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Abstract

Background: Quality control including assessment of batch variabilities and confirmation of repeatability and
reproducibility are integral component of high throughput omics studies including microbiome research. Batch
effects can mask true biological results and/or result in irreproducible conclusions and interpretations. Low biomass
samples in microbiome research are prone to reagent contamination; yet, quality control procedures for low
biomass samples in large-scale microbiome studies are not well established.

Results: In this study, we have proposed a framework for an in-depth step-by-step approach to address this gap.
The framework consists of three independent stages: (1) verification of sequencing accuracy by assessing technical
repeatability and reproducibility of the results using mock communities and biological controls; (2) contaminant
removal and batch variability correction by applying a two-tier strategy using statistical algorithms (e.g. decontam)
followed by comparison of the data structure between batches; and (3) corroborating the repeatability and
reproducibility of microbiome composition and downstream statistical analysis. Using this approach on the milk
microbiota data from the CHILD Cohort generated in two batches (extracted and sequenced in 2016 and 2019), we
were able to identify potential reagent contaminants that were missed with standard algorithms and substantially
reduce contaminant-induced batch variability. Additionally, we confirmed the repeatability and reproducibility of
our results in each batch before merging them for downstream analysis.

Conclusion: This study provides important insight to advance quality control efforts in low biomass microbiome
research. Within-study quality control that takes advantage of the data structure (i.e. differential prevalence of
contaminants between batches) would enhance the overall reliability and reproducibility of research in this field.
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Background

Quality control of microbiome studies has been an inte-
gral component of pioneering projects including the Hu-
man Microbiome Project [1]. The Microbiome Quality
Control Project (MQCP) focused on identifying sources
of variability in 16S rRNA gene microbiota profiling
across different laboratories, but batch-to-batch variabil-
ity was not assessed [2]. As microbiome studies expand
in sample size, we are facing the additional challenge of
batch-to-batch variability in large-scale population-based
studies. Additionally, repeatability and reproducibility of
results are often unaddressed. Unlike other high-
throughput methods such as transcriptomics and meta-
bolomics [3, 4], these concepts are not well developed
for microbiome studies.

“Batch effects are sub-groups of measurements that
have qualitatively different behaviour across conditions
and are unrelated to the biological or scientific variables
in a study” [4]. Batch effects can mask true biological re-
sults and/or result in irreproducible conclusions and in-
terpretations [4]. Potential sources of batch effects in
microbiome research include heterogeneity in all aspects
from sample collection to library preparation and bio-
informatics processing [1] leading to technical variability.
Reagent contaminants pose a major challenge in micro-
biome profiling of low biomass samples such as milk [5,
6] and could be an important source of non-technical
batch variability even when all procedures are identical.

Repeatability is defined as obtaining the same results
after re-running the same process on the same set of
samples, while reproducibility refers to the ability to ob-
tain similar results on a different set of samples [7].
Assessing repeatability and reproducibility is among the
cornerstones of good scientific conduct and is being
adopted in many areas of high-throughput experiments
such as clinical genomics [8]. Studies have assessed the
reproducibility of the microbiome profile as part of
MQCP [2]. However, repeatability and reproducibility of
results are not commonly assessed between batches.
This process is important when combining results from
multiple batches in large-scale microbiome projects.
Therefore, the objective of this study was to perform ex-
tensive quality control and establish good practices using
milk microbiome data generated in two batches (ex-
tracted and sequenced in 2016 and 2019). Additionally,
we assessed and mitigated batch variability and exam-
ined repeatability and reproducibility in this dataset.

Results

We studied a subset of 1194 mother-infant dyads in the
CHILD Cohort Study [9]. Milk microbiota from a repre-
sentative subset of 428 mothers was previously profiled
in 2016 (batch 1) [10]. An additional set of 766 samples
enriched in infant atopy and asthma was profiled in
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2019 (batch 2). Experimental and bioinformatics proce-
dures were identical for the two batches with the excep-
tion of DNA extraction kit lots. Some participant
characteristics varied significantly between the batches
(e.g. season of birth differed, and atopy/asthma were
purposefully enriched in batch 2; Table S1) and thus
some degree of true biological variability between
batches was anticipated in the milk microbiota
composition.

