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Abstract
The conjectures in the title deal with the zeros xj , j = 1, 2, . . . ,n, of an orthogonal
polynomial of degree n > 1 relative to a nonnegative weight function w on an interval
[a,b] and with the respective elementary Lagrange interpolation polynomials �(n)k of
degree n – 1 taking on the value 1 at the zero xk and the value 0 at all the other zeros
xj . They involve matrices of order n whose elements are integrals of �(n)k , either over
the interval [a, xj] or the interval [xj ,b], possibly containing w as a weight function. The
claim is that all eigenvalues of these matrices lie in the open right half of the complex
plane. This is proven to be true for Legendre polynomials and a special Jacobi
polynomial. Ample evidence for the validity of the claim is provided for a variety of
other classical, and nonclassical, weight functions when the integrals are weighted,
but not necessarily otherwise. Even in the case of weighted integrals, however, the
conjecture is found by computation to be false for a piecewise constant positive
weight function. Connections are mentioned with the theory of collocation
Runge–Kutta methods in ordinary differential equations.

Keywords: Zeros of orthogonal polynomials; Lagrange interpolation; Matrix
eigenvalues; Conjectured location of eigenvalues in the complex plane

1 Introduction
Let w be a nonnegative weight function on [a, b], –∞ ≤ a < b ≤ ∞, and pn be the orthonor-
mal polynomial of degree n relative to the weight function w. Let {xj}n

j=1 be the zeros of pn

and

�
(n)
k (x) =

∏

1≤j≤n
j �=k

x – xj

xk – xj
, k = 1, 2, . . . , n, (1)

the elementary Lagrange interpolation polynomial of degree n – 1 having the value 1 at
xk and 0 at all the other zeros xj. The Stenger conjectures relate to the eigenvalues of ma-
trices of order n whose elements are certain integrals involving the elementary Lagrange
polynomials (1), the claim being that the real part of all eigenvalues is positive. We distin-
guish between the restricted Stenger conjecture [8, §2.3, Remark 2.2], in which the matrices
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are

Un =
[
u(n)

jk
]
, u(n)

jk =
∫ xj

a
�

(n)
k (x) dx,

Vn =
[
v(n)

jk
]
, v(n)

jk =
∫ b

xj

�
(n)
k (x) dx,

j, k = 1, 2, . . . , n, (2)

and the extended Stenger conjecture (called “new conjecture” in [8, §2.4]), in which the
matrices are

Un =
[
u(n)

jk
]
, u(n)

jk =
∫ xj

a
�

(n)
k (x)w(x) dx,

Vn =
[
v(n)

jk
]
, v(n)

jk =
∫ b

xj

�
(n)
k (x)w(x) dx,

j, k = 1, 2, . . . , n, (3)

where w is assumed to be positive a.e. on [a, b]. (For the fact that this assumption is essen-
tial, see Sects. 7 and 8.) Thus, in the latter conjecture the elements of Un, Vn depend on the
weight function w not only through the polynomials �

(n)
k , but also by virtue of w being part

of the integration process. Note that, unlike for the extended conjecture, the restricted
conjecture requires [a, b] to be a finite interval, at least for one of the two matrices Un,
Vn.

We also note that the order in which the xj are arranged is immaterial since a permuta-
tion of j = {1, 2, 3, . . . , n} implies the same permutation of k = {1, 2, 3, . . . , n}, which amounts
to a similarity transformation of Un resp. Vn, and therefore leaves the eigenvalues un-
changed.

The weight function w(x) = 1 on [–1.1] is special in the sense that the extended con-
jecture is the same as the restricted one and will be simply called the Stenger conjecture.
Its proof will be given in Sect. 4. In Sect. 2 we will prove that the eigenvalues of Un and
Vn in the restricted as well as in the extended Stenger conjecture are the same if w is a
symmetric weight function. In Sect. 3 we show that, both in the restricted and extended
conjecture, the matrix U (α,β)

n belonging to the Jacobi weight function w(x) = (1–x)α(1+x)β

on [–1, 1] with parameters α, β is the same as the matrix V (β ,α)
n with the Jacobi parameters

interchanged. Section 5, devoted to the restricted Stenger conjecture, shows, partly by nu-
merical computation, that the conjecture may be true for large classes of weight functions,
but can also be false for other classes of weight functions. In contrast, Sect. 6 provides am-
ple computational support for the validity of the extended Stenger conjecture for a variety
of classical and nonclassical weight functions. Discrete weight functions are considered in
Sect. 7. In Sect. 8 the extended Stenger conjecture is challenged in the case of a piecewise
constant positive weight function. Related work on collocation Runge–Kutta methods is
mentioned in the Appendix.

2 Symmetric weight functions
We assume here the weight function w(x) to be symmetric, i.e., w(–x) = w(x) on [–b, b],
0 < b ≤ ∞, and the zeros xj of the corresponding orthonormal polynomial pn ordered
increasingly:

–b < x1 < x2 < · · · < xn < b.
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We then have, by symmetry,

xj + xn+1–j = 0, j = 1, 2, . . . , n. (4)

Theorem 1 If w is symmetric, the eigenvalues of Vn are the same as those of Un, both in
the case of the restricted (where b < ∞) and the extended Stenger conjecture.

Proof We present the proof for the extended conjecture, the one for the restricted conjec-
ture being the same (just drop the factor w(t) in all integrals). From the definition of Vn in
(3), we have

vjk =
∫ b

xj

�
(n)
k (x)w(x) dx =

∫ –xj

–b
�

(n)
k (–t)w(t) dt,

and, therefore, by (4),

vjk =
∫ xn+1–j

–b
�

(n)
k (–t)w(t) dt.

Since �
(n)
k (–t) = 1 if –t = xk , that is, t = –xk = xn+1–k , and �

(n)
k (–t) = 0 if t = xj, j �= n + 1 – k,

we get

vjk =
∫ xn+1–j

–b
�

(n)
n+1–k(x)w(x) dx,

thus, by (3) (with a = –b),

vjk = un+1–j,n+1–k .

In matrix form, this can be written as

Vn =

⎡

⎢⎢⎢⎢⎣

1
...

1
1

⎤

⎥⎥⎥⎥⎦
Un

⎡

⎢⎢⎢⎢⎣

1
...

1
1

⎤

⎥⎥⎥⎥⎦
,

which is a similarity transformation of Un. Hence, Vn and Un have the same eigenvalues. �

3 Jacobi weight functions
In this section we look at Jacobi weight functions

w(α,β)(x) = (1 – z)α(1 + x)β on [–1, 1], (5)

where α, β are greater than –1.
Switching Jacobi parameters has the effect of turning a U-matrix into a V -matrix and

vice versa. More precisely, we have the following.
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Theorem 2 Let U (α,β)
n be the matrix Un for Jacobi polynomials with parameters α, β , and

V (β ,α)
n be the matrix Vn for Jacobi polynomials with parameters β , α. Then

U (α,β)
n = V (β ,α)

n , (6)

both in the restricted and extended Stenger conjecture.

Proof We give the proof for the restricted Stenger conjecture. It is the same for the ex-
tended conjecture, using w(α,β)(–x) = w(β ,α)(x).

We denote quantities x related to Jacobi parameters α, β by x∗ after interchange of
the parameters. Since the Jacobi polynomial satisfies P(α,β)

n (x) = (–1)nP(β ,α)
n (–x) (cf. [9,

Eq. (4.1.3)]), we can take x∗
j = x(β ,α)

j = –xj = –x(α,β)
j for the zeros of P(β ,α)

n . Noting that

�
(n)
k (x;α,β) =

∏

j �=k

x – xj

xk – xj
= –

∏

j �=k

x + x∗
j

x∗
k – x∗

j
=

∏

j �=k

(–x) – x∗
j

x∗
k – x∗

j
= �

(n)
k (–x;β ,α),

we get

u(α,β)
jk =

∫ xj

–1
�

(n)
k (t;α,β) dt =

∫ xj

–1
�

(n)
k (–t;β ,α) dt =

∫ 1

x∗
j

�
(n)
k (x;β ,α)) dx = v(β ,α)

jk . �

4 Proof of the Stenger conjecture for Legendre polynomials
By virtue of Theorem 1, it suffices to consider the matrix Un.

