
Elbamby et al. EURASIP Journal onWireless Communications and
Networking (2018) 2018:209
https://doi.org/10.1186/s13638-018-1218-y

RESEARCH Open Access

Proactive edge computing in fog
networks with latency and reliability
guarantees
Mohammed S. Elbamby1* , Mehdi Bennis1,3, Walid Saad2, Matti Latva-aho1 and Choong Seon Hong3

Abstract

This paper studies the problem of task distribution and proactive edge caching in fog networks with latency and
reliability constraints. In the proposed approach, user nodes (UNs) offload their computing tasks to edge computing
servers (cloudlets). Cloudlets leverage their computing and storage capabilities to proactively compute and store
cacheable computing results. In this regard, a task popularity estimation and caching policy schemes are proposed.
Furthermore, the problem of UNs’ tasks distribution to cloudlets is modeled as a one-to-one matching game. In this
game, UNs whose requests exceed a delay threshold use the notion of hedged-requests to enqueue their request in
another cloudlet, and offload the task data to whichever is available first. A matching algorithm based on the
deferred-acceptance matching is used to solve this game. Simulation results show that the proposed approach
guarantees reliable service and minimal latency, reaching up to 50 and 65% reduction in the average delay and the
99th percentile delay, as compared to reactive baseline schemes.

Keywords: 5G, Caching, Fog networks, IoT, Hedged requests, Matching theory, Offloading, Resource allocation

1 Introduction
Evolving wireless networks to their next generation is no
longer limited to boosting network capacity in the con-
text of enhanced mobile broadband (eMBB). Instead, 5G
networks aim to provide low-latency and high-reliability
guarantees in addition to higher spectral efficiency. This
essentially include the support for massive machine-type
communication and ultra-reliable and low-latency com-
munication (URLLC).
The emergence of Internet of things (IoT), which

requires massive connectivity of resource-limited devices,
poses unprecedented challenges in terms of required
amount of data communication and computation [1, 2].
These stringent requirements in end-to-end latency, ser-
vice reliability, and availability mandate a system design
which incorporates latency and reliability aspects. Due to
the limited computation and energy capabilities of IoT
devices, it is hard to rely on local computing resources
in satisfying stringent computing and processing latency

*Correspondence: mohammed.elbamby@oulu.fi
1Centre for Wireless Communications (CWC), University of Oulu, Oulu, Finland
Full list of author information is available at the end of the article

requirements. Therefore, mobile cloud computing (MCC)
solutions have been considered to offer computing ser-
vices to IoT network nodes. In this regard, user nodes
(UNs) offload their computing tasks to remote cloud cen-
ters, the cloud servers execute the task and send back the
results . While this solution offers high resource capacity,
it falls short of handling latency-critical computing ser-
vices, owing to the high propagation delays between the
UNs and the cloud data center. For this reason, the con-
cept of fog computing has been introduced [3] to bring
computing resources to the network edge. With short
propagation delays, fog networks are able to strike a bal-
ance between high computation capabilities and short
propagation distances, offering efficient computing ser-
vices to latency-intolerant applications. However, smarter
resource utilization schemes that efficiently distribute the
communication and computing resources are needed to
reap the benefits of fog networks [4, 5].
Several recent works have studied the problem of joint

computing and communication resource optimization.
A centralized joint communication and computation
resource allocation scheme is proposed in [6]. The work

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-018-1218-y&domain=pdf
http://orcid.org/0000-0003-0078-3933
mailto: mohammed.elbamby@oulu.fi
http://creativecommons.org/licenses/by/4.0/

Elbamby et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:209 Page 2 of 13

in [7] studies the resource allocation in mobile edge
computing (MEC) networks for energy efficiency. The
power-delay tradeoff in centralized MEC systems is dis-
cussed in [8] using tools from stochastic optimization. In
[9], the problem of latency minimization under a resource
utilization constraint is studied, where an algorithm is
proposed to balance between minimizing computing
latency and energy consumption. However, these works
rely on centralized solutions in which the MEC network
has information about all users requests and channel-
state information (CSI). A semi-distributed solution
for the joint computing and communication resource
optimization is proposed in [10] under asymmetric user
preferences and capabilities. A distributed framework to
realize the power-delay tradeoff in latency constrained fog
networks is proposed in [11]. Game-theoretic solutions
are discussed in [12] to design decentralized computing
offloading schemes for edge cloud computing. Game
theory is also used in [13] to model the competition of
IoT nodes over the fog network resources with the aim
of minimizing both energy and delay. The fog network
formation under the uncertainty of arriving and depart-
ing nodes is investigated in [5, 14, 15] with the aim of
minimizing the maximum computing delay.
The vast majority of the literature in fog networking