Technical reproducibility

Technical reproducibility of library preparation and se-
quencing was confirmed on a mock community consisting
of DNA extracted from 8 bacterial species (ZymoBIO-
MICS ™ Microbial Community Standard, Zymo Research,
USA) and biological controls (comprising of 9 batch 1
samples re-sequenced in batch 2; Fig. 1a, b). The mock
community used contained Escherichia coli and Salmon-
ella enterica; two closely related Enterobacteriaceae spe-
cies which cannot be resolved using 16S rRNA gene
sequencing [11]. Although we did not identify these two
taxa in the mock community, the relative abundance of
unclassified Enterobacteriaceae was the expected cumula-
tive relative abundance of the two enteric species (Fig. 1a).
Substantial inter-individual variability was observed, as ex-
pected. However, the composition remained consistent
between batches within each individual (Fig. 1b), and there
was a high degree of agreement in the prevalence and rela-
tive abundances between batches (Fig. 1c, d).

Two-tier strategy using the decontam algorithm and milk
microbiota data structure to identify reagent
contaminants

As milk is a low biomass sample, reagent contaminants
could plausibly be present in the sequencing output of
samples [12]. As we have defined batches based on using
reagents with different lot numbers, it is plausible that
the major differences between the batches could be
driven by different profiles of the reagent contaminants.
A two-tier strategy was used to identify potential reagent
contaminants followed by assessing the milk microbiota
variability between batches prior to rarefaction and
threshold filtering. First, potential reagent contaminants
(N = 256 amplicon sequencing variants [ASVs]) were
identified and removed using the decontam package
based on either the frequency of the ASV in negative
controls or the negative correlation with DNA concen-
tration [13] (Fig. 2a). The negative controls included
were extraction negative controls for batch 2 (N = 21)
and no template PCR controls for batch 1 (N = 15) and
batch 2 (N = 36). The extraction negative controls were
not available for batch 1 and thus it was anticipated that
some potential reagent contaminants might have
remained after decontam especially in batch 1.
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Fig. 1 Sequencing technical accuracy verification. a Composition of a mock community consisting of 8 different bacterial species with a known
composition was assessed (n = 8 per batch). The mock community used contained Escherichia coli and Salmonella enterica; which cannot be
resolved using 16S rRNA gene sequencing [11]. We considered the relative abundance of unclassified Enterobacteriaceae as a surrogate for the
cumulative relative abundance of these two species. b Taxonomic composition of biological controls was compared. Biological controls
comprised of 9 samples originally extracted and sequenced in batch 1 that were re-sequenced in batch 2. Top 5 abundant ASVs per sample are
visualised. ¢ Prevalence and d relative abundance of all present ASVs (N = 2192) in biological controls were compared between batches. Each dot
represents the average per batch. There is high agreement and consistency in the ASVs prevalence and relative abundance between the batches.
Given the small sample size of biological controls, we did not identify potential reagent contaminants using the biological controls. The solid red
line represents a perfect correlation. The dotted line shows the linear association between average relative abundance values of batches. ASV,
amplicon sequencing variant; ICC, intraclass correlation coefficient

Therefore, we next identified potential contaminants by  will remain consistent between the batches and hence
comparing the data structure between batches. de Gof-  overall, the “true” signals will demonstrate high degrees
fau et al. suggest that for low biomass samples such as  of correlation between the batches.

