM 47
Fgf7 Fgf7~/~ UBM 60
Fgf10 Fgfl0~"~ UBM 62
Gdf Gdfl1~"~ UBM 45
Gdnf Gdnf*"~ UBM 41,42
Hoxall/Hoxdl1 Hoxall '~ ;Hoxdll ™"~ UBM 46
N-myc N-myc™"~ Survival 63
Raldh2 Raldh2 ™"~ UBM 56
RARa32 Rara™""; RarB2~"~ UBM 55
Salll Salll~"~ UBM 51
Sall4 Sall4™"~ UBM 52
Six2 Six2~/~, Brt’/~ Progenitor pool 69, 70

pathway during all phases of UB development. Three tyrosine
residues on the intracellular portion of RET, Tyrl015,
Tyr1096, and Tyr1062, act as P-Tyr binding sites for multiple
adaptors and effectors, with Y1062 activating the Ras/Erk, PI3
K/Akt, and JNK pathways. Mutation of the Y1062 residue in
RetY1062F knockin mice abolishes this binding site. In con-
trast to Ret ”~ mice which lack kidneys due to deficient UB
induction, RetY1062F knockin mice demonstrate renal hyp-
oplasia, characterized by normal UB induction and initial
branching but decreased branching from E13.5 onwards, sug-
gesting an additional role for Ret in the regulation of branch-
ing in late embryogenesis (12). Moreover, the observation that
these knockin mice do not phenocopy Ret ™ mice indicates a
role for multiple P-Tyr binding sites downstream of Ret in
guiding proper kidney development throughout embryogene-
sis. In humans, mutations in the RET gene have been identified
in some patients presenting with features of Potter Syndrome
and renal anomalies, including renal hypoplasia (13). Further-
more, a common single-nucleotide polymorphism within the
exon splicing enhancer of exon 7 of the human RET gene,
predicting diminished function, has been identified in new-
borns with subtle renal hypoplasia (Table 1; 14).
Maintenance of Gdnf and Ret expression is controlled by an
autoregulatory feedback loop with Wnt/l. WNTI11 secretion
from the UB tip is responsible for the maintenance of GDNF
expression in the MM. WntI1~"~ mice develop defective UB
branching and failure to maintain Gdnf expression in the MM
(15). Newborn mutant mice are characterized by a 64% de-
crease in glomerular number. Synergistic genetic interactions
between Ret and Wntl] have been demonstrated by a more
severe hypoplastic phenotype in Wntl1*"~;Ret™™ mice, as well

as the loss of Watll in the few Ret’~
hypoplastic kidney tissue (15).

FGF signaling via the FGFR2 receptor, expressed on UB
cells, has also been shown to play a crucial role in ureteric
development, with multiple knockout models resulting in
renal hypoplasia. The docking protein Frs2« is classically
thought of as a major intracellular docking protein for FGFR2
signaling. Conditional inactivation of Frs2« in the UB leads to
mild renal hypoplasia with a reduced but normal pattern of UB
growth and branching after the T-stage (16). This is in contrast
to the Fgfr2™/~ mice that exhibit renal hypoplasia but an
abnormally thin and elongated ureteric branching pattern re-
sulting in an abnormal mature kidney shape (17). This phe-
notypic difference and the lack of renal phenotype in mice that
express point mutations of the Frs2a docking site of FGFR2
suggest that FGFR2 signals through other adaptor molecules
in the UB and that Frs2a may transmit signals downstream of
other receptor tyrosine kinases (RTKs). The finding of de-
creased expression of Ret and Wntll in Frs2a mutants sug-
gests that this docking protein may function downstream of
RET in the RET/GDNF autoregulatory pathway. Furthermore,
the Ret and Fgfr23 RTK pathways converge on common
transcription factors Efrv4 and Etv5 (18).

Signaling from two additional RTKs, Mer and Egfr, have
also been shown to cooperate in the regulation of late UB
branching. Met is expressed in both the UB and MM and is the
receptor for Hgf. Targeted deletion of Met to the ureteric cell
lineage results in a 35% decrease in nephron number by 12 wk
of age (19). The Egfr was shown to be up-regulated in the
collecting ducts of these mice. Elimination of Egfr on the Met
deficient background causes a more severe deficit in ureteric

mice that develop
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branching suggesting that these two RTK pathways act coop-
eratively in directing late ureteric branching (19). Egfr null
mutants alone also present with renal hypoplasia, character-
ized by atrophy of the renal papilla and decreased ureteric
branching (20). Interestingly, conditional inactivation of Egfr
in the UB lineage results in normal ureteric branching but a
marked reduction in collecting duct elongation (20).