Let λ ∈C be an eigenvalue of Un and y = [y1, y2, . . . , yn]T ∈ C
n be a corresponding eigen-

vector,

Uny = λy, y �= [0, 0, . . . , 0]T , (7)

so that

∫ xi

–1

( n∑

j=1

�
(n)
j (x)yj

)
dx = λyi, i = 1, 2, . . . , n. (8)

Let y(x) ∈ Pn–1 be the unique polynomial of degree ≤ n – 1 interpolating to yj at xj, j =
1, 2, . . . , n. By the Lagrange interpolation formula and (8), we then have

∫ xi

–1
y(t) dt = λy(xi), i = 1, 2, . . . , n. (9)

With wi, i = 1, 2, . . . , n, denoting the weights of the n-point Gauss–Legendre quadrature
formula, multiply (9) by wiy(xi) and sum over i to get

n∑

i=1

wiy(xi)
∫ xi

–1
y(t) dt = λ

n∑

i=1

wi
∣∣y(xi)

∣∣2.

Since y(x)
∫ x

–1 y(t) dt is a polynomial of degree 2n–1, and n-point Gauss quadrature is exact
for any such polynomial, and since |y(x)|2 is a polynomial of degree 2n – 2, we have

∫ 1

–1
y(x)

(∫ x

–1
y(t) dt

)
dx = λ

∫ 1

–1

∣∣y(x)
∣∣2 dx. (10)
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Integration by parts on the left yields the identity

∫ 1

–1
y(x)

(∫ x

–1
y(t) dt

)
dx +

∫ 1

–1
y(x)

(∫ x

–1
y(t) dt

)
dx =

∣∣∣∣
∫ 1

–1
y(t) dt

∣∣∣∣
2

. (11)

The real part of the left-hand side of (10) is

1
2

[∫ 1

–1
y(x)

(∫ x

–1
y(t) dt

)
dx +

∫ 1

–1
y(x)

(∫ x

–1
y(t) dt

)
dx

]
,

which, by (11), equals 1
2 | ∫ 1

–1 y(t) dt|2. Therefore, taking the real part on the right of (10)
yields

Reλ

∫ 1

–1

∣∣y(x)
∣∣2 dx =

1
2

∣∣∣∣
∫ 1

–1
y(t) dt

∣∣∣∣
2

. (12)

From this, it follows that Reλ ≥ 0.
To prove strict positivity of Reλ, we have to show that the integral on the right of (12)

does not vanish. To do this, we look at
∫ x

–1 y(t) dt – λy(x), which is a polynomial of degree
n vanishing at xi, i = 1, 2, . . . , n, by (9). Therefore,

∫ x

–1
y(t) dt – λy(x) = const Pn(x), (13)

where Pn is the Legendre polynomial of degree n. We now multiply (13) by (1 – x)k–1,
1 ≤ k ≤ n, and integrate over [–1, 1]. Then, by orthogonality, we get

∫ 1

–1
(1 – x)k–1

(∫ x

–1
y(t) dt

)
dx = λ

∫ 1

–1
(1 – x)k–1y(x) dx.

On the left, integrating by parts, letting

u(x) =
∫ x

–1
y(t) dt, v′(x) = (1 – x)k–1,

u′(x) = y(x), v(x) =
∫ x

1
(1 – t)k–1 dt = –(1 – x)k/k,

and noting that u(–1) = v(1) = 0, we get

∫ 1

–1

(1 – x)k

k
y(x) dx = λ

∫ 1

–1
(1 – x)k–1y(x) dx, 1 ≤ k ≤ n. (14)

Now suppose that
∫ 1

–1 y(x) dx = 0. Then (14) for k = 1 implies that y(x) is orthogonal to
all linear functions. Putting k = 2 in (14) then implies orthogonality of y(x) to all quadratic
functions. Proceeding in this manner up to k = n – 1, we conclude that y(x) is orthogonal
to all polynomials of degree n – 1, in particular to itself, so that

∫ 1
–1 y2(x) dx = 0, hence

y(x) ≡ 0. This contradicts (7). Thus, by (12), Reλ > 0. �
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5 The restricted Stenger conjecture
5.1 Proof of the restricted Stenger conjecture for a special Jacobi polynomial
Here we consider the weight function w(x) = 1 – x on [–1, 1], that is, the Jacobi weight
function (1 – x)α(1 + x)β with parameters α = 1, β = 0, and denote by xi, i = 1, 2, . . . , n,
the zeros of the Jacobi polynomial P(1,0)

n and by Un the matrix in (2) formed with these
zeros xi. As is well known, the xi are the internal nodes of the (n + 1)-point Gauss–Radau
quadrature formula

∫ 1

–1
f (x) dx =

n∑

i=1

wif (xi) + wn+1f (xn+1), f ∈ P2n, (15)

where xn+1 = 1.
Let again λ ∈ C be an eigenvalue of Un and y = [y1, y2, . . . , yn] ∈ C

n be a corresponding
eigenvector, and y(x) be as defined in Sect. 4. Multiplying (9) now by wi(1 – xi)y(xi) and
summing over i = 1, 2, . . . , n + 1, we obtain

n+1∑

i=1

wi(1 – xi)y(xi)
∫ xi

–1
y(t) dt = λ

n+1∑

i=1

wi(1 – xi)
∣∣y(xi)

∣∣2.

(The last term in the sums on the left and right, of course, is zero.) Therefore, by (15),
since (1 – x)y(x)

∫ x
–1 y(t) dt is a polynomial of degree ≤ 2n and (1 – x)|y(x)|2 a polynomial

of degree ≤ 2n – 1,

∫ 1

–1
(1 – x)y(x)

(∫ x

–1
y(t) dt

)
dx = λ

∫ 1

–1
(1 – x)

∣∣y(x)
∣∣2 dx. (16)

The real part of the left-hand side of (16) is

1
2

[∫ 1

–1
(1 – x)y(x)

(∫ x

–1
y(t) dt

)
dx +

∫ 1

–1
(1 – x)y(x)

(∫ x

–1
y(t) dt

)
dx

]

=
1
2

∫ 1

–1
(1 – x)

d
dx

∣∣∣∣
∫ x

–1
y(t) dt

∣∣∣∣
2

dx, (17)

having used the product rule of differentiation on the right. Integration by parts then yields

1
2

∫ 1

–1

∣∣∣∣
∫ x

–1
y(t) dt

∣∣∣∣
2

dx = Reλ

∫ 1

–1
(1 – x)

∣∣y(x)
∣∣2 dx.

Since the integral on the right is positive, and so is the integral on the left, there follows
Reλ > 0. �

It may be thought that the same kind of proof might work also for Jacobi weight functions
with parameters α = 0, β = 1, or α = β = 1 using Gauss–Radau quadrature with fixed node
–1 or Gauss–Lobatto quadrature, respectively. The last step in the proof (integration by
parts of the integral on the right of (17)), however, fails to produce the desired conclusion,
the first factor in that integral being 1 + x, resp. 1 – x2.
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5.2 A counterexample
The simplest counterexample we came across involves a Gegenbauer polynomial of small
degree.

Counterexample

pn(x) = C(α)
n (x), n = 5,α = 10, (18)

where C(α)
n is the Gegenbauer polynomial of degree n.

From [1, Eq. 22.3.4] one finds

C(α)
5 (x) = α(α + 1)(α + 2)x

[
4

15
(α + 3)(α + 4)x4 –

4
3

(α + 3)x2 + 1
]

.

One zero of C(α)
5 , of course, is 0, while the other four are the zeros of the polynomial P in

brackets. When α = 10, one finds

P(x) =
1
3

(
728

5
x4 – 52x2 + 3

)
.

