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solution to be true. In this paper, | considered a homogeneous infinite orthotropic
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ing differential equation.
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Introduction

The study of how cracks grow and propagate in orthotropic materials is important in the
design of components for improved fracture toughness. The determination of the state
of stress near the crack front differs from the usual problems of determining stress con-
centration in a body because the linear theory of elasticity and the linearized boundary
conditions lead to infinite stresses and infinite stress gradients at the end of a thin cut as
investigated by Li [1]. Consequently, the main interest is to determine the intensity of the
stress field surrounding the crack tip, by finding the stress intensity factor (SIF), a dimen-

3/2

sional quantity, with the dimension kgf/mm®~. The stress intensity factor may be found

by analytical methods, numerical methods or a combination of both. Analytical methods
have been used to develop fracture mechanics and have delivered the basic equations for
crack tip stress and displacement fields, which may serve as the starting point for many
other solutions. Analytical methods try to satisfy the boundary conditions exactly and
result in closed-form solutions. They are useful for investigating crack problems in the
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case of infinite bodies. When a problem is not readily amenable to an analytical solution,
numerical procedures may be used to obtain an approximate solution.

Many researchers have tried to determine the stress intensity factors near the tip of
a crack in an orthotropic material. Sih and Chen [2] investigated the problem of cracks
moving in a finite orthotropic strip under tearing action. By application of Schwarz—
Christoffel transformation and the complex variable theory, closed-form solutions of
the stress intensity factors were obtained and the effect of strip width on the dynamic
stresses was examined. It was found that the SIF increased monotonically with decreas-
ing strip width and the effect becomes more pronounced at higher crack velocity.
Georgiadis and Theocaris [3] solved the problem of steady-state elastodynamic crack
problem by the method of a complex variable. Tait and Moodie [4] considered the prob-
lem of a finite-length crack moving with constant velocity in an orthotropic strip under
antiplane shear stress using a complex variable method. Also using the complex vari-
able method, the problem of a cracked orthotropic strip under antiplane stresses or dis-
placements was solved by Georgiadis [5]. The values for the stress and SIF at the crack
tip were obtained. Xiangfa and Yuri’s [6] obtained an analytic closed solution for the
problem of a mode III edge crack between two bonded semi-infinite non-homogeneous
elastic strips. Using the conformal mapping technique and dislocation solution, an anti-
plane displacement potential for the interacting crack was constructed. Employing this
displacement potential, SIF and the energy release rate for the edge crack are obtained.
Sih and Chen [7] investigated the problem of Griffith crack in an orthotropic layer sub-
jected to antiplane shear. The problem was solved numerically to obtain the values of
the SIF. An orthotropic strip containing a finite-length crack was investigated by Singh
et al. [8] using the integral transform technique. They obtained the values of SIF. Dany-
luk and Singh [9] used an integral transform technique for the plane problem of a crack
of fixed length moving at a constant velocity in the same direction as the surfaces of an
orthotropic solid. Exact solutions for the stress intensity factor were obtained. Similarly,
an integral transform technique was used by Singh et al. [10] to solve the elastodynamic
problem of a crack at the interface of two bonded dissimilar orthotropic solids. Closed-
form expressions for the SIF were obtained. Das [11] studied an orthotropic elastic layer
with punches. Using numerical techniques, an expression for the SIF was obtained. Itou
[12] used the Fourier transform technique and the Schmidt method to determine the
stresses around a moving finite crack with a constant velocity in an elastic layer between
two elastic half-planes. The value of the stress intensity factor is obtained numerically.
Rizk [13] investigated an orthotropic semi-infinite plate containing a crack under ther-
mal shock. The Fourier transform technique and the expansion method were used to
solve the problem. The results show the effect of material orthotropy on the stress inten-
sity factors. A rectangular cracked bi-material consisting of two dissimilar orthotropic
elastic media was analyzed by Xian and Xiang [14]. By employing the Fourier series
method and Lobatto—Chebyshev method, the values of the stress intensity factors were
obtained. The results show that the SIF depends on the material properties as well as
the geometry of the configuration. A non-homogenous orthotropic material contain-
ing multiple interfacial cracks was investigated by Matbuly and Nassar [15]. Applying
finite Fourier transforms and Gauss—Chebyshev integration formulae, the stress inten-
sity factors are determined in closed-form expressions. Chen et al. [16] considered the
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out-of-plane elasticity crack problem for an orthotropic strip with mixed boundary con-
dition. Using analytical methods, the stress intensity factor at the crack tip was evalu-
ated. Mode III problem of a cracked orthotropic strip containing a Volterra-type screw
dislocation was carried out by Monfared et al. [17]. He constructed an integral equation
using the distributed dislocation technique which was solved numerically leading to SIF.
Mousavi and Fariborz [18] studied the stress distribution in a graded orthotropic solid
containing a screw dislocation under time-harmonic deformation. Employing numerical
methods, they obtained the dislocation density function on the crack surfaces and stress
intensity factors of cracks. The dynamic behavior of moving cracks in a non-homoge-
neous orthotropic half-plane under antiplane loading was considered by Nourazar and
Ayatollahi [19]. Applying the Galilean transformation, the governing wave equation was
converted to an equation independent of time. Finally employing the complex Fourier
transform and the distributed dislocation technique, the value of the screw dislocation
was obtained. The solution was employed to derive integral equations leading to the
stress intensity factor.

