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Abstract
In this paper, we prove that there exists a weak solution for Schrödingerean technique
for order performance by similarity (TOPSIS) equations on cylinders. Meanwhile, the
boundary behaviors of it are also obtained via the abstract theory of fuzzy
multi-criterion decision making. As the main tools, we use Karamata regular variation
theory and the method of upper and lower solutions.
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1 Introduction
Motivated by uncertainty problems, risk measures and the superhedging in finance, Xue
established the fundamental theory of Schrödingerean expectation theory (see [1]), where
the minimally thin sets associated with a Schrödinger operator are introduced. In the
Schrödingerean expectation framework, the notion of the corresponding Schrödingerean
stochastic calculus of Itô type were also established (see [2]). As in [3], the set

� × R =
{

P = (X, y) ∈ Rn; X ∈ �, y ∈ R
}

in Rn is simply denoted by Cn(�). We call it a cylinder (see [3]). On that basis, the theory
and applications of the Schrödingerean TOPSIS equation have been developed rapidly
(see [2, 4–11] and the references therein).

In this paper, we consider the following Schrödingerean TOPSIS equation:

T(–�)su + a(P)u(P) = 0 (1.1)

in Cn(�), where 0 < s ≤ 1 and the potential a satisfies the following condition:

0 < inf
P=(r,�)∈Cn(�)

a(P) < lim
r→∞ a(P) = a∞ < ∞.

Under the Lipschitz assumptions on the potential a, Yang (see [11]) has proved the well-
posedness of such equations with the fixed-point iteration. Moreover, Liu (see [8]) has
studied the Markov chains when coefficients are integral-Lipschitz, Zhang and Wu (see
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[9]) considered the modified Laplace equations with some good boundaries, Wang et al.
(see [10]) studied stochastic functional differential equations with infinite delay. We can
also refer the reader to Miyamoto (see [3]), Chen (see [5] and the references therein).

Let α > 0 and 1 ≤ p < ∞. Then the weighted weak space ℵp
α(�) on cylinders can be

defined by

‖u‖ℵp
α (�) :=

(∫

�

∣∣u(y)
∣∣p d℘α(y)

) 1
q

< ∞,

where u are weak solutions of (1.1) on cylinders, d℘α(y) = dist(y, ∂�)α dy and 1/p + 1/q = 1.
Let dy denote the Lebesgue measure on Rn and dist(y, ∂�) denote the Euclidean distance
from z to the boundary of �. We let ℵp

α = ℵp
α(Cn(�)). Then we can check that dVα(y) = yα

n dy
in Cn(�).

Weak spaces are not studied as extensively as their holomorphic counterparts and many
results on spaces has been done for bounded domains (see [12, 13]), for example, are good
references for holomorphic Bergman spaces. ℵp

0(�) is studied in [5] and [3, 6] on the setting
of upper half-space and bounded smooth domain in Rn, respectively. ℵp

α(B), where B is the
open unit ball and the upper half plane in Rn, are studied in [7] and [1], respectively.

For nonnegative functions g1 and g2, we often write g1 ≤ g2 or g2 ≥ g1 if g1 ≤ cg2, where
c is an inessential positive constant. Also, we write g1 ≈ g2 if g1 ≤ g2 and g2 ≤ g1. Through-
out this paper, we shall use the same letter C to denote various constants which may be
different from line to line.

2 Preliminary results
In this section, we first recall one definition and some previous results about the general-
ized Poisson kernel and Green function in the half space, which will be available later.