This is a quadratic polynomial in x2, the zeros of which could be found explicitly. However,
we proceed computationally, using Matlab, since eventually, to obtain eigenvalues, one has
to compute anyway.

The Matlab routine doing the computations is counterex.m.a It computes the ele-
ments of Un in (2) (where n = 5) exactly by 3-point Gauss–Legendre quadrature of the last
integral in

ujk =
∫ xj

–1
�

(5)
k (x) dx =

1
2

(1 + xj)
∫ 1

–1
�

(5)
k

(
1
2

(1 + xj)t –
1
2

(1 – xj)
)

dt (19)

and uses a routine lagrange.m for calculating the elementary Lagrange interpolation
polynomials as well as the OPQ routines r_jacobi.m, gauss.m. For the latter, see [4,
pp. 301, 304].

The output, showing the five eigenvalues d of U5, is
>> counterex

d =

.431796388637445 + 0.000000000000000i

.285123529721968 + .272861054932517i

.285123529721968 - .272861054932517i

-.001021724040688 + .286723270044925i

-.001021724040688 - .286723270044925i

>>

The last pair of eigenvalues has negative real part, disproving, at least computationally,
the restricted Stenger conjecture. The extended conjecture, however, seems to be valid for
this example; see Sect. 6.2, Example 1.
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5.3 Conjectures
The counterexample in Sect. 5.2 is symptomatic for more general counterexamples, not
only regarding Gegenbauer, but also many other weight functions. They are formulated
here as separate conjectures, all firmly rooted in computational evidence.

5.3.1 Gegenbauer polynomials
Conjecture 5.1 The restricted Stenger conjecture for Un (and, by Theorem 1, also for Vn)
is true for all Gegenbauer polynomials C(α)

n with 2 ≤ n ≤ 4, but for n ≥ 5 it is true only for
α > –1 up to some αn > 1.

The routine Uconj_restr_jac.m evaluates the matrix Un (for Jacobi polynomials)
in Matlab double-precision arithmetic and its eigenvalues in 32-digit variable-precision
arithmetic. Since the eigenvalues become more ill-conditioned as n increases, we first
make sure that they are accurate to at least four significant decimal digits by running the
routine entirely in 32-digit arithmetic for selected values of α (and also of β) in (–1, 1]
and selected values of n, using the routine sUconj_restr_jac.m, and comparing the
results with those obtained in double precision.

Conjecture 5.1 has then been confirmed for all α = –0.9 : 0.1 : 10, using the routine
run_Uconj_restr_jac.m. Estimates of αn have been obtained by a bisection-type
procedure and are shown in Table 1. They are “estimates” in the sense that the conjecture
is true for α ≤ αn, but false for α = αn + 0.001.

It appears that αn converges monotonically down to 1 as n → ∞.

5.3.2 Jacobi polynomials
Conjecture 5.2 The restricted Stenger conjecture for Un holds true in the case of Jacobi
polynomials P(α,β)

n for all n > 1 if –1 < α,β ≤ 1, but not necessarily otherwise.

The positive part of the conjecture has been confirmed for [α,β] = –0.9 : 0.1 : 1, and
in each case for n = 2 : 40, using the routine run_Uconj_restr_jac.m. The negative
part follows from Conjecture 5.1, Table 1 (if true). By Theorem 2, the same conjecture can
be made for the matrix Vn.

5.3.3 Algebraic/logarithmic weight functions
Here we first examine weight functions of the type

wα(x) = xα log(1/x) on[0, 1] with α > –1. (20)

Conjecture 5.3 For the matrix Un, the restricted Stenger conjecture holds true in the case
of the weight function (20) for all n > 1 if –1 < α ≤ α1, where 1 < α1 < 2, but not necessarily
otherwise. For the matrix Vn, in contrast, the conjecture is true for all α > –1.

Table 1 Estimates of αn , n = 5 : 5 : 40

n αn n αn

5 9.000 25 1.025
10 1.264 30 1.017
15 1.081 35 1.012
20 1.041 40 1.009
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In order to compute the zeros xj of the required orthogonal polynomials (needed to
obtain the Lagrange polynomials �

(n)
k ) for degrees 2 ≤ n ≤ 40 and arbitrary α > –1, we

need a routine that generates the respective recurrence coefficients for the orthogonal
polynomials. This can be done by applying a multicomponent discretization procedure,
using appropriate quadrature rules to discretize the integral

∫ 1
0 f (x)xα log(1/x) dx, where

f is a polynomial of degree ≤ 2n – 1. It was found to be helpful to split the integral in
two integrals, one extended from 0 to ξ , and the other from ξ to 1, 0 < ξ < 1, and use
ξ to optimize the rate of convergence (that is, to minimize the parameter Mcap in the
discretization routine mcdis.m). Using obvious changes of variables, one finds

∫ ξ

0
f (x)xα log(1/x) dx = ξα+1

[
log(1/ξ )

∫ 1

0
f (tξ )tα dt

+
1

(1 + α)2

∫ ∞

0
f
(
ξe–t/(1+α))te–t dt

]
, (21)

∫ 1

ξ

f (x)xα log(1/x) dx = (1 – ξ )
∫ 1

0
f
(
x(t)

)[
x(t)

]α
log

(
1/x(t)

)
dt, (22)

where in (22), x(t) = (1 – ξ )t + ξ maps the interval [0, 1] onto [ξ , 1]. In (21), the first in-
tegral on the right can be discretized (without error) by n-point Gauss–Jacobi quadra-
ture on [0, 1] with Jacobi parameters 0 and α, and the second integral (with small error)
by sufficiently high-order generalized Gauss–Laguerre quadrature with Laguerre param-
eter 1. The integral in (22) can be discretized by sufficiently high-order Gauss–Legendre
quadrature on [0, 1]. For the optimal ξ , one can use, as found empirically (using the routine
run_r_alglog1.m),

ξ =

⎧
⎨

⎩
[1 + 10(α + 0.9)]/1000 if – 0.9 ≤ α ≤ 1,

0.02 if α > 1.

This is implemented in the routine r_alglog1.m.
The routine sUconj_restr_log1.m, run with dig = 32, generates the matrix Un

and its eigenvalues in 32-digit arithmetic. It relies on the global n×2 arraysab andableg
containing the first n recurrence coefficients of the (monic) orthogonal polynomials rela-
tive to the weight functions wα and 1, respectively (both supported on [0, 1]). The array ab,
when α = –1/2, 0, 1/2, 1, 2 is available, partly in [5, 2.3.1,2.41,2.4.3], to 32 digits for n at least
as large as 100, whereas ableg can easily be generated by the routine sr_jacobi01.m.
For these five values of α, we can therefore produce reference values to high precision for
the eigenvalues of Un.

The Matlab double-precision routine Uconj_restr_log1.m, also run with dig =
32, generates the matrix Un in double-precision arithmetic and the eigenvalues in 32-digit
arithmetic for arbitrary values of α > –1, its global array ab being produced by the rou-
tine r_alglog1.m. When the eigenvalues so obtained are compared with the reference
values, for the above five values of α, it is found that for n ≤ 40 they all are accurate to
at least four decimal digits (cf. test_Uconj_restr_log1.m). This provides us with
some confidence that the routine Uconj_restr_log1.m, when n ≤ 40, will produce
eigenvalues to the same accuracy, also when α is arbitrary in the range from –1/2 to 2.
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The routine run_Uconj_restr_log1.m validates the restricted Stenger conjecture
for the matrix Un when α = –1/2, 0, 1/2, 1, at least for all n between 2 and 40, but re-
futes it when α = 2 and n = 8, producing a pair of eigenvalues with negative real part
–1.698 . . . (–3). This provides some indication that Conjecture 5.3 for the matrix Un may
be valid. We strengthen this expectation by running the routine for additional values of
α, and at the same time try to estimate the value of α1 in dependence of n by applying a
bisection-type procedure. It is found that, when n ≤ 40, Conjecture 5.3 for Un is true with
α1 as shown in Table 2.