The problem of two finite-length cracks moving in an orthotropic layer under anti-
plane loading was carried out by Singh et al. [20]. Using Fourier transforms, the analy-
sis of the problem was reduced to solving a system of integral equations. An analytical
solution of these integral equations was obtained, leading to an exact expression for the
stress intensity factors.

The aim of this study

Many numerical research works have either been abandoned or completely discarded
because the simulated results are at great variance with the analytic results. The ana-
lytic results most times are never subjected to test to ascertain that they satisfy the given
governing equation before using them as a benchmark to checkmate the validity of the
numerical results. The aim of this study is to ensure that analytic solutions are subjected
to thorough verification in line with the governing equations before they can be a bench-
mark for comparison and further usage in the derivation of other results.

Significance of the study

This study is very vital in the sense that every numerical result gotten in the literature is
compared with the analytical result which serves as a benchmark for the validity of the
numerical simulations. In this sense, a well-carried-out experimental result may be seen
to be in error when compared with an analytic result whose result was not verified as
to satisfy the governing equation. These flaws may put a clog in the wheel sciences and
research in general. Thus, this study will benefit the academia, researchers of different
fields of endeavor, students and the like in ensuring that exact solutions are really exact
and not misleading.

Formulation of the problem

In this paper, we consider the antiplane problem of an infinite elastic orthotropic material
containing an infinite crack with its tip referred to a moving coordinate system (x',y’, 2’).
The semi-infinite crack occupies the region defined by —oo < &’ < 0. A pair of longitudinal
shear loads of magnitude Q is applied along the cracked surface on an interval [—a, —d]
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of length L. A circular crack breaker (stop hole) of radius b is introduced at the center of
the orthotropic material which is at the origin of a fixed coordinate system (x,y,z). Fig-
ure 1 illustrates the configuration of the problem under consideration. Suppose that, at time
t = 0, the crack tip starts to move with constant velocity along the x’-direction and ends
up at the crack breaker, attaining a displacement v t. Suppose also that the disturbance due
to the load is antiplane so that it creates an only out-of-plane displacement w(x, ¥, t) and
stresses oy, (x, y) and oy, (x, y) in the z-direction. The problem is to investigate the behavior
of the elastic fields at the split regions.