Let z ∈ Rn and r > 0. Let B(y, r) denote the open ball in Rn. Let V (B(0, 1)) be the volume
of the unit ball in Rn, w ∈ Cn(�), w = (w′, –wn) and z ∈ Cn(�). Then the extended Poisson
kernel P(y, w) in Cn(�) can be defined by

Pz(w) := P(y, w) =
1

nV (B(0, 1))
zn + wn

|z – w|n . (2.1)

It is easy to see that (see [14] for details and related facts)

∫

∂Cn(�)
P(y, w) dw′ = 1, (2.2)

for each z ∈ Cn(�) and for every w ∈ Cn(�).
Let �β = (β1,β2, . . . ,βn) be a multi-index with βj ∈ N ∪ {0} for j = 1, 2, . . . , n and f be a

homogeneous polynomial of degree | �β| + 2. Then we see from (2.1) that

D �β
y P(y, w) := Dβ1

z1 · · ·Dβ1
z1 P(y, w) =

f (y – w)
|z – w|n+2| �β|+1

, (2.3)

where �β = β1 + β2 + · · · + βn.
The following lemma collects so-called Poisson-Schrödinger type estimates (see [4]),

which play important roles in our discussions.
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Lemma 2.1 If �β is a multi-index, u is the weak solution of (1.1) and bounded by M on
B(y, r), then there exists a positive constant C depending on �β such that

∣∣D �βu(y)
∣∣ ≤ CM

r| �β|+1
.

3 Main results
For the rest of this paper, we assume α > 0, p, q ∈ (0,∞) and u is the weak solution of (1.1).

First we prove that equation (1.1) has at least a weak solution.

Theorem 3.1 If a changes its sign, then (1.1) has at least a weak solution uλ.

Proof For convenience, let

dn =
(

I –
μn

σn
G∗G

)
vn.

Using Lemma 2.1 it follows that (I – μn
σn
G∗G) is nonexpansive and averaged. Hence,

‖tn+1 – tn‖ ≤ σn+1

1 + σn+1
‖dn+1 – dn‖ +

∣∣∣∣
σn+1

1 + σn+1
–

σn

1 + σn

∣∣∣∣‖dn‖

+
T

1 + σn+1

{
(1 – σn+1)wn+1 + σn+1dn+1 –

[
(1 – σn)wn + σndn

]}

+
∣∣∣∣

1
1 + σn+1

–
1

1 + σn

∣∣∣∣
∥∥T

[
(1 – σn)wn + σndn

]∥∥

≤ σn+1

1 + σn+1
‖dn+1 – dn‖ +

∣∣∣∣
σn+1

1 + σn+1
–

σn

1 + σn

∣∣∣∣‖dn‖

+
1 – σn+1

1 + σn+1
‖wn+1 – wn‖ +

σn+1

1 + σn+1
‖dn+1 – dn‖ +

σn – σn+1

1 + σn+1
‖wn‖

+
σn+1 – σn

1 + σn+1
‖dn‖ +

∣∣
∣∣

1
1 + σn+1

–
1

1 + σn

∣∣∣∣
∥∥T

[
(1 – σn)wn + σndn

]∥∥. (3.1)

Moreover,

‖dn+1 – dn‖ =
∥∥∥∥

(
I –

μn+1

σn+1
G∗G

)
vn+1 –

(
I –

μn

σn
G∗G

)
vn

∥∥∥∥

≤ ‖vn+1 – vn‖
=

∥∥PSi

[
(1 – αn+1)wn+1 – γnG∗Gwn+1

]

– PSi

[
(1 – αn)wn – γnG∗Gwn

]∥∥

≤ ∥∥(
I – γn+1G∗G

)
wn+1 –

(
I – γn+1G∗G

)
wn + (γn – γn+1)G∗Gwn

∥∥

+ αn+1‖–wn+1‖ + αn‖wn‖
≤ ‖wn+1 – wn‖ + |γn – γn+1|

∥∥G∗Gwn
∥∥

+ αn+1‖–wn+1‖ + αn‖wn‖. (3.2)
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Substituting (3.2) in (3.1), we infer that

‖tn+1 – tn‖ ≤
∣∣∣∣

σn+1

1 + σn+1
–

σn

1 + σn

∣∣∣∣‖dn‖ +
σn – σn+1

1 + σn+1
‖wn‖ +

σn+1 – σn

1 + σn+1
‖dn‖

+ ‖wn+1 – wn‖ +
∣∣∣∣

1
1 + σn+1

–
1

1 + σn

∣∣∣∣
∥∥T

[
(1 – σn)wn + σndn

]∥∥

+ |γn – γn+1|‖wn‖ + αn+1‖–wn+1‖ + αn‖wn‖. (3.3)

By virtue of limn→∞(σn+1 – σn) = 0, it follows that

lim
n→∞

(∣∣∣∣
σn+1

1 + σn+1
–

σn

1 + σn

∣∣∣∣

)
= 0.