It appears that α1 is monotonically decreasing. Since it is bounded below by 1, it would
then have to converge to a limit value (perhaps = 1).

The routines dealing with the matrix Vn are Vconj_restr_log1.m and run_

Vconj_restr_log1.m. They validate Conjecture 5.3 for the matrix Vn when α =
–1/2, 0, 1/2, 1, 2, 5, 10, in each case for 2 ≤ n ≤ 40.

For illustration, the eigenvalues of Un are shown in Fig. 1 for α = 0 and n = 10, 20, 40,
and those of Vn in Fig. 2 for the same α and n.

For the weight function

w(x) = xα log2(1/x) on [0, 1], with α > –1, (23)

our conjecture for Un is the same as the one in Conjecture 5.3, but not so for Vn.

Table 2 The values of α1 in Conjecture 5.2 in dependence of n

n α1

10 1.511
20 1.253
30 1.203
40 1.179

Figure 1 Eigenvalues of the matrix Un for a logarithmic weight function and n = 10, 20, 40 (from left to right)

Figure 2 Eigenvalues of the matrix Vn for a logarithmic weight function and n = 10, 20, 40 (from left to right)
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Table 3 The values of α2 in Conjecture 5.4 in dependence of n

n α2

10 1.852
20 1.480
30 1.394
40 1.353

Figure 3 Eigenvalues of the matrix Un for a square-logarithmic weight function and n = 10, 20, 40 (from left to
right)

Conjecture 5.4 For the matrix Un, the restricted Stenger conjecture holds true in the case
of the weight function (23) for all n > 1 if –1 < α < α2, where α2 is a number between 1 and
2, but not necessarily otherwise. For the matrix Vn, the conjecture is false for all α > –1.

The routines used to make this conjecture are the same as those used for Conjecture 5.3
but with “log1” replaced by “log2”. The statements regarding the matrix Un are arrived
at in the same way as in Conjecture 5.3, the values of α2 now being as shown in Table 3.

With regard to Vn, the conjecture is found to be false for α = –1/2, 0, 1/2, 1, 2, 5 and n = 7
in each case, there being a single pair of conjugate complex eigenvalues with negative real
part.

We illustrate by showing in Fig. 3 the eigenvalues of Un for α = 0 and n = 10, 20, 40.

5.3.4 Laguerre and generalized Laguerre weight functions
For generalized Laguerre weight functions

w(x) = xαe–x on [0,∞],α > –1, (24)

it only makes sense to look at the U-conjecture.

Conjecture 5.5 For the matrix Un, the restricted Stenger conjecture is true in the case of
the weight function (24) for all n > 1 if –1 < α ≤ α0, where 1 < α0 < 2, but not necessarily
otherwise.

The routines written for this conjecture are Uconj_restr_lag.m and run_Uconj_
restr_lag.m. The latter, run for α = –0.9 : 0.1 : 2, n = 2 : 40, confirms the conjecture up
to, and including, α = 1.2, but refutes it when α = 1.3 and n = 40, producing a single pair
of conjugate complex eigenvalues with negative real part. The case α = 1.3 was checked
by running the routine run_sUconj_restr_lag.m in 32-digit arithmetic, which pro-
duced eigenvalues agreeing with those obtained in double precision to at least 12 digits.
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Table 4 The values of α0 in Conjecture 5.5 in dependence of n

n α0

10 2.475
20 1.522
30 1.317
40 1.228

Figure 4 Eigenvalues of the matrix Un for the Laguerre weight function and n = 10, 20, 40 (from left to right)

(This check may take as many as five hours to run.) A bisection-type procedure, run in
double precision, yields the values of α0 shown in Table 4 in dependence of n.

Figure 4 shows the eigenvalues of Un when α = 0 and n = 10, 20, 40.

6 The extended Stenger conjecture
To avoid extensive and time-consuming Matlab variable-precision computations, we re-
strict ourselves in Sects. 6.2–6.6 to values of n that are less than, or equal to, 30. Also note
that in all figures of this section the horizontal axis carries a logarithmic scale.

6.1 Proof of a weak form of the extended Stenger conjecture for a special Jacobi
polynomial

We consider here, as in Sect. 5.1, the Jacobi weight function w(x) = (1 – x)α(1 + x)β on
[–1, 1], with α = 1, β = 0, and continue using the same notations as in that section. In
particular, we again use the (n + 1)-point Gauss–Radau quadrature formula

∫ 1

–1
f (x) dx =

n+1∑

i=1

wif (xi) + Rn(f ), (25)

where xn+1 = 1, but this time we include the remainder term

Rn(f ) = –γn
f (2n+1)(ξ )
(2n + 1)!

, γn = 22n+1 (n + 1)n!4

(2n + 1)!2
(26)

(cf. [3, top of p. 158, where γ b should read γ b
n ]). In place of (9), we now have

∫ xi

–1
y(t)(1 – t) dt = λy(xi), i = 1, 2, . . . , n. (27)

Multiplying this, as in Sect. 5.1, by wi(1 – xi)y(xi) and summing over i = 1, 2, . . . , n + 1, we
obtain

n+1∑

i=1

wi(1 – xi)y(xi)
∫ xi

–1
y(t)(1 – t) dt = λ

n+1∑

i=1

wi(1 – xi)
∣∣y(xi)

∣∣2. (28)
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Since

f (x) := (1 – x)y(x)
∫ x

–1
y(t)(1 – t) dt (29)

is a polynomial of degree 2n + 1 and the left-hand side of (28) is equal to the quadrature
sum on the right of (25) with f as in (29), we get

n+1∑

i=1

wi(1 – xi)y(xi)
∫ xi

–1
y(t)(1 – t) dt

=
∫ 1

–1
(1 – x)y(x)

(∫ x

–1
y(t)(1 – t) dt

)
dx + γn

f (2n+1)(ξ )
(2n + 1)!

,

where f (2n+1) is a nonnegative constant, namely

f (2n+1)(ξ ) =
(2n + 1)!

n + 1
|an–1|2,

with an–1 the leading coefficient (of xn–1) of the polynomial y(x). Thus,

n+1∑

i=1

wi(1 – xi)y(xi)
∫ xi

–1
y(t)(1 – t) dt

=
∫ 1

–1
(1 – x)y(x)

(∫ x

–1
y(t)(1 – t) dt

)
dx + Cn, (30)

where

Cn =
γn

n + 1
|an–1|2.

Now the real part of the left-hand side of (28), by (30), is

1
2

[∫ 1

–1
(1 – x)y(x)

(∫ x

–1
y(t)(1 – t) dt

)
dx

+
∫ 1

–1
(1 – x)y(x)

(∫ x

–1
y(t)(1 – t) dt

)
dx

]
+ Cn

=
1
2

∫ 1

–1

d
dx

∣∣∣∣
∫ x

–1
y(t)(1 – t) dt

∣∣∣∣
2

dx + Cn

=
1
2

∣∣∣∣
∫ 1

–1
y(t)(1 – t) dt

∣∣∣∣
2

+ Cn,

so that, by (28),

1
2

∣∣∣∣
∫ 1

–1
y(t)(1 – t) dt

∣∣∣∣
2

+ Cn = Reλ

∫ 1

–1
(1 – x)

∣∣y(x)
∣∣2 dx. (31)

the integrand on the right being a polynomial of degree 2n – 1. From this, it follows that
Reλ ≥ 0. �
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Table 5 The minimum values min int of | ∫ 1
–1 y(t)(1 – t)dt| and |an–1|

n min int min |an–1| n min int min |an–1|
5 2.273(–1) 4.425(–1) 25 4.906(–1) 1.088(–1)
10 4.228(–1) 2.062(–1) 30 4.809(–1) 1.126(–1)
15 4.200(–1) 1.358(–1) 35 4.595(–1) 1.162(–1)
20 4.966(–1) 1.193(–1) 40 4.435(–1) 1.295(–1)

Strict positivity of Reλ holds if |an–1| > 0, that is, if y(x) is a polynomial of exact degree
n – 1, or if the integral on the left of (31) does not vanish. Computation, using the routines
check_pos.m and run_check_pos.m, confirms that both are indeed the case, at least
for n ≤ 40. Table 5 shows, for selected values of n, the minimum values of | ∫ 1

–1 y(t)(1– t) dt|
and |an–1|, the minimum being taken over all eigenvalues/vectors. For checking purposes,
the computations have also been carried out entirely in 32-digit arithmetic.