In line with antiplane strain condition, the displacement components (u, v, w) reduce to
(0,0, w) where w = w(x’ Yt ) Consequently, the only nonzero stress components are o/,
and oy, which are given by

ow aw
Ox'z = 5447, 0y’z=65587/, (1)

where ca4 and c55 are the shear moduli in the x” and y' directions.
Satisfying the equation of motion given by
doy, 00y, 3w

ox’ ay - VW @

leads to the wave equation in two dimensions for w as

G . i 92w n 1 0%w 1 9%w 3)
overning equation : —-— - T = 5 T

g¢eq ax2 " 2oy T 2 ar
1

, €= (%) * is the wave speed with y as the mass density of the

DI

where n = (Cﬂ>

€55
material.
The corresponding boundary conditions (BCS) for this situation can be stated as

+Q a<x<d
BCS: 040 (%,0) = { 0, otherwise @
A /‘\
aw Q
a6 "™ " C.
w(r,0) =0
. 0 -a AR
= > >
oW rQ
W(r' n) “Ce

Fig. 1 Geometry of the problem
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0 (6,0) =0, b >0 (5)
w(x,0) =0, x > 0. (6)

We seek to investigate the displacement fields at the point (x,0,0) on the boundary of
the crack breaker in order to establish its conformity with the governing equation at that
region.

Solution of the problem
For a crack moving with a constant velocity v, it is convenient to introduce the Galilean

transformation [4]
/ / /
x=x—vt,y=ny, t' =t (7)
to suppress the time component. The equation of motion becomes

2w 9w

In polar coordinates (7, 6), the governing boundary problem takes the form

Zw(r,0) 1aw(r,0) 1 8%2w(r,0)

-2 _|_; P +72 Y =0 r>b—nm<6<m )
W sy (i asr<d (10)
30’ o otherwise
w(r,0) =0r > b (11)
aw
8—(b,9):0,0<o9<71 (12)
r

To make the problem analyzable by method of integral transform, the original z-plane
of analysis is transformed onto ¢-plane with a semi-infinite crack terminating at the ori-
gin by the holomorphic function (Figs. 2, 3).

W(p.0)=0

Fig. 2 Transformed configuration of the original problem
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Region llI p>6

Region Il a<p<B

Region | p<a

v

-6 -a o 8
Fig. 3 Split regions in the upper half-plane

1/z b

Setting ¢(z) = pe'®, z = re®® and using the conformality condition

w(r,0) = W(p, ) (14)
the boundary value problem in terms of W (p, ¢) becomes

82+18+1 ” W(p,¢)=0p>00<¢< (15)
—t——+ = ,P) = >0,0<0P<m
3% pdp  p?3P? P P

AW (p, bQp | _(p=D

Wp,m) _ [ i el 1] asr=d (16)
1Y) otherwise

oW (b,90)

ST 0 0<¥<m (17)

W(p,9) =0. (18)

To solve the transformed problem, we use the Mellin integral transform method.
The Mellin transform of W (p, ¢) is defined by

W(s,¢) = / W (p,$)p* 'op (19)
0

Applying the Mellin transform to Egs. (15)—(18), we obtain

. b in?
W s, 0) = C%f(ﬁ,a;s) e

SCOSTTS

where
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B 1 1
F(B,ais) = / (ps <1 - 2) ! <1 - 2) + p5> 99 (21)
J p p

Using the inverse Mellin transform, we obtain

b 1 etioo sin s
W (p,0) o — J FBas) p*ds (22)
Cua 271 ¢ ino SCOSTTS

The quantity F (8, «; s) given in Eq. (21) can be solved by the use of the convergent series
1 o
A-n"2=) afltl<1 (23)
k=0
where the coefficients are defined by

(2k)!