considers the reactive computing paradigm in which task
computing starts only after the task data is offloaded to
the fog node [4]. Moreover, most of the prior art has
not explicitly accounted for stringent latency and relia-
bility constraints in fog networks. Due to the distributed
nature of these networks, having computing resources
closer to the network edge allows for providing person-
alized type of computing services to end-users [4]. This
allows for harnessing the correlation between end-user
requests through proactive computing to minimize com-
puting latency [16]. The idea of prefetching is recently
introduced as a first step towards proactive computing
[17, 18], in which part of the upcoming task data is pre-
dicted and prefetched during the computing of the current
one such that the fetching time is minimized. Using proac-
tive computing, the fog network can keep track of the
popularity patterns of UNs’ tasks and cache their com-
puting results in advance. This eliminates the need to
request the task datamultiple times thus reducing the bur-
den on the task offloading transmissions [4, 19]. Caching
computing results is applicable to several applications.
For example, in an augmented reality (AR) service pro-
vided in a museum, edge servers can store popular AR
requests of visitors to serve themwithminimal latency [4].
In the context of MEC for vehicle navigation applications
[20], correlation between computing tasks exists as mul-
tiple vehicles may request to detect the same object in a
road. In such situations, the fog network can use proactive
computing by keeping track of the popularity patterns of

UNs’ tasks and cache their computing results in advance.
This eliminates the need to request the task data multi-
ple times thus reducing the burden on the task offloading
transmissions
The idea of proactive networks has been extensively

studied in the context of wireless content caching
[21, 22]. Proactive caching of computing tasks differs from
content caching in several aspects. First, while content
caching aims to alleviate the burden on the backhaul links
by prefetching popular contents from the core network
during off-peak times, computing caching decreases the
load on the access link by providing computing results
to end users without the need to prefetch their task data
beforehand. Second, unlike content, computing tasks are
of diverse types depending on the computing environ-
ment. Some computing tasks, such as object detection
results, are cacheable, since they can be reused by other
devices or in other time instants. On the contrary, com-
puting data that are personalized or time dependent are
not cacheable. Instead, they have to be computed in real
time. Moreover, future computing networks will have
dense deployments of servers and low density of UNs per
server [23], whichmakes it impractical to follow the popu-
larity patterns locally at each server. Alternatively, relying
on central computing, either fully or partially, to build
the popularity distributions over larger sets of servers is
essential in providing a broader view on the popularity
patterns of computing tasks.
The main contribution of this paper is to investigate

the problem of URLLC in fog networks with proactive
edge caching of computing results. Reliability is ensured
by allowing UNs to offload their computing tasks tomulti-
ple edge computing nodes (cloudlets) based on the notion
of hedged requests [24]. Furthermore, both computing and
storage resources are exploited to minimize the comput-
ing latency via joint task offloading and proactive caching
of popular and cacheable computing tasks. In the pro-
posed framework, UNs and their serving cloudlets are
grouped into well-chosen clusters based on spatial prox-
imity and mutual interests in popular tasks. This allows
cloudlets to proactively cache computing results of pop-
ular tasks in their clusters to ensure minimal comput-
ing latency. Moreover, the problem of task distribution
to cloudlets is modeled as a matching game between
cloudlets and UNs. To this end, an efficient distributed
matching algorithm is proposed to solve the problem of
distributing UN requests to cloudlets, reaching a stable
matching such that a reliable service in terms of maximum
latency violation rate is guaranteed. Simulation results
show that the proposed framework can guarantee reliable
computations with bounded latency in different network
density and storage capability conditions. Proactiveness is
shown to minimize up to 50% and 65% of the average and
the 99th percentile delay, respectively. Moreover, hedged

Elbamby et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:209 Page 3 of 13

requests are shown to significantly improve the system
reliability even without proactive capability.
The rest of this paper is organized as follows. Section 2

describes the systemmodel and problem formulation. The
clustering scheme as well as the joint caching and task
distribution schemes are studied in Section 3. The perfor-
mance of the proposed scheme is analyzed in Section 4.
Finally, Section 5 concludes the paper.

2 Systemmodel
Consider a fog network consisting of a set E of E cloudlets
and a set U of U UNs, which are uniformly distributed
over the network area. Each cloudlet has a CPU com-
puting capability of ce cycles/s and a storage of size se.
Cloudlets share the same frequency band with bandwidth
B, and schedule UNs’ transmissions in orthogonal time
instants (slots). Here, our optimization framework focuses
only on the uplink transmissions [4, 17]. UNs have com-
puting tasks that arrive following a Poisson process with
mean λu. UNs are interested in a set A of A tasks. Tasks
have a task data size La that is drawn from an exponential
distribution of mean L̄a and processing density of κ cycles
per bit of task data. A UN requesting a computing task
is matched to one or more cloudlets within its coverage,
where coverage is decided based on a threshold path loss
value. Path loss is used as a coverage metric so that a UN’s
cloudlet list does not change frequently due to wireless
channel dynamics. The task data is then offloaded to the
one that schedules the UN request first. Task computing is
performed after the task data is offloaded. Subsequently,
the computed data is transmitted back to the UN. Due
to the typically small computed data size to minimize the
task data offloading delay, cloudlets proactively cache the
pre-computed results of the most popular cacheable com-
puting tasks. A subset Ac ⊂ A of the tasks is assumed
to be cacheable and another subset Anc ⊂ A is non-
cacheable such that Ac ∪ Anc = A. The notations and
abbreviations used throughout this paper are summarized
in Table 1. An illustration of the studied fog network
model is shown in Fig. 1.