6.2 Jacobi weight functions
The element u(n)

jk of the matrix Un in (3) for the Jacobi weight function w(x) = (1–x)α(1+x)β

on [–1, 1] is

u(n)
jk =

∫ xj

–1
�

(n)
k (x)w(x) dx =

1
2

(1 + xj)
∫ 1

–1
�

(n)
k

(
x(t)

)
w

(
x(t)

)
dt,

where

x(t) =
1
2

(1 + xj)t –
1
2

(1 – xj)

maps [–1, 1] onto [–1, xj]. An elementary computation yields

u(n)
jk =

(
1 + xj

2

)α+β+1 ∫ 1

–1
�

(n)
k

(
x(t)

)[3 – xj

1 + xj
– t

]α

(1 + t)β dt. (32)

Although the second factor in the integrand of (32) may be algebraically singular at a
point close to, but larger than, 1 (when xj < 1 is close to 1), we simply apply Gauss–Jacobi
quadrature with Jacobi parameters 0 and β to the integral in (32) and choose the num-
ber of quadrature points large enough so as to produce eigenvalues of Un accurate to at
least four decimal places (which is good enough for plotting purposes). This is imple-
mented by the Matlab function Uconj_ext_jac.m and can be run with the Matlab
script run_Uconj_ext_jac.m.

Example 1 Gegenbauer weight function w(x) = (1 – x2)α on [–1, 1] with α = 10.
This is the weight function for which the restricted Stenger conjecture is false already

for n = 5 (cf. Sect. 5.2). The extended conjecture, however, is found to be true for all 2 ≤
n ≤ 30; see Fig. 5 for the cases n = 5, 15, 30.

Example 2 Jacobi weight function with parameters (α,β) = [–0.9 : 0.6 : 0.9, 1.7 : 0.7 :
3.8, 4.7 : 0.9 : 7.4].

We used the script run_Uconj_ext_jac.m to check the extended U-conjecture for
all these Jacobi weight functions, separately for n = 5, 15, 30, and found in every case that
the conjecture is valid. By Theorem 2, the same is true for the matrix Vn.
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Figure 5 Eigenvalues of the matrix Un for a special Gegenbauer polynomial of degrees n = 5, 15, 30 (from left
to right)

Figure 6 Eigenvalues of the matrix Un , n = 30, for selected Jacobi polynomials

To illustrate, we show in Fig. 6 the eigenvalues of Un for the three parameter choices
α = β = –0.9, α = –0.3, β = –0.9, and α = 5.6, β = 1.7, in each case with n = 30.

6.3 Algebraic/logarithmic weight functions
6.3.1 The weight function w(x) = xα log(1/x) on [0, 1]
Here, for the matrix Un, we use the change of variables x = xjt in

u(n)
jk =

∫ xj

0
�

(n)
k (x)xα log(1/x) dx = xα+1

j

∫ 1

0
�

(n)
k (xjt)tα log

(
1/(xjt)

)
dt

to get

u(n)
jk = xα+1

j

[
log(1/xj)

∫ 1

0
�

(n)
k (xjt)tα dt +

∫ 1

0
�

(n)
k (xjt)tα log(1/t) dt

]
. (33)

Both integrals can be evaluated exactly, the first by m-point Gauss–Jacobi quadrature
on [0, 1] with Jacobi parameters 0 and α, where m = �n/2�, and the second by m-
point Gauss quadrature relative to the weight function w(t) = tα log(1/t) on [0, 1]. For
the latter, the recurrence coefficients for the relevant orthogonal polynomials (when
α = 0, –1/2, 1/2, 1, 2, 5) are available to 32 decimal digits, partly in [5, 2.3.1, 2.4.1, 2.4.3],
which allow us to generate the Gaussian quadrature rule in a well-known manner (cf.,
e.g., [3, §3.1.1]) using the OPQ routine gauss.m (see [4, p. 304]). This is implemented
by the Matlab function Uconj_ext_log1.m and can be run with the Matlab script
run_Uconj_ext_log1.m.

Alternatively, when n ≤ 40, we may compute the recurrence coefficients for arbitrary
α > –1 as described in Sect. 5.3.3. This is implemented by the routines r_alglog1.m,
Uconj_ext_log1.m, and run0_Uconj_ext_log1.m.
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Figure 7 Eigenvalues of Un in the case of a logarithmic weight function for n = 5, 15, 30 (from left to right)

Figure 8 Eigenvalues of Un in the case of an algebraic/logarithmic weight function with parameter α = –1/2
for n = 5, 15, 30 (from left to right)

Figure 9 Eigenvalues of Un in the case of an algebraic/logarithmic weight function with parameter α = 1/2
for n = 5, 15, 30 (from left to right)

Example 3 Algebraic/logarithmic weight function w(x) = xα log(1/x) on [0, 1] with α =
(–0.9 : 0.1 : 5)(5.2 : 0.2 : 7)(7.5 : 0.5 : 10).

Our routines validate the extended Stenger conjecture for all these values of α and 2 ≤
n ≤ 30. The eigenvalues of Un are shown in the case α = 0 in Fig. 7, and in the cases α =
–1/2, 1/2 in Figs. 8 and 9, respectively, for n = 5, 15, 30. They are similar when α = 1, 2, 5.

With regard to Vn, the conjecture has been similarly validated, using the routines
Vconj_ext_log1 and run_Vconj_ext_log1.m, for the same values of n and α as
in Example 3. To compute the matrix Vn, we have used

v(n)
jk =

∫ 1

0
�

(n)
k (x)xα log(1/x) dx – u(n)

jk (34)

with u(n)
jk as in (33) and the integral evaluated by �n/2�-point Gaussian quadrature relative

to the weight function w(x). The eigenvalues of Vn are found to be similar to those for Un

shown in Figs. 7–9.



Gautschi and Hairer Journal of Inequalities and Applications        (2019) 2019:159 Page 17 of 27

Figure 10 Eigenvalues of Un in the case of an algebraic/square-logarithmic weight function, with exponent
α = –1/2, for n = 5, 15, 30 (from left to right)

Figure 11 Eigenvalues of Un in the case of an algebraic/square-logarithmic weight function, with exponent
α = 1/2, for n = 5, 15, 30 (from left to right)

6.3.2 Algebraic/square-logarithmic weight function w(x) = xα log2(1/x) on [0, 1], α > –1
Similarly as in Sect. 6.3.1, one finds

u(n)
jk = xα+1

j

[
log2(1/xj)

∫ 1

0
�

(n)
k (xjt)tα dt + 2 log(1/xj)

∫ 1

0
�

(n)
k (xjt)tα log(1/t) dt

+
∫ 1

0
�

(n)
k (xjt)tα log2(1/t) dt

]
, (35)

where again the integrals can be evaluated exactly and some of the required recurrence
coefficients taken from [5, 2.3.2], [5, 2.4.5], [5, 2.4.7]. This is implemented by the Matlab
function Uconj_ext_log2.m and driver run_Uconj_ext_log2.m.

Example 4 Algebraic/square-logarithmic weight function w(x) = xα log2(1/x) on [0, 1]
with α = 0, –1/2, 1/2, 1, 2, 5.

Our routines validate the extended Stenger conjecture for all these values of α and 2 ≤
n ≤ 30. The eigenvalues of Un in the case α = 0 are found to be similar to those depicted
in Fig. 7 for the weight function log(1/x). For the cases α = –1/2, 1/2, 5, they are shown
respectively in Figs. 10–12 for n = 5, 15, 30. Interestingly, all eigenvalues appear to be real
when α– = –1/2.