T 22k (k1) 24

Ck

Term-by-term evaluation of the three terms in Eq. (21) and further simplification of Eq.
(22) using residue theorem and Jordan lemma give the displacement field as

bQr a1y ;o e\ _ "0 0,3
W(p,@):@{lﬂ — 1 41 }—C—M{Ia — 12 +1} (25)

where for p < 8

10 #) = - co2°p" sin¢<§>

2 1 S ntl Sin(n7%>¢ P\"?
—ar St s s (5)

R )

00 sin (n—%)a& P n—jy (26)
_ C3237ZZ( 1)n+1 . . r
P - )
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N 1 1
) = el S nﬂm('q-z)‘ﬁ(p)"-z
17 (p,¢) = co2°B ﬂz_:( 1) :

2
1
n=1 (n — 2)

1 & ; sin(n—% ¢ n—3
+c121E;(_1) +1M<n_)<p>
(n

00 sin (n—1)¢ n—1
170, 6) = —p sinqﬁ(Z) +2 > (—1)”+11"2) (p> '

Tom (%—n) n—%)
Forp > B

4 fl (=1 sin (n %)¢<§)’”*%

Tl

1§ (p,¢) =

(:323 sin 2¢ <p

:23 1 n=1
) T

B

1
2
0 —
_1)n+lg _l) (£> 2
C424 sin3¢ [ p -3 4 1 nZ::I( ) sin\7n— 3 [} B
+ 3 - +C42
B3 \p

7
2
00 il
525 sind¢ [ p\7* 1 ngl(—l)"ﬂsin (n—%>¢(%> 2
W)

625 sin5¢ (p\ >
< (5) o
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2) 1 21 (—1)n+1 sin (Vl_ %)d)(%),
I (0 d) = — — i
T (n_ %>

222 sin 2¢ <B> -2

N I

_Qsin%(ﬁ)*_@m
pos s (=3 (r~3)
1

c2% sindg [ p —4 ca2* gl(_l)nHSin(n_%>¢(%)_n+i
B4 (E) R (n-3)(n-13)

c52° sin5¢ [ p -5 6525ni::l(—l)”“sin@_%)¢<%>7ﬂ+7
-5 G) DI

628 sin 6¢ <£> -6

B 6 \B
o0 sin (n— 5 |¢ —n+l
3 B ( 2) o 2
e ==Y (- —— ([ C . (31)
p ™ 1 1\ \ 8
AR )
Forp<a
o , o & GO sin (n= D)o (2)7F (<1 sin (n—1)p(2)"?
10 #) = —singp + 23 (é_ )n_l) =Y Y
n=1 2 2 n=1 ( - 2)
L& 0 sin (= 3)g()" 1 &« 1)”“51“(”’% b(2)"*
_CZZZEZ ( E ) _ 5323722
n=1 71+2
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% (1) sin (n— 1) (2)""
SRS (= 4)e(c)

2
=

+ 2% 142

o (=1)"*Lsin (n % ¢>(§)n7%

T e )0)
2 2
1
g 1 D sin (= F)o(2)"
e s 17 1 e
= ()Y

% (~1)"sin (n - %)4)(5)"‘%

I¥(p,¢) = —singp + %Z (3 )( 1)
s—n)(n-3

n=1 2

Forp >
IDp.p) =2 i (D sin (= 3 Jo(5) "
)
00 ol
o) ol
i(—l)"“sin (n—%)ﬁ/’(g)j“% 2 5% .
T o2 n=l (ni%)(n7%> +%sm2 (g)
00 1
1 g(_l)msm("_%)d’(g)inh 24 sin 3¢
e P [ AR O
e 721(—1%!“ sin (n— %)¢(§)—n+% ﬁsinzw (8)74
IR Cogy « A

x> _ 1yl 1 oyt
3 (=1 sm(n 2>¢(a) ’ 620 sin5¢

o1
2 (£
tes Tat (n—%)(n—%) Tt a5 5 \a

(34)
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00

1,0

(—=1)"*1sin (n - %)qs(g)”’*%
P9 =9 - _"

o0 1
—1)"*Lsin <n— l) AR
2! n§1( ) 1)¢(5) 222 sin 2¢

o (n_%)(n_%) a2 (§>72

00 1
—1)"*1sin (n— l) L)Y
22 ;12::1( ) 1)¢(%) 323 sin 3¢

-3

T Ty b)) (36)
323 ZZI (-1 sin <n - %>¢(§)_"+% 2t sindd /01—t

T mad (n_%)(n_%> T a3 4 (E)