2.1 Computing model
The computation of a task a ∈ A by UN u offloaded to
cloudlet e experiences a transmission delay Dcomm

ea and a
computing delay Dcomp

ea . The transmission delay at time
instant t is expressed as

Dcomm
ea (t) = La(t)

rue(t)
, (1)

where rue(t) is the uplink data rate per time slot, calculated
using the Shannon’s formula as follows:

rue(t) = B log2

(
1 + Pu|hue|2

σ 2 + ∑
v∈U\{u} Pv|hve|2

)
, (2)

Table 1 List of abbreviations and symbols

CCDF Complementary cumulative distribution function

CSI Channel state information

DA Deferred acceptance

MCC Mobile cloud computing

MEC Mobile edge computing

QoS Quality of service

TDD Time division duplex

UN User node

URLLC Ultra-reliable and low latency communication

A Set of tasks

Ci Set of UNs in cluster i

E Set of edge cloudlets

U Set of UNs

B System bandwidth

ce Computing power of cloudlet e

Dea Total delay of task a from cloudlet e

Dcomp
ea Computing delay of task a from cloudlet e

Dcomm
ea Transmission delay of task a from cloudlet e

Dth Delay threshold

La Size of task a

nu Task occurrence vector of UN u

Qe Task queue of cloudlet e

rue Data rate of UN u from cloudlet e

r̄ue Estimated data rate of UN u from cloudlet e

Sd Distance Gaussian similarity matrix

Sp Task popularity similarity matrix

se Storage size of cloudlet e

vu Geographical coordinates vector of UN u

Wea Waiting time of task a in the queue of cloudlet e

xea Association indicator

Xmax Maximum number of associated cloudlets

yea Caching indicator

z Zipf distribution parameter

ε Target maximum delay violation

σd Similarity parameter

κ Task processing density

λu Mean UN task arrival rate

θ Clustering parameter

τEP Edge processing delay

ν Learning rate parameter

ξ i Popularity task vector of cluster i

with |hue| being the channel gain between UN u and
cloudlet e, and σ 2 being the noise variance, where the
channel hue includes path loss and block fading.

Elbamby et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:209 Page 4 of 13

Fig. 1 Network illustration. An illustration of the clustered fog network model with cache-enabled cloudlets

After the task data is uploaded, a computing delay is
Dcomp
ea is experienced, expressed as:

Dcomp
ea (t) = κLa(t)

ce
, (3)

Adding the cloudlet queuing time, and processing time,
the total delay becomes

Dea(t) = xea(t)
[(
Dcomp
ea (t)+Dcomm

ea (t)+Wea(t)
) (

1 − yea(t)
)

+ τEP
]
,

= xea(t)
[(

κLa(t)
ce

+ La(t)
rue(t)

+ Wea(t)
)(

1 − yea(t)
)

+ τEP

]
,

(4)

where xea is a binary variable that equals 1 if task a is dis-
tributed to cloudlet e, Wea(t) is the waiting time of task
a due to the previous computing tasks in the queue Qe of
cloudlet e, yea(t) is a binary variable that equals 1 when the
computation result of task a is cached in cloudlet e, and
τEP is the cloudlet latency which accounts for the down-
link transmission of computed data and the cloudlet pro-
cessing latency. In other words, only the clouldlet latency
is experienced if the requested task result was cached in
the cloudlet. Similar to other works [4, 17], we assume
that the latency due to downlink transmission of com-
puted data is negligible compared to the uplink task data
offloading time and computing time; hence, it is taken into
account only as part of the cloudlet delay.
To overcome the large delay values due to long queues

in the cloudlet’s side, UNs leverage hedged requests to
offload the task to multiple cloudlet if the estimated delay
time exceeds a certain threshold. The UN will upload
the task data to the cloudlet that frees its queue first,

i.e., the one with the smallest waiting time wea, and dis-
card the request to the other one. Consequently, the delay
experienced to compute the task from a hedged request,
denoted Da(t), is the delay value from the cloudlet with
the smallest waiting time, which is expressed as

Da(t) =
∑

e∈E|xea=1
Dea(t)

∏
e′∈E|xe′a=1,e′ �=e

1wea<we′a . (5)