Ureteric branching and growth is also regulated at the
transcriptional level. The transcription factor Lim/ is essential
in the UB for growth and branching as well as Ret expression
in the tip domain. Targeted deletion of Lim/ in the UB lineage
also demonstrated a requirement for Lim/ in the timing of UB
induction and nephric duct maintenance (21). Analysis of
chimeric embryos consisting of a mix of wild type and
Liml™"~ cells demonstrated a cell autonomous requirement
for Liml in the nephric duct and UB tip domain.

Ureteric cell survival. Renal-Coloboma syndrome (RCS) is
an autosomal dominant disorder that is caused by heterozy-
gous loss of function mutations in the human PAX2 gene
(Table 1; 22). Kidneys of affected individuals are character-
ized by normal nephron structure but a substantial reduction in
total nephron number often leading to chronic renal failure
(23,24). Supporting the importance of PAX2 in human renal
hypoplasia, mutations have also been detected in cases of
isolated renal hypoplasia and a common variant in the PAX2
gene is associated with reduced kidney size (subtle renal
hypoplasia) in newborns who lack any other phenotypic char-
acteristic of PAX2 deficiency (25,26). Insights into the under-
lying mechanisms governing renal hypoplasia in RCS have
been obtained via studies in mice and suggest that PAX2 in the
UB lineage is crucial for ureteric growth, branching, and
survival. A frameshift mutation of Pax2, identical to the G619
insertion mutation identified in some humans with RCS
(Pax2"™") in mice results in renal agenesis in homozygotes
and renal hypoplasia in heterozygotes (27). Renal hypoplasia
in this model is associated with a 40% reduction in nephron
number, elevated apoptosis in the UB epithelium, and reduced
number of ureteric branches (27,28). Constitutive expression
of the proapoptotic gene, Baxc, in the ureteric cell lineage
driven by the Pax2 promoter results in renal hypoplasia,
elevated UB apoptosis and reduced branching, identical to the
phenotype observed in the Pax2™““* mice (29). Further
supporting a role of ureteric cell apoptosis in renal hypoplasia,
transgenic mice expressing the antiapoptotic factor, Bcl2, in
ureteric cells in Pax2'V*“" mice, prevents apoptosis and
normalizes ureteric branching, nephron number, and renal
function (28). The ability of Pax2 to directly activate tran-
scription of Ret and its ligand, Gdnf, in mice, provides further
evidence of the importance of these genes in renal develop-
ment and the pathogenesis of human renal hypoplasia (30).

Induction of nephrogenesis. Recently, the transcription
factor Hnfl3 was demonstrated to participate in a regulatory
network that maintains the expression of Liml, Pax2, and
Wnt9b expression in the UB (31). HnfI deficient embryos
develop severe renal hypoplasia with a delay in UB induction,
loss of Wolffian duct maintenance, and reduced UB growth
and branching. Hnfl[3-regulated gene transcription is critical
to the UB and MM interplay as it exhibits in vivo binding to

noncoding regulatory DNA sequences of Pax2, LimI, and Wnt9b
(31). This is particularly clear given the essential requirement for
WNTO9b secretion from the UB stalk domain and its effect on
MM nephrogenic program induction. Disruption of these events
likely provides insight into the rare association of renal hypopla-
sia with Renal Cysts and Diabetes syndrome (RCAD) and mu-
tations in human HNF'1B (Table 1) (32).

Ureteric cell differentiation. The transcriptional control of
UB differentiation, especially of the tip domain, is essential for
UB development and proper nephron formation. Ectopic over-
expression of nuclear phospho protein p53 in the UB results in
defective differentiation of the UB and a secondary survival
defect in the MM leading to a 50% decrease in both kidney
size and nephron number in adult mice (33). Normally ex-
pressed at low levels in the UB, excessive amounts of wild-
type p53 in the UB resulted in defective expression and
localization of Ret, a marker of the ureteric tip, as well as
decreased expression of tubular differentiation markers DBA
lectin and Aquaporin-2.