[o'e) 1
1)y g ( — l) pyTta
ot 2 (TVTsin (= ¢(5) €525 sin5¢

a0 _ (E)is,m
Tt <n—%>(n—%) a5 5 \a

0 sin <n — l)¢> el
o 2 PO n+
e =23 o — 2 (B) (37)
e
From Eq. (24), we obtain the following values of ¢
1 3 5 35 63
o=l ag==,c==,=—,C=—, C5 = —
0 T 2Ty P T e T 128 T 256 28
231 429 6435 12155 46,189 (38)
C6 = , €7 = y €8 = y €9 = y C10 = .
1024 2048 32,768 65,536 262,144

Since the loading split the upper half p¢-plane into three regions denoted by Rj, Ri1
and Ri11 defined as follows Ry = {(p,¢)/0<p <a ,0<¢ <n}, Ri1 = {(p,¢)/c
<p<B,0<¢<m}and Ri11 ={(p,¢)/8 < p <00, 0 < ¢ < m}, we verify that our
result satisfies the governing equation at these three regions.

Results and discussion
Verification of the solution in the three regions
Regionlp <o, p < B,0<¢ <m.

So far, we have gotten the displacement field which is the basis for determining other
elastic fields such as stress field and stress intensity factor. To avoid having a misleading
result in the end, we subject this result to thorough verifications at the three regions. Does
it satisfy the governing equation

2w 1aw 1 a*w

P T
ap? * p op * p? d¢? (39)

and the boundary condition
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W(p,0 =0, 0<p<a (40)
—a (p,m)=0, 0<

,m) =0, <o
¢ P o (41)

Substituting Eqs. (26—28) and (32-34) in to Eq. (25), we have

W (p,¢)  bQ @i (=1)""" cos (”’ - %)¢(§)ni%
a¢ R = (% _ n)
(—=1)"*1 cos (71 . %)(]5(%)”7%
(n-f—%

© (=1)"*lcos(n—1)¢(2 "
+ (C222—C323) ! HEZ:I (E+§3) (lg)

1 o0
a2t —¢ 22)—
+(1 2 nrz

N
—

+(C323—c424)n;3§;( 1)"“cos(gn+—5§)¢(g)
"= 2
o n+1 1 2 n—%
¢ (o - > ’ cos(£n+ Z;)qb(z)
o) o e(e)”
n=1 n

C44

s
(

bQ | 20 % (—1)" cos (n—%)(p(g n—3
)

_7712 (3
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Therefore,
W(p,0) =0

Differentiating Eq. (42), we have

1
1

oW (p, ) . bQ | 28 00 (_1)n+lcos (71_5)(]3(%)”75
BT D )

+ (C323 — 6424)7111&%50:1 (_l)nH COS(}EV;——S? (%)
"= 2
x (=)™ 1), (0)" 2
+ (c424_6525)n1ﬁ4§( 1t cos(l(q;zr Z;)qj(g)
) By 5 el o)
n=1 "
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Therefore,

8W( n)=0, 0< 5
W om) =0, .
g * p -

Solving to derive other terms of Eq. (39), we have

bQ{zIB i (—1)"* sin (n _ %)¢(%)n—%

W(p,¢):a T = (%—Vl)(n—%)

~—
N
Jr
N
i}
i
-

—~

) 3

~— | NI~ | =
+
[\eir)
i)
N
|
D=
N
+
N——

NI | =

AW (p,9) bQ ) 2 > (_1)n+1 Ccos (}’l—%)¢ﬂ§_}1pn—§
¢ ZQ ;; (%_n)
1 ( 1)”+1cos< _%) (%)”+%pn7§
1
2
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2Wp gy bQ[ 2 D™ (=) sin (n—})epi o
30?7 en)| 7