milk for which we expect a “true” bacterial community We took advantage of the data structure of each batch
to be present; “within-batch consistency of the reagent to identify additional reagent contaminants that were
contamination profile and between batch variation of not identified by the decontam algorithm. There was a
such profiles are two of the most powerful tools that can  high degree of correlation in the prevalence of ASVs in
be used to recognize reagent contamination” [14]. Al- samples between the two batches (Fig. 2b). However,
though this argument does not directly extend to non-  there were taxa more prevalent in one of the batches,
contaminant “true” signals between batches, we postu-  specifically in batch 1 compared to batch 2 (Fig. 2b). We
late that unless a dramatic shift in microbiome compos-  defined potential reagent contaminants based on com-
ition is expected between the batches, the compositions  paring the prevalence of taxa in one batch to their
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Fig. 2 Two-tiered identification of potential contaminants and effects of their removal on batch variability. a Potential reagent contaminants were
identified using the decontam package [13], which compared ASV prevalence between samples (n = 1190) and negative controls (n = 72). Two
hundred fifty-six ASVs were identified as potential contaminant and removed. At this stage, unassigned ASVs, and ASVs belonging to the phylum
Cyanobacteria, family of mitochondria and class of chloroplast (n = 780) were also removed. b Next, the data structure was used by between-
batch comparison of ASV prevalence. We defined contaminants as any ASV with higher prevalence in one batch as would be expected in the
other batch according to the standard error of prevalence calculated based on the batches’ sample size. The acceptable threshold is represented
by the orange lines. Six hundred sixty ASVs below the orange lines were identified as potential contaminants. Quality control assessment of the
data structure method was done on the between-batch comparison of ASVs (c) average relative abundances prior to and (d) after the removal of
all potential contaminants. Relative abundances were re-calculated after the removal of the identified contaminants in panel d. There is high
agreement and consistency in the relative abundance of “true” signals but not the contaminants. Removal of contaminants improved the
between batch agreement and consistency of the remaining non-contaminant taxa. The solid red line represents a perfect correlation. The
dotted line shows the linear association between average relative abundance values of batches. In panels b-d, each dot represents the average
per batch. Next, batch variability was assessed e prior to contaminant removal, f after decontam, and again g after considering the data structure,
i.e. taxa prevalence between the batches. The two-tier strategy eliminated the prominent separation of the samples on the PCoA plot assessed
on Bray-Curtis dissimilarity. ASV, amplicon sequencing variant; ICC, intraclass correlation coefficient
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corresponding prevalence in the other batch while ac-
counting for the standard errors of the prevalence in order
to adjust for the sample sizes. Although we have applied
this approach to the biological controls (Fig. 1c), given the
small sample size (N = 9), we did not consider them for
identification of the potential contaminants. Next, we
compared different sequencing runs within each batch
and observed an overall high degree of agreement and
consistency between the runs. Comparing between-run
variabilities, we identified 198 and 66 ASVs as potential
contaminants in batches 1 and 2, respectively (Figure
S1A-D). Subsequently, by comparing the batches, 623
and 37 ASVs were identified as potential contaminants of
batches 1 and 2, respectively (Fig. 2b). Of these, 144 and 9
were also identified in between-run comparisons of
batches 1 and 2, respectively (Figure S1). In total, 769
ASVs were identified as contaminant through between-
run (Figure S1) and/or between-batch (Fig. 2b) analysis.
Opverall, there was neither agreement nor consistency in
the relative abundances of the contaminants between the
batches (Fig. 2c). These additionally identified contamin-
ant ASVs through between-run and/or between-batch
comparisons were also removed, resulting in high agree-
ment and consistency of the remaining, non-contaminant
taxa between the batches (Fig. 2d). Comparison of the per-
formance of contaminant identification using decontam
and the data structure is summarised in Table S2. The
agreement in relative abundances of the remaining non-
contaminant taxa was 0.66 which was increased to 0.96
following identification of additional contaminants using
the data structure (Table S2).

Identification of contaminants using the data structure is
influenced by the batch sample size but not the
distribution of host characteristics

Next, we assessed the performance of the prevalence-
based approach to identify contaminants in a
homogenous subset of the data with varying batch sam-
ple sizes. We confirmed that between-batch variability in
mother and infant characteristics did not impact the
identified potential contaminants by the between-batch
comparison using a subset consisting of primiparous,
directly breastfeeding mothers and the child was not di-
agnosed with asthma at 5 years (Figure S2A). Although
the sample size was lower than the entire dataset (n =
171 vs. 1188), 323 ASVs identified as contaminants in
the homogenous subset accounted for 99% of the total
reads of contaminant ASVs identified in the entire data-
set (Table S2). Furthermore, we assessed the influence of
batch sample size on contaminant identification. While
this method increases the accuracy for large datasets, the
definition of a contaminant becomes more relaxed in
small datasets as larger variation in prevalence between
the batches is expected. This is especially true for low
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prevalent taxa. We compared the performance of this
method in smaller subsets of our data and observed that
the 147 identified contaminants with 25 samples per batch
accounted for 84% of total reads of contaminant ASVs
identified in the entire dataset (Figure S2B). Similarly, 85%
and 90% of total contaminant reads were accounted for in
uneven datasets (more samples in batch 1 vs. more in
batch 2; Figure S2C and D). This suggests low and uneven
sample size is potentially important when using data
structure for identifying potential contaminants.

We confirmed that in contrast to “true” taxa, the iden-
tified contaminants were highly correlated within batch
1 (Figure S3A) as stipulated and in agreement with de
Goffau et al. [14]. All contaminant ASVs in batch 2 were
low in abundance (< 0.1% mean relative abundance) and
thus the correlation was not assessed for them. We did
not observe strong correlation of non-contaminant taxa
within each batch (Figure S3B and C).