Hedgehog signaling effectors also regulate the differentia-
tion of the UB tip domain. HH activity is normally restricted
to the medullary domain of the kidney. Ectopic pathway
activation in the cortical UB domain via targeted deletion of
Ptcl in the ureteric cell lineage results in mild renal hypopla-
sia characterized by abnormal UB tip morphology, decreased
UB branching and glomerular number, and a severe reduction
in Ret and Wntl 1 expression in ureteric tip cells (34). Consti-
tutive expression of the truncated repressor form of G/i3 in the
Ptcl deficient background rescued the expression of Rer and
Wntl1 in tip cells and normalized kidney size and glomerular
number. Thus, Gli3 repressor activity is required in UB tip
cells for Wntl1 and Ret expression and subsequent control of
ureteric growth and branching. The requirement for tight
regulation of HH signaling during metanephric development
is also evident in humans with Pallister-Hall syndrome (PHS)
and renal abnormalities (Table 1; 35). PHS is an autosomal
dominant disorder caused by frameshift/nonsense and splicing
mutations that exclusively affects the second third of the GLI3
gene (nucleotides 1998-3481) predicting a truncated func-
tional repressor form of the GLI3 protein (36). Further impli-
cating a role for HH signaling in human renal hypoplasia is
Smith-Lemli-Opitz syndrome (SLOS), an autosomal recessive
disorder caused by heterozygous mutations in the DHCR7 gene
(Table 1; 37). The DHCRY7 locus encodes sterol delta-7-reductase
that is required in mammalian sterol biosynthesis to convert
7-dehydrocholesterol into cholesterol. As HH proteins undergo
cholesterol modifications, it is plausible that disruption in genes
responsible for these posttranslational modifications (DHCR?7)
may lead to HH functional abnormalities and therefore develop-
mental malformations associated with SLOS.

CONTRIBUTION OF THE MESENCHYMAL/
STROMAL CELL LINEAGE TO
RENAL HYPOPLASIA

Mesenchymal/stromal-dependent ureteric branching
morphogenesis. Because nephron formation is dependent on
inductive signals from the ureteric tip, the number of ureteric
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tips is a considered a strong determinant of nephron endow-
ment. However, it is the inductive signals emanating from the
MM that are critical for inducing the UB tip to divide. This
process of ureteric branching is primarily mediated by the
GDNF/RET signaling axis. GDNF, the ligand for RET (and
GFRal), is exclusively expressed in the MM and is critical for
ureteric branching morphogenesis. Although Gdnf null mice
lack kidneys and ureters due to deficient UB induction (38—
40), Gdnf heterozygous mice exhibit reduced ureteric branch-
ing, significantly reduced kidney size and a 30% nephron
number deficit (41). Moreover, Gdnf heterozygous mice dem-
onstrate increased mean arterial blood pressure and glomeru-
lar hypertrophy at 14 mo of age (42). The absence of known
human pathogenic mutations in GDNF suggests an impor-
tance of gene dosage, as is evident from the mouse models
(43). Consistent with the importance of the GDNF/RET sig-
naling axis in ureteric branching and subsequent nephrogen-
esis, perturbations in mesenchymal factors that regulate Gdnf
and/or modify its signaling are also associated with renal
hypoplasia. Members of the Hox11 gene cluster and GdfI1 are
required for Gdnf expression in the MM. Gdf11 null mice and
compound Hoxal 1/Hoxd1 1 null mice exhibit smaller kidneys,
reduced branching, and a loss of Gdnf expression (44—46).
Similarly, although Eyal null mice fail to form kidneys due to
absent Gdnf expression in the uninduced MM population,
Eyal heterozygote mice demonstrate a low incidence of renal
hypoplasia (47). Genetic studies in mice have shown that
EYAT acts in an EYA1-SIX-PAX gene complex to regulate
gene transcription. Interestingly, Eyal heterozygous mice also
display other developmental anomalies in common with hu-
man Branchio-Oto-Renal syndrome that is caused by muta-
tions in the EYA gene (Table 1). Mutations in SIX/, SIX2, and
SIX5 have also been identified in patients with Branchio-Oto-
Renal syndrome and are predicted to disrupt formation of the
EYA1-SIX complex and/or SIX-DNA binding and subsequent
gene transcription (48-50). Salll null mice and Sall4 het-
erozygous mice also exhibit renal agenesis and hypoplasia
associated with reduced mesenchymal Gdnf expression
(51,52). Mutations in the human SALL/ and SALL4 genes
result in human Townes-Brocks syndrome and Okihiro syn-
drome, respectively, which both demonstrate a range of renal
abnormalities including hypoplasia (Table 1) (53,54).