Similar results and validations, using the routines Vconj_ext_log2.m and run_

Vconj_ext_log2.m, are obtained for the matrix Vn, which, as in (34), is computed
exactly by

v(n)
jk =

∫ 1

0
�

(n)
k (x)xα log2(1/x) dx – u(n)

jk (36)

with u(n)
jk as in (35).
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Figure 12 Eigenvalues of Un in the case of an algebraic/square-logarithmic weight function, with exponent
α = 5, for n = 5, 15, 30 (from left to right)

6.4 Laguerre and generalized Laguerre weight functions
Here, the weight function is assumed to be w(x) = xαe–x on [0,∞], where α > –1. We write

u(n)
jk =

∫ ∞

0
�

(n)
k (x)xαe–x dx –

∫ ∞

xj

�
(n)
k (x)xαe–x dx

and, in the second integral, make the change of variables x = xj + t to get

u(n)
jk =

∫ ∞

0
�

(n)
k (x)xαe–x dx – e–xj

∫ ∞

0
�

(n)
k (xj + t)(xj + t)αe–t dt. (37)

The first integral can be evaluated exactly by �n/2�-point generalized Gauss–Laguerre
quadrature. The second integral, similarly as in (32) for Jacobi weight functions, has an al-
gebraic singularity close to, and to the left of, the origin when xj is close to zero (and α not
an integer). As in Sect. 6.2, we ignore this and simply apply Gauss–Laguerre quadrature
of sufficiently high order so as to obtain plotting accuracy for all the eigenvalues of Un.
However, there is yet another complication: Around n = 25, the Gauss–Laguerre weights,
in Matlab double precision, start becoming increasingly inaccurate (in terms of relative
accuracy) and adversely affect the accuracy of the second integral in (37). For this rea-
son, we use 32-digit variable-precision arithmetic to compute these weights and convert
them to Matlab double precision, once computed. At the same time we lower the accuracy
requirement from 4- to 3-digit accuracy.

Example 5 Generalized Laguerre weight function w(x) = xαe–x dx on [0,∞] for the same
values of α and n as in Example 2.

The Matlab routines implementing this and validating the conjecture in each case are
Uconj_ext_lag.m andrun_Uconj_ext_lag.m. They may take several hours to run
because of the extensive variable-precision work involved. The accuracy achieved for the
eigenvalues is consistently of the order of 10–4 or better, but the necessary number of
quadrature points is found to be as large as 440 (for α = –0.9 and n = 30).

For illustration, we show in Fig. 13 the eigenvalues obtained in the case of the ordinary
Laguerre weight function (α = 0) and for n = 5, 15, 30. Notice the extremely small real
eigenvalues when n = 30, the smallest being of the order 10–43.

Using

v(n)
jk =

∫ ∞

0
�

(n)
k (x)xαe–x dx – u(n)

jk (38)
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Figure 13 Eigenvalues of Un in the case of the Laguerre weight function for n = 5, 15, 30 (from left to right)

with u(n)
jk as in (37), the conjecture has been similarly validated with the help of the routines

Vconj_ext_lag.m, run_Vconj_ext_lag.m.

6.5 Hermite and generalized Hermite weight functions
These are the weight functions w(x) = |x|2μe–x2 on [–∞,∞], μ > –1/2. Since they are sym-
metric, it suffices, by Theorem 1, to consider Un. To simplify matters, we assume 2μ to be
a nonnegative integer.

For the evaluation of u(n)
jk , we distinguish the cases xj < 0 and xj ≥ 0. In the former case,

by the change of variables x = xj – t, one gets

u(n)
jk = e–x2

j

∫ ∞

0
�

(n)
k (xj – t)(t – xj)2μe2xjte–t2

dt, xj < 0. (39)

Here, half-range Gauss–Hermite quadrature (cf. [5, 2.9.1]) is expected to converge rapidly.
When xj ≥ 0, breaking up the first integral in (3) (with a = –∞) into two parts, one ex-
tended from –∞ to 0 and the other from 0 to xj, and making appropriate changes of vari-
ables in each yield

u(n)
jk =

∫ ∞

0
�

(n)
k (–t)t2μe–t2

dt + x2μ+1
j

∫ 1

0
�

(n)
k (xjt)e–x2

j t2
t2μ dt, xj ≥ 0. (40)

The first integral can be evaluated exactly by �(n + 2μ)/2�-point half-range Gauss–
Hermite quadrature. The second integral may be approximated by Gauss–Jacobi quadra-
ture on [0, 1] with Jacobi parameters 0 and 2μ. This, too, is expected to converge quickly.

Example 6 Generalized Hermite weight function w(x) = |x|2μe–x2 on [–∞,∞], μ = 0 :
1/2 : 25 and n = 5, 15, 30.

The conjecture has been validated in all cases using the routinesUconj_ext_herm.m,
run_Uconj_ext_herm.m. For illustration, the eigenvalues of Un are shown in Fig. 14
for the case μ = 0.

6.6 A weight function supported on two disjoint intervals
We now consider a weight function which is not positive a.e.:

w(x) =

⎧
⎨

⎩
|x|(x2 – ξ 2)p(1 – x2)q if x ∈ [–1, –ξ ] ∪ [ξ , 1],

0 otherwise,
(41)
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Figure 14 Eigenvalues of Un in the case of the Hermite weight function for n = 5, 15, 30 (from left to right)

where 0 < ξ < 1, p > –1, q > –1. This weight function, of interest in theoretical chemistry
when p = q = –1/2, has been studied in [2]. In our present context, we assume, for sim-
plicity, that p and q are nonnegative integers. Then only integrations of polynomials are
required, which, as before, can be done exactly.

Since the weight function w is symmetric, it suffices, by Theorem 1, to look at the ma-
trices Un only.

Any polynomial πn orthogonal with respect to w can have at most one zero in the in-
terval [–ξ , ξ ] where w is zero [3, Theorem 1.20]. By symmetry, therefore, all zeros of πn

are located in the intervals (–1, –ξ ) or (ξ , 1), except when n is odd, in which case there is
a zero at the origin.

The recurrence coefficients αk , βk for the (monic) polynomials πn are known explicitly
[2, Eq. (4.1)]: All αk = 0, by symmetry, and

β0 =
(
1 – ξ 2)p+q+1

Γ (p + 1)Γ (q + 1)/Γ (p + q + 2),

β1 =
1
2
(
1 – ξ 2)αJ

0 +
1
2
(
1 + ξ 2),

β2k = ( 1
2 (1 – ξ 2))2β

J
k/β2k–1

β2k+1 = 1
2 (1 – ξ 2)αJ

k + 1
2 (1 + ξ 2) – β2k

}
k = 1, 2, 3, . . . ,

where α
J
k , β

J
k are the recurrence coefficients of the monic Jacobi polynomials with pa-

rameters α = q, β = p. Therefore, the zeros of πn are easily computed by the OPQ routine
gauss.m (see [4, p. 304]).

The computation of u(n)
jk is different, depending on where the zero xj is located. In fact,

u(n)
jk = –

1 + xj

2

∫ 1

–1
�

(n)
k

(
x1(t)

)
x1(t)

(
x2

1(t) – ξ 2)p(1 – x2
1(t)

)q dt if xj < –ξ ,

where x1(t) = 1+xj
2 t + xj–1

2 maps [–1, 1] onto [–1, xj];

u(n)
jk = –

1 – ξ

2

∫ 1

–1
�

(n)
k

(
x2(t)

)
x2(t)

(
x2

2(t) – ξ 2)p(1 – x2
2(t)

)q dt if xj = 0,

where x2(t) = 1–ξ

2 t – 1+ξ

2 maps [–1, 1] onto [–1, –ξ ]; and

u(n)
jk =

(
u(n)

jk
)

xj=0 +
xj – ξ

2

∫ 1

–1
�k

(
x3(t)

)
x3(t)

(
x2

3(t) – ξ 2)p(1 – x2
3(t)

)q dt if xj > ξ ,

where x3(t) = xj–ξ

2 t + xj+ξ

2 maps [–1, 1] onto [ξ , xj].
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Figure 15 Eigenvalues of Un in the case of a two-interval weight function for n = 5, 15, 30 (from left to right)

All integrals can be computed exactly by (�(n + 1)/2� + p + q)-point Gauss–Legendre
quadrature.