Our objective is to minimize the total task comput-
ing latency under reliability constraints, by efficiently
distributing and proactively caching the results of the
computing tasks. The UN task distribution to cloudlets
and task caching matrices are expressed as X = [xea] and
Y = [

yea
]
, respectively. Reliability is modeled as a proba-

bilistic constraint on the maximum offloaded computing
delay. This optimization problem is

min
X,Y

∑
a∈A

Da(t) (6a)

Pr(Da(t) ≥ Dth) ≤ ε, (6b)∑
e∈E

xea(t) ≤ Xmax, ∀u ∈ U , (6c)

∑
a∈A

yea(t) ≤ se, ∀e ∈ E , (6d)

where (6b) is a probabilistic delay constraint that ensures
the latency is bounded by a threshold value Dth with a
probability 1 − ε. Constraint (6c) indicates that a request
is offloaded to a maximum of Xmax cloudlets. (6d) lim-
its the number of cached tasks to a maximum of se.
The above problem is a combinatorial problem with a
non-convex cost function and probabilistic constraints,

Elbamby et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:209 Page 5 of 13

for which finding an optimal solution is computationally
complex [25]. The non-convexity arises from the ser-
vice rate expression in Eqs. (1)–(2) which is function of
the offloading decisions of other UNs and the non-linear
probabilistic constraint. Therefore, we replace the non-
linear constraint in (6b) by a linear one. The Markov’s
inequality [25], for the non-negative random variable Da
and Dth > 0, states that E{Da(t)} ≤ Dthε, where E{.}
denotes the expectation over time. Since the delay of com-
puting a cached task is very small, we are interested in
keeping the delay of non-cached tasks below a pre-defined
threshold. The constraint can be expressed for a single
cloudlet as

E{Dea(t)} ≤ Dthε

E

{
κLa(t)
ce

+ La(t)
rue(t)

+ Wea(t) + τEP

}
≤ Dthε,

(7)

substituting the queuing time asWea(t) = ∑
ai∈Qe

L′
ai (t)
rie(t) :

E

{
La(t)
rue(t)

}
≤ Dthε −E

{ ∑
ai∈Qe

L′
ai(t)
rie(t)

}
− κLa

ce
−τEP, (8)

where L′
ai(t) is the remaining task data of task ai in

the queue Qe of cloudlet e at time instant t. Finally, the
URLLC constraint can be met by ensuring that the above
inequality is satisfied at each time instant t, i.e.,

La(t)
r̄ue(t)

≤ Dthε − κLa(t)
ce

−
∑
ai∈Qe

L′
ai(t)
r̄ie(t)

− τEP. (9)

This implies that to reach the desired reliability, the
above inequality has to hold for at least one cloudlet serv-
ing the request a of UN u, where r̄ue(t) is the average
service rate. Hence, if the constraint in (9) is not met for
one cloudlet, UN can bematched to an additional cloudlet
such that the reliability constraint is satisfied. The average
service rate is estimated at each cloudlet e for each UN u
within its coverage using a time-average rate estimation
method, as follows:

r̄ue(t) = ν(t)rue(t − 1) + (1 − ν(t))r̄ue(t − 1), (10)

where ν(t) is a learning parameter.

Remark 1 A learning parameter ν(t) where ν(t) ∈ (0, 1]
for any t such that lim

t→∞ ν(t) = 0, ensures that r̄ue(t) yields
the time average rate of UN u at t → ∞.

In the following section, we propose a joint match-
ing [26] and caching scheme to solve the optimization
problem in (6).

3 The proposedmethod
In this section, we discuss our proposed approach to
solve the optimization problem in (6). To simplify the
computational complexity of the problem, we decouple
it into two separate subproblems: task distribution to
cloudlets and caching of popular cacheable task results.
Since the IoT network size is typically large, adopting cen-
tralized optimization schemes over the entire cloudlet set
is not practical. On the other hand, local schemes do
not have enough local information about the popularity
of computing tasks due to the low number of UNs per
cloudlet. Therefore, our approach resorts to clustering
tools to split the network into mutually coupled groups of
UNs and their serving cloudlets. This clustering approach
is carried out in a training period that can be repeated in
a slow time scale, allowing for a broader view of the pop-
ularity patterns. In this regard, the proposed clustering
scheme first groups UNs into disjoint sets based on both
spatial proximity and mutual interest in popular tasks.
Subsequently, a task popularity matrix is obtained. Finally,
a joint task distribution and caching scheme is proposed.
The UN clustering and the popularity matrix calculation
are assumed to be carried out in the network training
period during which information about UNs’ requests and
their serving cloudlets are reported to a higher level con-
troller, e.g., a cloud data center. During the training period,
UNs are assigned to the cloudlets with the highest channel
strength within their coverage area. While a central con-
troller is involved in the training period calculations, we
emphasize that this process does not need to be updated
as frequently as the task distribution and caching pro-
cesses, since a given UN’s interests are likely to remain
unchanged for a number of time instants Nt (� 1).