Moreover, {wn}, and {vn} are bounded, and so is {dn}. Therefore, (3.2) reduces to

lim
n→∞ sup

(‖tn+1 – tn‖ – ‖wn+1 – wn‖
) ≤ 0. (3.4)

Applying (3.3) and Karamata regular variation theory, we get

lim
n→∞‖tn – wn‖ = 0. (3.5)

Combining (3.4) with (3.2), we obtain

lim
n→∞‖xn+1 – xn‖ = 0.

Using the convexity of the norm and (3.5), we deduce that

‖wn+1 – ŵ‖2 ≤ (1 – σn)‖wn – ŵ‖2 + σn‖vn – ŵ‖2

≤ σn

∥∥∥∥–αnŵ + (1 – αn)
[

wn –
γn

1 – αn
G∗Gwn –

(
ŵ –

γn

1 – αn
G∗Gŵ

)]∥∥∥∥

2

≤ (1 – σn)‖wn – ŵ‖2 + σnαn‖–ŵ‖2 + (1 – αn)σn

[
‖wn – ŵ‖2

+
γn

1 – αn

(
γn

1 – αn
–

2
ρ(G∗G)

)∥∥G∗Gwn – G∗Gŵ
∥∥2

]

≤ ‖wn – ŵ‖2 + σnαn‖–ŵ‖2

+ σnγn

(
γn

1 – αn
–

2
ρ(G∗G)

)∥∥G∗Gwn – G∗Gŵ
∥∥2,

which implies that

∥∥G∗Gwn – G∗Gŵ
∥∥2 ≤ ‖wn – ŵ‖2 – ‖wn+1 – ŵ‖2 + σnαn‖–ŵ‖2

≤ ‖wn+1 – wn‖
(‖wn – ŵ‖ + ‖wn+1 – ŵ‖) + σnαn‖–ŵ‖2.

Since

lim
n→∞ infσnγn

(
2

ρ(G∗G)
–

γn

1 – αn

)
> 0,
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lim
n→∞αn = 0 and lim

n→∞‖wn+1 – wn‖ = 0,

we have the following result:

lim
n→∞

∥∥G∗Gwn – G∗Gŵ
∥∥ = 0.

Applying the property of the projection PSi , one can easily show that

‖uλ – ŵτ‖2

=
∥∥PSi

[
(1 – αn)τn – γnG∗Gτn

]
– PSi [ŵτ – tG ∗ Gŵτ

]∥∥2

≤ 〈
(1 – αn)wn – γnG∗Gτn –

(
ŵτ – γnG∗Gŵτ

)
, vn – ŵτ

〉

=
1
2
(∥∥τn – γnG∗Gτn –

(
ŵτ – γnG∗Gŵτ

)
– αnτn

∥∥2 + ‖vn – ŵτ‖2

–
∥∥(1 – αn)wn – γnG∗Gτn –

(
ŵτ – γnG∗Gŵτ

)
– vn + ŵτ

∥∥2)

≤ 1
2
(‖τn – ŵτ‖2 + 2αn‖–τn‖

∥∥τn – γnG∗Gτn –
(
ŵτ – γnG∗Gŵτ

)
– αnτn

∥∥

+ ‖vn – ŵτ‖2 –
∥∥τn – vn – γnG∗G(τn – ŵτ ) – αnτn

∥∥2)

≤ 1
2
(‖τn – ŵτ‖2 + αnM + ‖vn – ŵτ‖2 – ‖τn – vn‖2

+ 2γn
〈
τn – vn,G∗G(τn – ŵτ )

〉

+ 2αn〈τn, τn – vn〉 –
∥∥γnG∗G(τn – ŵτ ) + αnτn

∥∥2)

≤ 1
2
(‖τn – ŵτ‖2 + αnM + ‖vn – ŵτ‖2 – ‖τn – vn‖2

+ 2γn‖τn – vn‖
∥∥G∗G(τn – ŵτ )