The renal stroma is also critical for nephron endowment,
primarily via regulation of ureteric branching morphogenesis
by the retinoic acid-signaling axis. Retinoic acid is the active
form of dietary Vitamin A that is synthesized by enzymes,
including Raldh2, and signals through retinoic acid receptors
(Rar). Genetic elimination of Raldh2 and compound null
mutants for Rara and Rarf2 exhibit renal hypoplasia and
reduced expression of Ret in ureteric tip cells (55,56). Inter-
estingly, constitutive Ret expression in Rara;Rarf32 com-
pound null mice normalizes kidney development, suggesting a
critical role for retinoic acid in the maintenance Ref expression
(57). A similar pattern of defects is observed in offspring of
Vitamin A deficient mothers (58,59), discussed in more detail
below. Fgf7, expressed in stromal mesenchyme, has also been
implicated in renal hypoplasia. Genetic elimination of Fgf7
results in reduced ureteric branching and a 30% reduction in

nephron number (60). Fgf10 null mutants also exhibit smaller
kidneys with reduced branching morphogenesis (61,62). Re-
cently, genetic analyses have demonstrated a critical role for
Fgfl0 in UB induction and branching morphogenesis in co-
operation with Gdnf (61).

Mesenchyme survival and maintenance of nephrogenic
progenitors. The population of MM and nephrogenic precur-
sors provides a potential limiting factor for nephron endow-
ment. Defects in cell proliferation, survival and progenitor cell
self-renewal, and commitment can result in fewer cells able to
contribute to nephron formation.

Members of the Myc family of genes largely mediate cell
growth, proliferation, and apoptosis. During metanephric de-
velopment, expression of c-myc is restricted to early unin-
duced mesenchyme and n-myc to early mesenchymal aggre-
gates. Targeted deletion of c-myc to the MM lineage or n-myc
deficiency results in renal hypoplasia due to a significant
decrease in mesenchymal proliferation, independent of
changes in apoptosis (63,64). Interestingly, a progressive loss
of nephrogenic progenitor cell marker expression, Six2 and
Citedl, was also observed in the c-myc deficient kidneys
suggesting that c-myc functions to modulate the proliferation,
and likely self-renewal, of the nephrogenic progenitor cell
population (64).

Bcl-2 is an oncogene that inhibits apoptotic cell death and is
expressed in both the UB and MM (65). Bcl-2 null mutant
mice develop renal hypoplasia and severe renal failure
(66,67). Interestingly, these mutants exhibit a significant in-
crease in apoptosis, predominantly in the MM, resulting in
reduced ureteric branching and nephrogenesis.

Six2 is exclusively expressed in the cap mesenchyme, mark-
ing the nephron progenitor population (68,69). Genetic elim-
ination of Six2 results in severe renal hypoplasia, character-
ized by premature and ectopic differentiation of nephrogenic
tubules and a rapid depletion of the nephrogenic progenitor
population (69). Furthermore, the Brachyrrine mouse model
(Br) demonstrates a marked decrease in the embryonic expres-
sion of Six2 (70). Br heterozygous mice exhibit a severe
reduction in kidney size, 88% decrease in nephron number,
elevated mean arterial pressure, and declined renal function.
Further implicating a requirement for progenitor cell mainte-
nance in normal nephron endowment, Six2 mutations have
recently been identified in humans with isolated renal hyp-
oplasia (Table 1; 50).

IN UTERO ENVIRONMENT AND
RENAL HYPOPLASIA

There is an increasing amount of evidence, derived from
human epidemiologic studies and animal models, demonstrat-
ing an important role for the intrauterine environment and
fetal programming in the pathogenesis of renal hypoplasia and
predisposition to later kidney disease (Table 3) (71,72).