3.1 Network clustering and task popularity matrix
The training phase starts by grouping UNs into k dis-
joint clusters C1, . . . , Ck based on their mutual-coupling in
distance and task popularity. The objective of clustering
is to obtain a per-cluster task popularity matrix, defined
as �= [

ξ1, . . . , ξ k
]
, where ξ i is a vector of the popular-

ity order of tasks in cluster Ci. Essentially, identifying the
similarities between neighboring UNs and their mutual
interests is the first step in bringing computing resources
closer to them. To that end, we harness the similarity
between different UNs in terms of task popularity patterns
to allow cloudlets in their proximity to store the comput-
ing results of their highly requested tasks. Next, we discuss
how the distance similarity and task popularity similarity
are calculated.

3.1.1 Distance-based Gaussian similarity
First, we introduce a distance similarity metric that mea-
sures the coupling between each pair of UNs based
on their geographical locations. The Gaussian similarity

Elbamby et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:209 Page 6 of 13

metric is commonly used in the literature to quantify
the similarity between two nodes. A distance Gaussian
similarity matrix is defined as Sd = [

dij
]
, with dij being

dij = exp
(

− ‖ vi − vj ‖2
2σ 2

d

)
, (11)

where vi is a vector of the geographical coordinates of
UN i, and σd is a similarity parameter to control the
neighborhood size.

3.1.2 Task popularity-based similarity
To discover the task popularity patterns of different UNs,
the task request occurrence is recorded for each UN
during the training period set. Subsequently, a task occur-
rence vector, expressed as, nu = [

nu,1, . . . , nu,|Ac|
]
is cal-

culated for each UN. Ideally, this vector captures the UN’s
task arrival rate and helps to build similarity betweenUNs.
To calculate the task popularity-based similarity between
UNs, we consider a cosine similarity metric. The cosine
similarity is often used in vector-based attributes in which
the similarity value corresponds to the angle between the
two vectors, i.e., parallel vectors mean maximally simi-
lar, and perpendicular vectors mean maximally dissimilar.
In other words, the cosine similarity takes into account
only the vector direction and is agnostic to its magnitude.
Hence, the task popularity similarity matrix is defined as
Sp = [

pij
]
, where pij is expressed as

pij = ni.nj
‖ ni ‖‖ nj ‖ . (12)

3.1.3 UN clustering and popularitymatrix calculation
A network cluster should essentially include UNs that are
close to each other and following a similar task popularity
patterns. Therefore, we consider a similarity matrix that
blends together distance and task popularity matrices.
The similarity matrix, denoted S, is calculated as

S = θSd + (1 − θ)Sp, (13)

where θ is a parameter that prioritizes the impact of
distance and task popularity. Subsequently, spectral clus-
tering [27] is used to group UNs into k disjoint clusters,
denoted C1, . . . , Ck .

Remark 2 Spectral clustering of U points requires the
setting of a minimum and maximum number of clusters,
kmin and kmax where kmax ≤ U [27]. Here, we select
kmin = 2 in order to have at least two groups of UNs, and
kmax = U/2 since having a higher number of clusters will
imply having multiple clusters with a single member, which
contradicts with the idea of grouping.

To bring the popular tasks closer to the network edge,
the task popularity matrix of UN clusters is reported to
cloudlets so that they cache the computing result of the

most popular tasks. Accordingly, the most preferred clus-
ter by a cloudlet is obtained by calculating how frequently
the members of each cluster were assigned to this spe-
cific cloudlet during the training period. The vector ξ i of
tasks that are most popular for a cluster i is reported to
the cloudlets that have cluster Ci as their most preferred
cluster. The proposed UN clustering and task popularity
matrix calculation is described in Algorithm 1.

Algorithm 1 UN clustering and popularity matrix
calculation
1: Training phase: For a sequence of training time

instants:

• Record nu of each UN.
• Calculate the similarity matrix S from (13).
• Set kmin = 2 and kmax = U/2.
• Record the number of times a cloudlet served

each UN.

2: Clustering phase:

• Perform spectral clustering using the similarity
matrix S and using the largest eigenvalue gap
method [27] to select the number of clusters
k ∈ {kmin, . . . , kmax}.

• Obtain k disjoint clusters of UNs C1, . . . , Ck .

3: Popularity list construction phase:

• Select each cloudlet’s most preferred cluster as
the cluster from which the cloudlet received the
highest number of requests during the training
period.

• Calculate the task popularity matrix � of each
cluster using the number of request occurrences
nu of its set of UNs.

• Report to each cloudlet the task popularity vector
ξ i of its most preferred cluster Ci.