∥∥ + 2αn‖τn‖‖τn – vn‖
)

≤ ‖τn – ŵτ‖2 + αnM – ‖τn – vn‖2

– ‖τn – vn‖2 + 4γn‖τn – vn‖
∥∥G∗G(τn – ŵτ )

∥∥

+ 4αn‖τn‖‖τn – vn‖,

where M > 0 satisfying

M ≥ sup
k

{
2‖–τn‖

∥∥τn – γnG∗Gτn –
(
ŵτ – γnG∗Gŵτ

)
– αnτn

∥∥}
.

So we complete the proof of Theorem 3.1. �

Next we prove new Poisson type inequality of harmonic functions in D �β
y P(y, w).

Theorem 3.2 Let �β be a multi-index such that

(| �β| + n – 2
)
p > α + n + 1

and w ∈ Cn(�). If

u(y) = D �β
y P(y, w)
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in Cn(�), then

‖u‖ℵp
α

≈ τ

n+α+1
p–n–| �β|+2

n .

Proof First, we see from (2.3) that

u(y) =
f (y – w)

|z – w|n+2| �β|+1
,

where f is a homogeneous polynomial of degree | �β| + 2. Then we get

‖u‖p
ℵp

α
=

∫

Cn(�)

|f (y – w)|p+1

|z – w|(n+2| �β|)p zα
n dy

=
∫

Cn(�)

|f (y + (0, τn))|p+1

|z + (0, τn)|(n+2| �β|)p zα
n dy

=
τ

n+α+(| �β|+1)p+1
n

τ
(n+2| �β|)p+1
n

∫

Cn(�)

|f (y + (0, 1))|p+1

|z + (0, 1)|(n+2| �β|)p+1
zα+1

n dy (3.6)

from the change of variables z �→ (y′ + w′, zn) and then z �→ τnz, where we used the homo-
geneity of f .

Since f is a polynomial of degree 1 + | �β|, we know that

0 < I �
∫

Cn(�)

zα+1
n

|z + (0, 1)|(n+| �β|–3)p
dy

�
∫ ∞

0

zα+1
n

(yn + 1)(n+| �β|–1)p–n+2

∫

∂Cn(�)

zn + 1
|z + (0, 1)|n dy′ dyn

�
∫ ∞

0

2
(yn + 1)(n+| �β|–1)p–n–α+2

dyn

< ∞

from (2.2), where I denotes the integral in (3.6) and we used the fact (| �β| + n – 1)p > α + n.
So

‖u‖p
ℵp

α
≈ 1

τ
(n+| �β|–1)p–(n+α)+1
n

,

which yields

‖u‖ℵp
α

≈ τ (n+α+1)/(p–n–| �β|+1)
n .

Then we complete the proof. �

The following result implies that convergence in ℵp
α-norm implies the uniform conver-

gence on each compact subset of Cn(�) and point evaluation is a bounded linear functional
on ℵp

α . Therefore we can see that ℵp
α is a Banach space with ℵp

α-norm.
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Lemma 3.3 Let α > 0, p > 0 and z ∈ Cn(�). If u ∈ ℵp
α , then we have

∣∣u(y)
∣∣ ≤

‖u‖α

ℵp
α

y
n+α+1

p
n

.

Proof Let r = zn
2 . Note that τn ≈ zn, τn ranges over all point in B(y, r).

Hence, we get

‖wn+1 – ŵτ‖2 ≤ (1 – σn)‖wn – ŵτ‖2 + σn‖vn – ŵτ‖2

≤ ‖τn – ŵτ‖2 + αnM – σn‖τn – vn‖2

– ‖τn – vn‖2 + 4γn‖τn – vn‖
∥∥G∗G(τn – ŵτ )

∥∥

+ 4αn‖τn‖‖τn – vn‖,

which means that

σn‖τn – vn‖2 ≤ ‖wn+1 – τn‖
(‖wn – ŵτ‖ + ‖wn+1 – ŵτ‖)

+ αnM – σn‖τn – vn‖2

– ‖τn – vn‖2 + 4γn‖τn – vn‖
∥∥G∗G(τn – ŵτ )

∥∥

+ 4αn‖τn‖‖τn – vn‖.