Example 7 The weight function (41) with ξ = 0.1 : 0.2 : 0.9 and p, q = 0 : 5 for n = 5, 15, 30.
The routines Uconj_ext_twoint.m, run_Uconj_ext_twoint.m can be used to

validate the conjecture in all cases, even though the weight function is not in the class of
weight functions assumed in the conjecture. (For another such example, see Example 9
with N = 1.)

To illustrate, we show in Fig. 15 the eigenvalues of Un, n = 5, 15, 30, in the case ξ = 1/2,
p = q = 0, i.e., for the weight function w(x) on [–1, 1] equal to |x| outside of [–1/2, 1/2] and
0 inside.

7 Discrete weight functions
To demonstrate that an assumption about the weight function like the one made for the
extended Stenger conjecture is called for, we now consider a discrete measure dλN+1 sup-
ported on N + 1 points 0, 1, 2, . . . , N with jumps wk > 0 at the points k, k = 0, 1, . . . , N . The
corresponding orthogonal polynomials, now N + 1 in number, are again denoted by pn,
n = 0, 1, . . . , N . If w0 = w1 = · · · = wN = 1, we are dealing with the classical discrete orthog-
onal polynomials attributed to Chebyshev [3, Example 1.15]). They are the special case
α = β = 0 of Hahn polynomials with parameters α, β (cf. [3, last entry of Table 1.2]). Both
the weight function and the zeros of pn are symmetric about the midpoint N/2. In partic-
ular, when N is even and n odd, one of the zeros is equal to N/2, hence an integer.

For the elements of Un, we have

u(n)
j,k =

ij∑

i=0

wi�
(n)
k (i), ij = �xj�, (42)

where xj are the zeros of pn (assumed in increasing order). These can be generated by the
functions r_hahn.m and gauss.m.

Example 8 The measure dλN+1, N ≥ 2, with w0 = w1 = · · · = wN = 1, and pn with 2 ≤ n ≤
N .

It is important to note that when the zeros of pn are computed by the routine gauss.m,
and when N is even and n odd, the integer zero xj = N/2 may end up becoming slightly less
than N/2, in which case �xj� in (42) will yield an incorrect result. Similarly, the smallest
zero, when computed, may turn out to become negative, or the largest zero equal to N . To
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Table 6 The presence of delinquent eigenvalues of Un in the case of a discrete weight function

N n N n

11 11 21 18–21
12 12 22 18–22
13 13 23 19–22 23∗
14 13 14 24 16 19–23 24∗
15 14 15 25 16 18 20–24 25∗
16 15 16 26 18 20–25 26∗
17 15–17 27 17 21∗22∗23∗ 24–26 27∗
18 16–18 28 20–25 26∗27∗28∗
19 16–19 29 18 19 22∗ 23 24 25∗26∗ 27 28∗29∗
20 17–20 30 20 22–27 28∗ 29∗ 30∗

Figure 16 Eigenvalues of Un in the case of discrete weight functions for n = N = 11, 15, 30 (from left to right)

avoid these pitfalls, we overwrite the zero, once computed, by N/2 or reset �xj�, j = 1, n,
by 0 resp. N – 1.

On running the script run_Uconj_ext_hahn.m, using Uconj_ext_hahn.m, to
compute Un and its eigenvalues, we found that the extended Stenger conjecture is still true
for all N ≤ 10 and all 2 ≤ n ≤ N , but no longer when N > 10. The values of N and n for
which eigenvalues with negative real parts appear are shown in Table 6 for 11 ≤ N ≤ 30.

Asterisks indicate the presence of two pairs of delinquent complex conjugate eigenvalues
rather than the usual single pair. (48-digit arithmetic was used for the last two entries in
Table 6.)

Since the weight function is symmetric (with respect to the midpoint N/2), by Theo-
rem 1 the same pattern of validity and nonvalidity holds also for the V -conjecture.

We illustrate by showing in Fig. 16 the eigenvalues of Un, n = N , for N = 11, 15, 30.
Since there are no approximations involved, the results obtained should be quite accu-

rate. In fact, we reran Example 8 in 48-digit arithmetic and found the double-precision
eigenvalues accurate to 13, 12, and 10 digits for, resp., n = 11, 15, 30.

With regard to the restricted Stenger conjecture, the routines used are run_Uconj_
restr_hahn.m and Uconj_restr_hahn.m. They, too, confirm the validity of the
conjecture for N ≤ 10 and 2 ≤ n ≤ N . But for N > 11, there are now more values of n
than shown in Table 6 for which there are eigenvalues with negative real parts, and there
can be as many as four pairs of delinquent eigenvalues.

8 Block-discrete and ε-block-discrete weight functions
It may be interesting to see whether the eigenvalues of Un behave similarly as in Example 8
when the weight function is not (N + 1)-discrete, but (N + 1)-block-discrete, that is, of the



Gautschi and Hairer Journal of Inequalities and Applications        (2019) 2019:159 Page 23 of 27

form

w(x; N + 1) =

⎧
⎨

⎩
wν if 2ν ≤ x ≤ 2ν + 1,ν = 0, 1, . . . , N ,

0 otherwise,
(43)

where w0, w1, . . . , wN , N ≥ 1, are positive numbers. Thus, the weight function is made up
of N + 1 “blocks” with base 1 and heights wν , ν = 0, 1, . . . , N , any two consecutive blocks
being separated by a zero-block. More generally, we may consider (N +1)-ε-block-discrete
weight functions, where the separating zero-blocks are replaced by ε-blocks, that is,

w(x; N + 1, ε) =

⎧
⎪⎪⎨

⎪⎪⎩

wν if 2ν ≤ x < 2ν + 1,ν = 0, 1, . . . , N ,

ε if 2ν – 1 ≤ x < 2ν,ν = 1, 2, . . . N ,

0 otherwise.

(44)

The orthogonal polynomials pn associated with the weight function w(x; N + 1, ε) can be
generated from their three-term recurrence relation, which in turn can be computed (ex-
actly) by a (2N + 1)-component discretization procedure (cf. [3, §2.2.4]) using �n/2�-point
Gauss–Legendre quadrature on [0, 1]. This is implemented in Matlab double and vari-
able precision by the routines ab_blockhahn.m, sab_blockhahn.m. (For checking
purposes, the same recurrence relation was also computed by a moment-based routine in
sufficiently high precision.)

The elements ujk of the matrix Un

ujk =
∫ xj

0
�

(n)
k (x)w(x; N + 1, ε) dx,

where xj are the zeros of pn, can be computed (exactly) as follows. Let m = �xj�.
If m = 0,

u(n)
jk = w0

∫ xj

0
�

(n)
k (x) dx = w0xj

∫ 1

0
�

(n)
k (xjt) dt;

if m = 1,

ujk = w0

∫ 1

0
�

(n)
k (x) dx + ε

∫ xj

1
�

(n)
k (x) dx

=
∫ 1

0

[
w0�

(n)
k (t) + ε(xj – 1)�(n)

k
(
(xj – 1)t + 1

)]
;

if m > 0 is even,

ujk =
(m–2)/2∑

ν=0

wν

∫ 2ν+1

2ν

�
(n)
k (x) dx + wm/2

∫ xj

m
�

(n)
k (x) dx + ε

m/2∑

ν=1

∫ 2ν

2ν–1
�

(n)
k (x) dx

=
∫ 1

0

((m–2)/2∑

ν=0

wν�
(n)
k (2ν + t) + wm/2(xj – m)�(n)

k
(
(xj – m)t + m

)

+ ε

m/2∑

ν=1

�
(n)
k (2ν – 1 + t)