Reagent contaminants as the major source of batch
variability

Despite the technical reproducibility, which was confirmed
on mock community and biological controls (Fig. 1), pre-
liminary comparisons between batches revealed differences
in beta diversity of milk microbiota composition (Fig. 2e).
This difference remained after applying decontam, which
identified reagent contaminants in both batches (Fig. 2f).
However, removing the additional potential contaminants
identified through comparison of the data structure be-
tween batches improved the consistency in relative abun-
dances of taxa between batches (Fig. 2d) and eliminated the
differences in milk microbiota composition between the
batches (Fig. 2g and Table S2).

Repeatability and reproducibility assessment

Next, we assessed the repeatability and reproducibility of
the milk microbiota composition taxonomy and statis-
tical associations with its determinants. The composition
of the core ASVs (especially those suggested to be com-
mon reagent contaminants: Comamonadaceae, Rhodos-
pirillaceae and Burkholderiales) was affected by the
updated pre-processing and contaminant removal. As a
result, the core microbiota as previously defined (ASVs
present in at least 95% of samples with at least 1% mean
relative abundance) [10] was not repeatable or reprodu-
cible, underscoring the challenges of defining core taxa
in low biomass samples. However, the taxonomic struc-
tures of the most abundant taxa were consistent between
the two batches (Fig. 3a).

Next, the robustness of the associations with determi-
nants of the milk microbiota composition was assessed.
We had previously performed redundancy analysis (RDA)
on batch 1 to identify factors associated with the overall
composition of milk microbiota [10]. We repeated the
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same RDA analysis on the re-processed batch 1 and the
new batch 2 milk microbiota composition (Fig. 3b). We
confirmed repeatability of the results within batch 1, des-
pite removing several ASVs during the updated pre-
processing. Additionally, most of the associations includ-
ing mode of breastfeeding were reproduced in batch 2
(Fig. 3b). Based on these results, we felt confident to
merge the two datasets for our ongoing research.

Discussion
Rigorous quality control and assessment of repeatability
and reproducibility of results are infrequently reported
for microbiome studies. Here, we have proposed a
framework for an in-depth step-by-step approach to a
comprehensive quality control assessment of low bio-
mass microbiome. The framework consists of three in-
dependent stages: (1) verification of sequencing accuracy
by assessing technical repeatability and reproducibility of
the results using mock communities and biological con-
trols; (2) contaminant removal and batch variability cor-
rection by applying a two-tier strategy using statistical
algorithms (e.g. decontam) followed by comparison of
the data structure between (sub)batches; and (3) corrob-
orating the repeatability and reproducibility of micro-
biome composition and downstream statistical analysis.
Batch variability can be minimised by adhering to
standardised protocols and using consumables of the
same lot; however, the latter may be impractical in

longitudinal studies or when samples are analysed over a
prolonged period of time, as in our study. In such cir-
cumstance, it is important to include sufficient numbers
of biological controls (replicates) for repeat DNA extrac-
tion and sequencing, allowing for unbiased investigation
of between-batch variability and potential reagent con-
taminants. Methods to minimise batch variability post-
analysis have been developed based on various normal-
isation approaches, which generally assume that the
batch variability is due to random technical variations
[15, 16]. However, these global normalisation approaches
(e.g. quintile normalisation) cannot eliminate the batch
effect in variables that are differentially impacted in dif-
ferent batches [4]—for example, if the batch effect is due
to differing reagent contaminant profiles instead of ran-
dom technical variabilities.

Within the limitations of a sequencing-based study,
identification of potential reagent contaminants in low
biomass samples with credible microbial community is
challenging. Using a combination of automated and
data-driven contaminant identification increase our con-
fidence that the remaining taxa are more likely com-
posed of “true” signals. However, the performance of
these methods relies on the researcher’s degree of strin-
gency in choosing several parameters as well as the con-
straints of the dataset including the number of samples
and negative controls. Moreover, given the low bacterial
load of low biomass samples, reagent contaminants
could potentially uniformly affect samples within a
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batch. Consequently, methods relying on the correl-
ation of DNA concentration with taxa abundance are
not capable of distinguishing whether high DNA con-
centration is due to high “true” bacterial load or high
concentration of contaminants. Although taking ad-
vantage of the data structure between (sub)batches
could to some extent overcome some of these chal-
lenges, it is crucial to emphasise that biological differ-
ences with expected strong influence on the
microbiome composition should be carefully assessed.
Additionally, it is conceivable that some biological
factors could be causally linked to contamination of
low biomass samples especially during sample collec-
tion. If such relations are hypothesised and demon-
strated, it is important to have a priori scientific
rationale for the definition of “true” signals. Finally,
even with extended quality control approaches such
as the one we have adopted, the identification of
“true” signals requires confirmatory culture-dependent
experiment.