3.2 Computing caching scheme
Following the training phase, cloudlets seek to minimize
the service delay of their UNs’ requests during the net-
work operation by proactively caching the computing
results of the popular tasks they receive. The caching pro-
cess is performed in an online-manner, in a faster time
scale than the clustering and popularity calculation phase.
Each cloudlet aims to optimize its caching policy to min-
imize the total computing latency of its serving UNs. The
cache storage of each cloudlet is assumed to be empty
at the beginning of the network operation. As UNs start
to offload their computing tasks, cloudlets will cache as
many computing results as their storage capacity allows.

Elbamby et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:209 Page 7 of 13

Once a cloudlet’s storage is full, a new arriving request
that is more popular than the least popular task currently
in the cache will replace it. This is equivalent to a least
frequently used (LFU) replacement strategy in content
caching. The algorithm implementation per cloudlet is
described in Algorithm 2.

Algorithm 2 Proactive task caching algorithm
1: Initialization:

• Define the set 	e as the cache content of cloudlet e.
• 	e = φ, ∀e ∈ E .

2: for each a ∈ Qe
3: if | 	e |< se
4: a → 	e.
5: else if | 	e |= se
6: if there exists at least one task ai ∈ 	e with lower

index than a in ξe
7: task ai is removed from 	e.
8: a → 	e.
9: else

10: the computing result of task a is not stored.
11: end if
12: end if
13: end for each

Next, if the cloudlet receives a computation request of a
task that is cached in its storage, there is no need to offload
the task data or recompute the task. Hence, the computing
delay of this task consists only of the cloudlet delay, which
can be obtained from Eq. (4) by setting (1 − yea(t)) = 0
for task a cached in cloudlet e.

3.3 UN task distribution
Our next step is to propose a task distribution scheme
that solves the constrained minimization problem in (6).
The task distribution problem is formulated as a match-
ing game between UNs and cloudlets where, at each time
instant, UNs requesting new tasks are matched to one
or more serving cloudlets, depending on their latency
requirements, such that their service delay is minimized.
Matching theory [26] is a framework that solves combina-
torial problems in which members of two sets of players
are interested in forming matching pairs with a player
from the opposite set. Preferences of both the cloudlets
and UNs are denoted as �e and �u, and they repre-
sent how each player in one side ranks the players of
the opposite side. From the optimization problem in (6),
a UN seeks to be matched to more than one cloudlet
if the first one is not satisfying its reliability metric,
given the estimated rate r̄ue(t). Therefore, the proposed
matching algorithm first finds a one-to-one matching of

UN requests to a single cloudlet each. The estimated
delay of each request is then calculated. If a subset of the
matched UNs’ requests are not guaranteed to satisfy the
reliability constraint, the matching algorithm is run again
to match the UNs to additional cloudlets, subject to the
availability of vacant cloudlets.

Definition 1 Given the two disjoint sets of cloudlets and
UNs (E ,U), a matching is defined as a one-to-one mapping
ϒ from the set E ∪U into the set of all subsets of E ∪U , such
that for each e ∈ E and u ∈ U :

1. For each u ∈ U ,ϒ(u) ∈ E .
2. For each e ∈ E ,ϒ(e) ∈ U .
3. | ϒ(u) |= 1, | ϒ(e) |= 1.
4. ϒ(u) = e ⇔ ϒ(e) = u.

The selection of the preference profiles of matching allows
for capturing the cost function of the players. To this
end, the preference profiles of UNs are defined so as to
minimize their task service delay as follows:

e �u e′ ⇔ Dea(t) < De′a(t). (14)

This preference allows UNs to seek matchings that min-
imizes their own QoS by selecting the cloudlets that
provides minimal computing latency. Note that due to the
impracticality of having knowledge of the queue state of
each cloudlet at each UN, UNs consider the transmission
and computing delay of their own task data in calculating
their preference profiles.
Cloudlets, having enough information about their own

queue length, seek to maximize the service reliability of
the requests of their serving UNs. Hence, the utility of
cloudlets will essentially reflect the reliability constraint
in (9), taking into account the waiting time in the queue.
Therefore, we define the utility when UN u is assigned to
cloudlet e as

eu(t) = Dthε− kaLa
ce

−
∑
ai∈Qe

L′
ai(t)
r̄ie(t)

−τEP− La
r̄ue(t)

. (15)

The preference of each cloudlet can be expressed as
follows:

u �e u′ ⇔
eu(t) >
eu′(t). (16)

In other words, the utility of each cloudlet is to seek
a matching that maximizes the difference between the
right hand side and the left hand side of the inequality
in (9), such that the constraint is met as a stable match-
ing is reached. Note from (9) that, to satisfy the reliability
constraint,
eu(t) has to be greater or equal to zero.
Therefore, matched UNs with
eu(t) < 0 will seek to be
matched to additional cloudlets to satisfy their reliability
requirements.

Elbamby et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:209 Page 8 of 13

Next, we define matching stability and provide an effi-
cient algorithm based on the deferred acceptance (DA)
[26] to solve this game.