Low birth weight or IUGR is generally considered a clinical
outcome of suboptimal in utero environment. In these in-
stances, the fetal kidney is particularly susceptible leading to
reduced nephron number. Among the most common causes of
human TUGR, animal models of uteroplacental insufficiency
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Table 3. Factors influencing in utero environment that are
associated with renal hypoplasia

Fetal exposure to Renal phenotype Reference(s)
Uteroplacental Hypoplasia 73
insufficiency
Vitamin A deficiency = Hypoplasia, hydronephrosis/ureter 58,59
Low protein diet Hypoplasia 75-80
Hyperglycemia Agenesis, ectopic/horseshoe, 83,102
cystic/dysplasia, hypoplasia,
hydronephrosis/ureter
Cocaine Agenesis, hypoplasia, 84-86
hydronephrosis/ureter
Alcohol Agenesis, ectopia/horseshoe, cystic 87-90
dysplasia, hypoplasia,
hydronephrosis/ureter
Dexamethasone/ Hypoplasia 91-95
corticosterone
Thalidomide Agenesis, ectopic/horseshoe, cystic 96, 97

dysplasia, hypoplasia,
hydronephrosis/ureter

and maternal undernutrition are known to exhibit significant
reductions in nephron endowment (73,74). In particular, the
association between maternal nutrition and nephron endow-
ment is striking. Above, we have already discussed the mech-
anisms by which perturbations of the retinoic acid signaling
axis cause renal hypoplasia. Retinoids are active metabolites
of Vitamin A. Vitamin A deficiency is a global health prob-
lem, particularly in developing countries where poor nutrition
commonly results in developmental anomalies of the genito-
urinary tract. Interestingly, these anomalies can be prevented
by early maternal administration of vitamin A during the
period of kidney development (59). Furthermore, vitamin A
deficiency in rats results in a significant decrease in glomer-
ular number and Ret expression, consistent with the genetic
studies described above (58). In addition, maternal dietary
protein restriction results in decreased nephron number, re-
duced renal function, and hypertension in a variety of species
including rodents and sheep (75-80). Although the precise
mechanisms governing this are not well defined, there is some
evidence suggesting that the maternal diet programs the ex-
pression of critical genes required for embryonic kidney de-
velopment, cell survival, and renal function (76,81,82). Inter-
estingly, a single midgestation retinoic acid administration is
able to normalize kidney size and nephron number in rat
offspring exposed to maternal protein restriction raising the
possibility of preventative approaches in humans (78).
Reduced nephron number and IUGR are not always synon-
ymous. Maternal diabetes and in utero exposure to drugs and
alcohol have all been linked to renal hypoplasia in the absence
of reduced birth weight. In animal experiments, offspring of
hyperglycemic or diabetic mothers demonstrate a significant
nephron deficit (83). Human studies have demonstrated that
infants exposed to cocaine in utero had an increased risk of
renal tract anomalies including renal hypoplasia (84—86).
Similarly, infants with Fetal Alcohol Syndrome also have a
higher incidence of renal malformations, including small kid-
neys (87-89), and a recent study in sheep demonstrated that
repeated alcohol exposure in late gestation leads to a mild
nephron deficiency (90). Several clinical medications have

also proven detrimental to fetal nephron endowment. Dexa-
methasone, a synthetic glucocorticoid that readily crosses the
placental barrier, is commonly used in obstetrics to promote
fetal lung maturation and in general therapeutic use as an
anti-inflammatory. However, sheep and rodent investigations
have demonstrated that the presence of maternal corticoste-
rone elevations due to the natural stress response or exogenous
fetal dexamethasone exposure are associated with a reduction
in nephron endowment and subsequent development of hy-
pertension in offspring (91-95). Thalidomide is another clin-
ical drug associated with renal abnormalities and hypoplasia
(96,97). A powerful tranquilizer and painkiller, it was widely
prescribed in the late 1950s before the finding that it too could
readily cross the placental barrier, resulting in severe birth
defects.

Importantly, the underlying genetic and molecular mecha-
nisms that cause renal hypoplasia in response to suboptimal in
utero environment are largely unknown. A greater understand-
ing in these cases will provide a significant opportunity for
future preventative interventions.

CONCLUSION

Genetic studies in humans and mice have provided valuable
insights into the genetic contribution and molecular mecha-
nisms leading to normal nephron endowment and renal hyp-
oplasia. Specifically, the roles of several critical parallel and
interacting signaling pathways, including GDNF/Ret, FGF,
PAX2, and HH, have been strongly implicated in the patho-
genesis of renal hypoplasia. Furthermore, factors influencing
the in utero environment are also critical in establishing
sufficient nephron number, albeit by mostly unknown mech-
anisms. With the continual advancements in human and
mouse genetic analyses, the identification of other known and
novel genes in nephron endowment is sure to follow. Under-
standing of the precise mechanisms governing nephron en-
dowment is required to advance the prediction, diagnosis,
prevention, and treatment of renal hypoplasia and the health
risks associated with low nephron endowment.
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