Based on our previous and ongoing research, we did
not expect any prominent associations of milk taxa with
mother-infant characteristics. Consequently, we did not
consider association of relative abundances of potential
reagent contaminants within the milk microbiota with
maternal, infant and early life factors as a criterion to re-
tain them as “true” taxa. We stipulate that it is not easy
to identify if an association between a potential contam-
inant and biological factor is real or is a product of their
inherent correlation with DNA concentration or the
compositionality issue of microbiome data in low bio-
mass samples. However, it is important to highlight that
under some circumstances, it might be necessary to take
the association of relative abundances with biological pa-
rameters into account depending on the study design,
hypotheses and ecosystem.

Conclusion

Our study highlights the importance of reagent contami-
nants as a potential source of batch variability in low
biomass samples [17] and provides a data-driven method
to use the between-batch variability as a complementary
approach to identify the potential contaminants. Guide-
lines have been developed to minimise the influence of
contaminants in low biomass samples [18, 19]. However,
these do not extend to contaminant-related batch vari-
ation. Our results indicate that conducting a compre-
hensive quality control assessment when profiling the
microbiome of milk and other low biomass samples
would ensure more robust, generalizable and reprodu-
cible results. Specifically, we recommend inclusion of ap-
propriate negative controls and within-study quality
control that takes advantage of the data structure (i.e.
differential ~ prevalence = and/or  abundance  of
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contaminants between batches) to enhance the overall
reliability and reproducibility of research in this field
[20].

Methods

Study design

We studied a subset of 1194 mother-infant dyads in the
Canadian Healthy Infant Longitudinal Development
(CHILD) birth cohort, designed to study the develop-
mental origins of paediatric asthma and allergy [9].
Women with singleton pregnancies were enrolled be-
tween 2008 and 2012 and remained eligible if they deliv-
ered a healthy infant > 35 weeks gestation (n = 3455).
Milk microbiota from a representative subset of 428
mothers was previously profiled (2016; batch 1) [10]. An
additional set of 766 samples enriched in infant atopy
and asthma was included in this study (2019; batch 2).
Participants gave written informed consent in accord-
ance with the Declaration of Helsinki. The protocol was
approved by the Human Research Ethics Boards at
McMaster University, the Hospital for Sick Children,
and the Universities of Manitoba, Alberta and British
Columbia.

Sample collection and microbiota analysis

Each mother provided one sample of milk collected dur-
ing a 24-h period at 4 months postpartum [mean (SD)
17 (5) weeks postpartum] [10]. Batch 2 samples were
processed similar to batch 1 as previously described [10].
Briefly, genomic DNA was extracted from 1 ml breast-
milk using Quick-DNA Fungal/Bacterial extraction kit
following the manufacturer’s instructions (Zymo Re-
search, USA). Extraction kits were purchased separately
for batch 1 and batch 2. Samples were sequenced follow-
ing amplification of the V4 hypervariable region of the
16S rRNA gene with modified F515/R806 primers [21,
22] on a MiSeq platform (Illumina, San Diego, CA,
USA) in 2016 (batch 1) and 2019 (batch 2). Sterile
DNA-free water was used as negative controls in the
DNA extraction (only batch 2) and sequencing library
preparation (batches 1 and 2). A mock community con-
sisting of DNA extracted from of eight bacterial species
with known theoretical relative abundances (ZymoBIO-
MICS ™ Microbial Community Standard, Zymo Re-
search, USA) was included as positive control in
sequencing library preparation. Genomic DNA of nine
milk samples previously extracted and sequenced in
batch 1 were also included in sequencing library prepar-
ation of batch 2 as biological controls.

Sequencing processing

Overlapping paired-end reads were processed with
DADA2 pipeline [23] using the open-source software
QIIME 2 v.2018.6 (https://qiime2.org) [24]. Unique
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ASVs were assigned a taxonomy and aligned to the 2013
release of the Greengenes reference database at 99% se-
quence similarity [25]. Demultiplexed sequencing data
was deposited into the Sequence Read Archive (SRA) of
NCBI and can be accessed via accession numbers
PRJNA481046 and PRJNA597997.