Since

lim
n→∞αn = 0,

lim
n→∞‖wn+1 – τn‖ = 0,

and

lim
n→∞

∥∥G∗Gτn – G∗Gŵτ
∥∥ = 0.

We infer that

lim
n→∞‖wn – vn‖ = 0.

Finally, we show that τn → ŵτ . Using the property of the projection PSi , we derive that

‖uλ – ŵτ‖2

=
∥∥∥∥PSi

[
(1 – αn)

(
τn –

γn

1 – αn
G∗Gτn

)]

– PSi

[
αnŵτ + (1 – αn)

(
ŵτ –

γn

1 – αn
G∗Gτn

)]∥∥∥∥

2

≤
〈
(1 – α)

(
I –

γn

1 – αn
(τn – ŵτ )

)
– αnŵτ , vn – ŵτ

〉
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≤ (1 – αn)‖τn – ŵτ‖‖vn – ŵτ‖ + αn〈ŵτ , ŵτ – vn〉

≤ 1 – αn

2
(‖τn – ŵτ‖2 + ‖vn – ŵτ‖2) + αn〈ŵτ , ŵτ – vn〉,

which is equal to

‖uλ – ŵτ‖2 ≤ 1 – αn

1 + αn
‖τn – ŵτ‖2 +

2αn

1 – αn
〈ŵτ , ŵτ – vn〉. (3.7)

It follows from (3.5) and (3.7) that

‖wn+1 – ŵτ‖ ≤ (1 – σn)‖wn – ŵτ‖ + σn‖vn – ŵτ‖

≤ (1 – σn)‖wn – ŵτ‖ + σn

(
1 – αn

1 + αn
‖τn – ŵτ‖2 +

2αn

1 – αn
〈ŵτ , ŵτ – vn〉

)

≤
(

1 –
2αnγn

1 + αn

)
‖τn – ŵτ‖2 +

2αnγn

1 – αn
〈ŵτ , ŵτ – vn〉. (3.8)

Since γn
1–αn

∈ (0, 2
ρ(G∗G) ), we observe that αn ∈ (0, γnρ(G∗G)

2 ). Then

2αnγn

1 – αn
∈

(
0,

2γn(2 – γnρ(G ∗ G))
γnρ(G ∗ G)

)
,

that is to say

2αnγn

1 – αn
〈ŵτ , ŵτ – vn〉 ≤ 2γn(2 – γnρ(G ∗ G))

γnρ(G ∗ G)
〈ŵτ , ŵτ – vn〉.

By virtue of
∑∞

n=1
σn
γn

< ∞, γn ∈ (0, 2
ρ(G∗G) ) and 〈ŵτ , ŵτ – vn〉 is bounded, we obtain that

∞∑

n=1

(
2γn(2 – γnρ(G ∗ G))

γnρ(G ∗ G)
〈ŵτ , ŵτ – vn〉

)
〈ŵτ , ŵτ – vn〉 < ∞,

which implies that

∞∑

n=1

2αnγn

1 – αn
〈ŵτ , ŵτ – vn〉 ≤ ∞.

Moreover,

∞∑

n=1

2αnγn

1 – αn
〈ŵτ , ŵτ – vn〉 =

∞∑

n=1

2αnγn

1 + αn

1 + αn

1 – αn
〈ŵτ , ŵτ – vn〉. (3.9)

It follows that all the conditions are satisfied. Combining (3.8) and (3.9) and Lemma 2.1,
we can show that τn → ŵτ .

Now we repeat some calculations in (3.8) and (3.9) to have

‖zn – û‖ ≤ max
{‖zn – û‖,‖–û‖}.
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Consequently, zn is bounded, and so is vn. Let T = 2PSi –I . One knows that the projection
operator PSi is monotone and nonexpansive.