Definition 2 Given a matching ϒ , and a pair (u′, e′)
with ϒ(e′) �= u′ and ϒ(u′) �= e′, (u′, e′) is said to be
blocking the matching ϒ and form a blocking pair if: 1)
u′ �e′ ϒ(e′), 2) e′ �u′ ϒ(u′). A matching ϒ∗ is stable if
there is no blocking pair.

Remark 3 The DA algorithm, described in Algorithm 3,
converges to a two-sided stable matching of UNs to
cloudlets [26].

The architecture of the proposed approach is illustrated
in the chart in Fig. 2.

4 Simulation results
In this section, we present and analyze simulation results
of the proposed scheme. To illustrate the performance
of both the proposed hedged requests and proactive
computing, we consider the following three baselines:

Algorithm 3The DA algorithm for UN-cloudlet matching
1: Initialization: all UNs with new requests start

unmatched.
2: Previously unmatched UNs with
eu(t) < 0 are

marked unmatched to be associated to an additional
cloudlet.

3: Each unmatched UN constructs its preference list as
per (14).

4: Each cloudlet constructs its preference list as per (16).
5: repeat an unmatched UN u, i.e., ϒ(u) = φ proposes

to its most preferred cloudlets e that satisfies e �u u.
6: if ϒ(e) = φ,
7: UN u proposal is accepted.
8: ϒ(e) = u, ϒ(u) = e.
9: else if ϒ(e) = u′,

10: if u′ �e u
11: UN u proposal is rejected.
12: UN u removes cloudlet e from its preference

list.
13: else if u �e u′
14: UN u proposal is accepted.
15: ϒ(e) = u,ϒ(u) = e.
16: ϒ(u′) = φ.
17: UN u′ removes cloudlet e from its preference

list.
18: end if
19: end if
20: until all UNs are matched.
21: Output: a stable matching ϒ .

1. Baseline 1 (BL1), which is similar to the proposed
scheme, in which hedged requests are enabled to
satisfy UNs’ reliability. However, caching is
performed by estimating the popularity distribution
locally at each cloudlet and considering a least
recently used (LRU) caching replacement strategy.

2. Baseline 1 (BL2), which is a reactive version of the
proposed scheme, in which hedged requests are
enabled to satisfy UNs’ reliability, but with no
caching or proactive capabilities in the cloudlets.

3. Baseline 2 (BL3), in which neither proactiveness nor
hedged requests are considered. UNs and cloudlets
rank each other based on the wireless access link
quality, and a UN can only be matched to a single
cloudlet.

We use the set of default parameters listed in Table 2
unless stated otherwise. Popularity is assumed to vary
among tasks following a Zipf-like popularity model with
parameter z [21]. Accordingly, the rate of requesting the
ith most popular task is proportional to 1/iz. Three dif-
ferent sets of task popularity distributions are assigned
randomly to UNs. Furthermore, one third of the tasks,
uniformly selected, is assumed to be cacheable, whereas
the remaining tasks have to be computed in real time1.

4.1 Delay tail performance
First, we investigate the tail of the instantaneous delay of
the different schemes as a measure of service reliability.
The delay tail is represented by the complementary cumu-
lative distribution function (CCDF) F̄D(d) = Pr(D > d).
As shown in Fig. 3, the proposed scheme significantly
minimizes the delay tail, as compared to the two reactive
baseline schemes. In particular, the proposed proactive
scheme achieves 40% and 57% gains in 90th percentile
delay and 99th percentile delay, respectively, as compared
to BL2 scheme.Moreover, the BL2 scheme, with no proac-
tivity capability, outperforms BL3 in the delay tail perfor-
mance. This is due to leveraging the hedged requests to
minimize the latency of requests with long waiting time.
It can also be seen that the caching-based BL1 scheme has
a tail performance close to that of the proposed scheme,
but with higher average delay.

4.2 Impact of network density
Next, we investigate the impact of the network density
in the service delay performance. The network density is
varied by changing the number of cloudlets distributed
within the network area. The number of UNs is also
changed to maintain the same UN density. The aver-
age delay performance is presented in Fig. 4a, whereas
the 99th percentile delay is shown in Fig. 4b as a mea-
sure of the service reliability. The results show that, for
the proposed approach, the service delay decreases as

Elbamby et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:209 Page 9 of 13

Fig. 2 The proposed approach architecture. The architecture of the proactive edge computing framework

the network density increases. This is due to the avail-
ability of more cloudlets in the coverage area of each
UN, which increases both the availability of matching
and the flexibility of matching. Moreover, due to serving
cacheable requests directly without task data offloading,

Table 2 Simulation parameters

Parameter Value

System bandwidth 10 MHz

Number of cloudlets E 30

UN density U/E 3

Maximum associated cloudlets Xmax 2

Mean UN task arrival rate λu 10 task/s

Number of tasks | A | 100

Cloudlet storage size se 10 tasks

Mean task size L̄a 200 Kbit

Processing density1κ 162.5 cycle/bit [28]