Reagent contaminant identification using decontam

Data analysis was conducted in R (v. 3.5.2) using the
Phyloseq package (v. 1.26.1) [26, 27]. Potential reagent
contaminants were identified using decontam package
(v. 1.2.1) based on either the frequency of the ASV in
the negative control or the negative correlation with
DNA concentration with threshold set at 0.5 [13]. We
applied decontam to all samples from both batches in-
cluding all available negative controls. We used isConta-
minant function as we do not expect all ASVs in milk to
be contaminants unless proven otherwise. The identified
contaminants were removed from the dataset. Subse-
quently, unassigned ASVs, and ASVs belonging to the
phylum Cyanobacteria, family of mitochondria and class
of chloroplast (n = 780) were removed.

Potential contaminant identification using the data
structure

Different reagents were used in the processing of batches
1 and 2 and thus, we expected different contaminant
profiles between the batches. Therefore, we built upon a
previously suggested method [14] and identified add-
itional potential contaminants by comparing the preva-
lence of ASVs between sequencing runs within each
batch as well as between batches. Our approach is based
on the assumption that differential prevalence of ASVs
between batches is not unexpected in low biomass sam-
ples such as milk. However, considerable difference in
the prevalence of ASVs between batches is suggestive of
the influence of the reagent contaminants. Therefore, we
defined contaminants as any ASV with higher prevalence
(P) in one batch as would be expected in the other batch
according to the standard error of prevalence (SEP) cal-
culated based on the batches’ sample size (N). The
standard error of prevalence (SEP) of ASVs (which we
considered as proportions) were calculated as

SEP = /P x (1-P)/N

We calculated the standard errors of prevalence for
each batch and then calculated the minimum acceptable
threshold (7) by subtracting the cumulative sum of
standard errors in batches 1 and 2 from the observed
prevalence; multiplied by a constant stringency factor

(k).
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T = (P - (SEPgatch1 + SEPpatch2)) X k

The stringency factor is a number between 0 and 1
and for this study it was set to 0.067. This data-driven
approach was applied to pairwise comparison of differ-
ent sequencing runs within each batch and also to the
batches. Shaded areas on the figures were defined ac-
cording the above formula (Fig. 2; Figures S1 and S2).
All ASVs in the shaded area were considered contami-
nants and were removed.

Agreement and consistency of taxa relative abun-
dances before and after contaminant removal were
assessed using interclass correlation by 2-way random
and fixed single measurement models using irr package
(v. 0.84.1) [28]. Next, we assessed the potential impact of
the biological variability in mother-infant characteristics
on the performance of the data structure comparison.
We selected a homogenous subset of samples according
to parity, mode of breastfeeding and child asthma at the
age of 5 years (the latter is enriched in batch 2). Overall,
171 mother-infant pairs (N = 63 in batch 1, N = 108 in
batch 2) were included from primiparous mothers, dir-
ectly breastfeeding, and whose child did not have asthma
at 5 years. Additionally, we assessed the impact of sam-
ple size on the method performance using the
homogenous data  subset. Finally, within-batch
consistency of the contaminant and non-contaminant
profiles was assessed by Spearman rank-sum correlations
among ASVs with over 0.1% average relative abundance
and was visualised as heatmaps.

Data processing following contaminant identification and
removal

Subsequently, samples were rarefied to the minimum of
8000 sequencing reads per sample resulting in 870 sam-
ples and 9309 remaining ASVs. ASVs with less than 60
reads across the entire dataset were also removed, result-
ing in 908 remaining ASVs. This threshold was selected
to retain the majority of reads per sample. By removing
ASVs with total sum of 60 reads across the samples, we
removed 20 + 13% of ASVs per sample while retaining
99 + 3% of the total sequencing reads. The number of
sequencing reads per sample was then relativised to a
total sum of 8000 for downstream analyses.

Data quality control assessment

Technical reproducibility was assessed by agreements in
taxonomic structure of biological controls, mock com-
munity and milk microbiota between batches. The batch
effect was assessed on the overall milk microbiota com-
position using Bray-Curtis dissimilarity and visualised in
PCoA plots. Repeatability was verified by examining the
associations of maternal, infant and early life factors with
milk microbiota using redundancy analysis (RDA) in the
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original batch 1 [10], new re-processed batch 1 and
batch 2.
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