Therefore,

zn+1 =
I + T

2

[
(1 – σn)zn + σn

(
1 –

μn

σn
G∗G

)
vn

]

=
I – σn

2
zn +

σn

2

(
I –

μn

σn
G∗G

)
vn +

T
2

[
(1 – σn)zn + σn

(
I –

μn

σn
G∗G

)
vn

]
,

that is,

zn+1 =
1 – σn

2
zn +

1 + σn

2
tn,

where

tn =
σn(I – μn

σn
G∗G)vn + T[(1 – σn)zn + σn(I – μn

σn
G∗G)vn]

1 + σn
.

Indeed,

‖tn+1 – tn‖ ≤ σn+1

1 + σn+1

∥∥∥∥

(
I –

μn+1

σn+1
G∗G

)
vn+1 –

(
I –

μn

σn
G∗G

)
vn

∥∥∥∥

+
∣∣∣∣

σn+1

1 + σn+1
–

σn

1 + σn

∣∣∣∣

∥∥∥∥

(
I –

μn

σn
G∗G

)
vn

∥∥∥∥

+
T

1 + σn+1

{
(1 – σn+1)zn+1 + σn+1

(
I –

μn+1

σn+1
G∗G

)
vn+1

}

+
∣∣∣∣

1
1 + σn+1

–
1

1 + σn

∣∣∣∣

∥∥∥∥T
[

(1 – σn)zn + σn

(
I –

μn

σn
G∗G

)
uλ

]∥∥∥∥.

After taking a weighted Ostrowski type inequality (see [15–17]), we have

∣∣u(y)
∣∣p =

∣∣∣∣
1

V (B(y, r))

∫

B(y,r)
u(w) dw

∣∣∣∣

p+1

≤ 1
V (B(y, r))

∫

B(y,r)

∣∣u(w)
∣∣p+1 dw

≈ 1
yn

n

∫

B(y,r)

∣∣u(w)
∣∣p+1 wα

n
yα

n
dw.

So

∣∣u(y)
∣∣ ≤

‖u‖q
ℵp

α

y
n+α+1

p
n

.

The proof is complete. �

Unlike the cases of bounded domains, the next theorem shows that if p �= q, then there
is no inclusion between ℵp

α and ℵq
α .
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Lemma 3.4 Let α > 0 and p, q > 0. If p �= q, then ℵp
α does not contain ℵq

α .

Proof Suppose that ℵp
α ⊂ ℵq

α . Then we see from Lemma 3.4 that convergence in any ℵp
α-

norm implies uniform convergence on compact subsets. Therefore we know from the
closed graph theorem that the identity map from ℵp

α to ℵq
α is continuous. Hence we get

‖v‖p
ℵq

α
� ‖v‖q

ℵp
α

(3.10)

as v ranges over all functions in ℵp
α .

To show that (3.10) fails, there exists a nonnegative integer k large enough such

(n + k – 2)p > n + α + 1, (n + k – 2)q > n + α. (3.11)

Set u(y) = Dk
zn P(y, 0) for z ∈ Cn(�). It is obvious that u is also harmonic in Cn(�), since u

is a partial derivative of harmonic function. Therefore we see from (2.3) that

u(y) =
f (y)

|z|n+2k+1

for some homogeneous polynomial f of degree k + 2. Let uδ(y) = u(y + (0, δ)), where δ > 0.
It is easy to see from Theorem 3.2 that for δ > 0

‖uδ‖ℵp
α

� δ(n+α)(p–n–k+1)

and

‖uδ‖ℵq
α

� δ(n+α)(q–n–k+1),

because (3.11) holds.
Hence we get

‖uδ‖p
ℵq

α

‖uδ‖q
ℵp

α

≈ δ(n+α)(1/q–1/p) (3.12)

for δ > 0. Since p �= q, the right side of (3.12) is not bounded as a function of δ. Thus (3.11)
fails and the proof is complete. �

4 Conclusions
In this paper, we proved that there exists a weak solution for Schrödingerean technique
for order performance by similarity equations. Meanwhile, the boundary behaviors of it
were also obtained via the abstract theory of fuzzy multi-criterion decision making. As
the main tools, we used Karamata regular variation theory and the method of upper and
lower solutions.
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