<
/
|
—
N
+
[
il
i

+i s (—1)mt! (n — %) sin (n - %)
2 o (n + %)

R G B G O
= (" + %)

12W(p,¢) bQ| 2.

s tE e
L g o o= )an (oo 3)
7;4:1 (;q.'.%)

ap C44

1 . (=)™ sin (n — -3
2 n=1 (ﬂ + )
1 1)\"2 3
1 & (=" sin (n — §)¢(E) "2
—= +
E o)

i 3_n n-5
law(p,(l,) B bg Ei (—1)n+1 sin | n — %)q)ﬁz o2
P 9p Caq

T
n=

._.
D= NN

N
B

Il

——| =
=

+
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82W( , 9) bQ | 2 ad (_1)n+1 (Vl— §) sin (n_ l)¢,3%_",0”_§
oWiee)  bY - Z 2 3

9p? C44 = (% _ n)
ntl
| (o an (- o(s) o
2 n=1 (n + %)
43
N T Ol
L (n + %)

Hence, for 22 (IED o I;}s))

32W+18W+ 1 02w
8p2 P 8[0 ,02 8¢2
212y (0 (=) sin (= 3 )opi o
4 71’”:1

C4.

1 > (= (n - %) sin (n — %)¢(%)"+7pn—g

nt3
| 0 (o (o= Do(3)"
1y :
bQ | 2 00 (—1)n+1 sin (l’l — %)(plg%—npn—%
cag | T (% _ n)
+1 o 1 1 nty s
1 i (=1)"*lsin (n — §)¢(E) p"2
Cow e
n=1 00 (—l)n+1 sin n—% @ % an 3
(n+3)-13% (n-3)e(3) N

Similarly, for—%([o(ll) _ 10((2) + 10((3))

b
Ca4

Page 16 of 33



Emenogu Journal of the Egyptian Mathematical Society (2022) 30:20

32W+18W+ 1 92w
8p2 0 8[0 p2 ad)Z
bQ [ 2 & (U (=) sin (n = 1) gad—rpri

=D

C44, b =1 (% _ n)
n+i
| (o ono- o(3)
2 n=1 (n + %)

| g0 (r- oo~ Do(3) "o

_;Z (

n=1

bQ | 2 o (=1)"*1sin (;fl_%)q)a%—n,on—7
+ =

C T 3
44 n=1 (j — Vl)

Therefore, for W (p, ¢) = %{Iél) _ Iéz) +I/§3)} B 573{10([1) 12 41

2w 1w 1 9w

2 T e 70070 47
8,02+p 8p+p23¢2 + (47)

satisfying the governing equation.

Satisfaction of the governing equationfora < p < 3,0 < ¢ < 7 (region Il)

We now prove that Eq. (39) satisfies both the governing Laplace equation
82W+18W+ 1 aZW_O (48)
w2 pdp  p? 0g>

and the boundary conditions
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W(p,00=0, a<p<§p

AW _bQo[ (p-1)
b R IR

Now using Eqs. (35-37) for p > « (region II)
bQ | 2 i (=1)"*!sin (n - %>¢(§)—n+%
caa | T <n+%> (n—%)

1 . -1 I (=1)"*sin (n_ %)¢(§)—n+§
R I [

W(p,¢) =

n=1

P ()0
Ssinde , 15 & (~D"sin(n- %>¢,(§)ﬂ«+%
s 3 ° 8rad i (nf%)<n7%) 4.
Therefore,
W(p,0) =0