)
dt;
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Table 7 The presence of delinquent eigenvalues of Un in the case of a block-discrete weight
function

N n

2 9 17 18 20–22 25 28–30
3 11 14 21 22 24 27 28 30
4 13 14 16 18 20–22 24∗ 25∗ 29∗ 30
5 14 17 18 20 22–26 27∗ 28∗ 30
6 10 15–17 20–25 26∗ 27 29 30
7 11 17 20 21 23–28
8 14 18 20 23∗ 24 25∗ 27 28∗ 29∗ 30
9 15 19 21 23 24 26 27∗ 29∗ 30
10 13 14 16 18 20 22 26∗ 28∗ 29∗

if m > 1 is odd,

ujk =
(m–1)/2∑

ν=0

wν

∫ 2ν+1

2ν

�
(n)
k (x) dx + ε

(m–1)/2∑

ν=1

∫ 2ν

2ν–1
�

(n)
k (x) dx + ε

∫ xj

m
�

(n)
k (x) dx

=
∫ 1

0

(
w0�

(n)
k (t) +

(m–1)/2∑

ν=1

[
wν�

(n)
k (2ν + t) + ε�

(n)
k (2ν – 1 + t)

]

+ ε(xj – m)�(n)
k

(
(xj – m)t + m

)
)

dt.

All integrals on the far right of these equations can be computed exactly by �n/2�-point
Gauss–Legendre quadrature on [0, 1]. The first pitfall mentioned in Example 8, associated
with computing the floor of xj, is no longer an issue since the midpoint is now N + 1/2, a
half-integer, not an integer.

Example 9 The (N + 1)-block-discrete Hahn weight function with parameters α = β = 0
and pn with 2 ≤ n ≤ N .

This is the weight function (43) with w0 = w1 = · · · = wN = 1. To check the behavior of the
eigenvalues in this case, we have run the script run_Uconj_ext_blockhahn.m using
the function Uconj_ext_blockhahn.m and epsilon = 0 for N = 1 : 10 and 2 ≤ n ≤
30 for each N . It was found that the extended Stenger conjecture is still true for 2 ≤ n ≤ 30
(and probably for all n ≥ 2) when N = 1, i.e., for a 2-block-discrete Hahn weight function.
When N > 1, however, eigenvalues with negative real parts again show up, starting from
some n ≥ 9, and frequently, but not always, thereafter. The values of N and n, for which this
occurs, are shown in Table 7. There is usually one pair of delinquent complex conjugate
eigenvalues, but in some cases there are two such pairs. These are identified by an asterisk
in Table 7.

The validity of the extended Stenger conjecture for N = 1 is interesting. It may well be
for the same (unknown) reason that validates the conjecture in the case of the two-interval
weight function of Sect. 6.6; cf. Example 7.

To illustrate, we show in Fig. 17 the eigenvalues in the cases (N , n) = (2, 30), (5, 28),
(10, 26).

The restricted Stenger conjecture, in this example, fares much better, though fail-
ing also in a few cases. Using the routines run_Uconj_restr_blockhahn.m and
Uconj_restr_blockhahn.m for N = 1 : 10, 2 ≤ n ≤ 30, we found the conjecture
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Figure 17 Eigenvalues of Un in the case of the (N + 1)-block-discrete Hahn weight functions with
(N,n) = (2, 30), (5, 28), (10, 26) (from left to right)

Figure 18 Eigenvalues of Un in the case of the (N + 1)-block-discrete Hahn weight functions with
(N,n) = (2, 30), (6, 28), (10, 25) (from left to right)

to be true for N = [1, 2, 3, 4, 9], 2 ≤ n ≤ 30, and false in only the five cases: (N , n) =
(5, 30), (6, 28), (7, 30), (8, 28), (10, 25). To rule out the presence of severe numerical insta-
bilities as a cause for this unexpected behavior, all cases have been rerun, and confirmed,
in 32-digit arithmetic. The double-precision eigenvalues were compared with those ob-
tained in 32-digit precision and found to agree to 5–15 digits, the delinquent ones always
to at least 11 digits.

For illustration, we show in Fig. 18 the eigenvalues in the cases (N , n) = (2, 30), (6, 28),
(10, 25), the last two containing a pair of eigenvalues with negative real part.

The presence of delinquent eigenvalues in this example, strictly speaking, does not inval-
idate the extended Stenger conjecture, since the weight function (43) does not satisfy the
positivity a.e. condition imposed by Stenger. However, the matrix Un associated with the
weight function (44), depending on the positive parameter ε, by a continuity argument
will have the same pattern of delinquent eigenvalues as the matrix Un associated with
the weight function (43) when ε is sufficiently small. This then shows that the extended
Stenger conjecture cannot be valid for all admissible weight functions. We illustrate this
with the final example,

Example 10 The (N + 1)-ε-block-discrete weight function (44) for N = 2, ε = 1/100, and
n = 9.

This relates to the first item in Table 7. The routine run_Uconj_ext_epsilon_

blockhahn_N2_n9.m, using r_blockhahn to generate the required recurrence co-
efficients by an (N + 1)-component discretization procedure (N = 2) implemented by the
routines mcdis.m and quad_blockhahn.m, computes the eigenvalues of Un for n = 9.
They are shown in Table 8.

Recomputing them in 32-digit arithmetic proves them correct to all digits shown.
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Table 8 The eigenvalues λk of Un , n = 9, for the weight function of Example 10

k λk k λk

1 0.269543881598 + 0.100451106056i 6 0.113959909084 + 0.146440180631i
2 0.269543881598 – 0.100451106056i 7 0.113959909084 – 0.146440180631i
3 0.257834699637 8 –0.000421036373 + 0.156050111474i
4 0.242999895873 + 0.190318565957i 9 –0.000421036373 – 0.156050111474i
5 0.242999895873 – 0.190318565957i

Appendix: Relation to Runge–Kutta methods
Let x1, x2, . . . , xn be distinct real numbers (typically in the interval [0, 1]). The correspond-
ing (collocation) Runge–Kutta method (see [6, Theorem II. 7.7] is then given by the coef-
ficients

ajk =
∫ xj

0
�k(x) dx, bk =

∫ 1

0
�k(x) dx, (45)

where �k(x) is the kth elementary Lagrange interpolation polynomial of degree n – 1. We
collect the coefficients in the n × n matrix A = (ajk)n

j,k=1, in the column vector b = (bk)n
k=1,

and we denote the column vector with all elements equal to 1 by 1.
An application of the Runge–Kutta method with step size h to the Dahlquist test equa-

tion ẏ = λy yields (with z = hλ)

y1 = R(z)y0, R(z) = 1 + zbT(I – zA)–11, (46)

where R(z) is the stability function of the method. Note that for an invertible matrix A, its
eigenvalues are the reciprocal of the poles of the rational function R(z).

The adjoint method of (45) is given by the coefficients (cf. [6, Theorem II. 8.3])

a∗
n+1–j,n+1–k = bk – ajk =

∫ 1

xj

�k(x) dx, b∗
n+1–k = bk . (47)

Its stability function is related to that of (45) by R∗(z) = 1/R(–z).
Connection to the Stenger conjecture. The n × n matrix with coefficients ajk of (45) is

equal to the matrix Un (with a = 0) of (2) in Sect. 1, and the matrix with coefficients a∗
jk

of (47) is equal to Vn (with b = 1). Since the nonzero eigenvalues of A are the reciprocal
of the poles of the stability function (46), there is a close connection between the Stenger
conjecture and A-stability of a Runge–Kutta method.

The (shifted) Legendre polynomials are orthogonal with respect to the constant weight
function w(x) = 1 on [0, 1]. The corresponding collocation Runge–Kutta method is the
so-called Gauss method of order 2n, which is A-stable (see [7, Section IV.5]). Its stability
function is the diagonal Padé approximation Rn,n(x), for which all poles are in the right half
of the complex plane. This provides another proof of the Stenger conjecture for Legendre
polynomials.
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