Rewriting Eq. (51), we have

W(p,¢) =

C44

bQ{ ) & (=1)"*1 sin (n _ %)¢an+%p—n+%

E e

ntl 1 N\
+ L gingp 4 2 }w: b Sm("_§>¢(&> p
— sin ¢p —
2 2 i (n_%> n—1

n+l 1 —n+% —ntl

sin2 195 (7D sin(n-3)o() "o
1
3

S N RHICRY)

15sin3¢ 4
n=1 2 2

15 & (—1)n+1 sin (n_%)qb(é)*wr p*n+%

Differentiating Eq. (53), we have

(53)
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Now for p < B (region II)
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Conversion of the boundary condition for region Il to series form
Recall the boundary condition for region II

+pl, a<p<B, p>2 (72)

ow bQ { p(p—1)
¢ C44

96 P = o =)

We convert the above equation to series form using the formula
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aW(p,m) bQf 1 2 15 3
Y = on 2,0 +p Sp +.op 0> (77)

From region I (p < B)

AW (p,1) _ bQ
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Hence by superposition principle

aW(p,m) bQ bQf 1 ., 5, 15 3
==l - = __ —
) m{p} m{ 2P +p g " +

b 1 15
:7Q 2p+7p_l_p_2+ip_3+...
Ca4 2 8

which satisfies the boundary condition in series form.

Satisfaction of the governing equationforp > 8, p > «,0 < ¢ < 7 (region lll)
For region IIJ, it is not a difficult algebra to show that

b b
W(p,d) = CQ{[/gl) — 1 +1’§3)} _ Q{Iél) el +1§3)} (80)
44 Ca4

satisfies both the governing Laplace equation

82W+18W+ 1 02w
p*  p dp  p* 3g?

=0 (81)

and the boundary condition

Page 27 of 33



Emenogu Journal of the Egyptian Mathematical Society (2022) 30:20

W(p,0)=0, p=>p
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Therefore,
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Similarly, for W(p, ¢) = 54% IV + 1P + 1)
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satisfying the governing equation.

Now for p > 8
W) _bQf 1 ., 15 4
Lo} o Ca4 2,0 te 8 Pt

Similarly, for p > «
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oW (p, b 1 _ _ 15 _
(pn)=Q{_p1+ 2_p3+m}

¢ caa | 2 p 8
Therefore.
oW(o,mr) IW(p,m) aW(p,m)
= - =0 (93)
09 00 |y 0b

From the results gotten at the three regions, we can see that our displacement equation
satisfies the governing equation in the regions. The relevance of this satisfaction is that
suppose we intend to derive the stress field or the stress intensity factor say, we would be
fully convinced that our result is not misleading when a numerical analyst decides to use
our analytic result to compare his numerical findings. Also in region 2, notice that we
use the formula (1 — £)~2 = 7% cxtk to convert the boundary condition

ow bQ[ plp—1)

. Y = | T ’ ) 2
e e R

to series form to obtain our desired result. This is also novel.

Conclusions

An infinite orthotropic material weakened by a semi-infinite crack under longitudinal
loading is investigated in this study. The analysis is based upon an integral transform
and complex variable techniques. The displacement field derived is shown to satisfy the
governing equation at all the regions. With these results, closed-form solutions of elas-
tic fields such as stress, displacement and stress intensity factors can serve as a bench-
mark for the purpose of judging the accuracy and efficiency of various numerical and
approximate techniques as was observed in the extension of this work “closed-form
solution for a semi-infinite crack moving in an infinite orthotropic material with a cir-
cular crack breaker under antiplane strain” Our result in that paper was seen to agree
with similar numerical computation in the literature owing to the fact that our displace-
ment field from which the stress field and the stress intensity factor were obtained satis-
fies the given governing equation. Hence, there is a need to ensure that every solution
to a differential equation satisfies the equation before using it for further analysis, since
analytic solutions are the benchmark for judging numerical ones. Therefore, students
and researchers alike are to ensure proper verification of their solution at the solution
regions so as not to void a correct numerical work that could have helped to save a life.
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