Cloudlet computing power ce 1010 cycle/s [29]

Zipf parameter z 0.6

Delay threshold Dth 1 s

Target delay violation ε 0.01

Clustering parameter θ 0.5

Processing delay τEP Unif
(1
8 ,

1
4

)
ms

Neighborhood size parameter σ 2
d 500 m

Scheduling slot 1 ms

Network size 500 × 500 m2

UN transmit power 10 dBm

learning parameter ν(t) 1/t0.51

the increased network density does not incur high uplink
interference levels to affect the delay. However, BL2 suf-
fers from increased delay due to having higher interfer-
ence in denser networks, which significantly increases
the delay. This effect is slightly alleviated as the num-
ber of cloudlets further increases, due to high number of
available cloudlets to each UN.
Comparing BL2 and BL3 schemes, we can clearly see

the trade-off between ensuring a reliable service and
maintaining a low delay. At low network density condi-
tions, there are not enough available cloudlets for each
UN. Accordingly, boosting reliability through hedged-
requests costs an increase in the system load, which in
turn increases the average latency. However, as the num-
ber of cloudlets increases, the increased, hedged-requests
are shown tominimize both the average delay and the 99th
percentile delay. This highlights the advantage of hedged-
requests in computing networks, specially in the absence
of proactive capabilities. Moreover, the gains brought by
proactiveness reaches up to 50% and 65% in the average
and the 99th percentile delay, respectively.

4.3 Impact of caching capability
Here, we investigate the impact of the capability of caching
computing tasks, where the capability is measured with
respect to the task cacheability and storage availability.
First, we show the impact of storage size in the perfor-
mance of the proposed scheme, as compared to the BL2
without proactive capability. In Fig. 5, we show the aver-
age delay and the 99th percentile delay at different cloudlet
storage size. The results show that the storage size has
a significant impact on the performance of the proposed
approach. For example, an increase in the storage size

Elbamby et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:209 Page 10 of 13

Fig. 3 The delay tail distribution. The total delay tail distribution for the proposed scheme (with a storage size se of 10), and the baseline schemes,
with E = 30 cloudlets, and UN density U/E = 3

from 2 to 4 decreases the average and the 99th percentile
delay by almost by 20 and 30%, respectively. However, as
the storage size further increases, the rate of reduction
in latency decreases. This is due to the caching policy
in which popular tasks are cached first. Hence, small

storage sizes can be sufficient to considerably minimize
the computing latency.
Next, we show the impact of task cacheability on the

performance of the proposed scheme. In Fig. 6, we plot the
delay performance for different cacheable ratio, defined

a b

Fig. 4 The delay performance vs. network density. a The average delay and b the 99th percentile delay performance for different network densities,
with E = 30 cloudlets, and UN density U/E = 3

Elbamby et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:209 Page 11 of 13

a b

Fig. 5 The delay performance vs. storage size. a The average delay and b the 99th percentile delay performance for different cloudlet storage sizes,
with E = 30 cloudlets, and UN density U/E = 3

as the ratio of the tasks whose computing results can be
cached and reused. It can be shown that with the pro-
posed scheme, both the average and 99th percentile delays
decrease significantly when more tasks are cacheable, for
the same storage size, since more task results can be

reused with minimal latency. Similar behavior is observed
with BL1 due to its caching capability. However, a higher
latency is observed as compared to the proposed scheme,
since BL1 relies on distributed caching that does not
cluster similar UNs together.

a b

Fig. 6 The delay performance vs. cacheable ratio. a The average delay and b the 99th percentile delay performance for different ratios of cacheable
tasks, with E = 30 cloudlets, UN density U/E = 3, and a storage size se of 10

Elbamby et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:209 Page 12 of 13

Fig. 7 The cache hit rate and delay performances vs. the popularity distribution. The 99th percentile delay and cache hit rate as the Zipf parameter z
varies, with E = 30 cloudlets, UN density U/E = 3, and a storage size se of 10

4.4 Impact of popularity distribution
Finally, we show the impact of the different popularity
distributions on the performance of the proposed proac-
tive approach. The 99th percentile delay and the cache
hit rate are investigated in Fig. 7 against different val-
ues of the Zipf parameter z. The Zipf parameter reflects
the discrepancy level of the task popularity distribution.
When the discrepancy level increases (higher z), the pop-
ularity gap between the most and least popular tasks
increases. Hence, at high values of z, the likeliness of serv-
ing a request from the cache increases as compared to
lower values, for the same storage size. Accordingly, we
can see from Fig. 7 that as z increases, the cache hit rate
(defined as the ratio of the requests served from the cache)
increases. As a result, the 99th percentile delay decreases.

5 Conclusions
In this paper, a proactive computing and task distribution
scheme for ultra-reliable and low-latency fog computing
networks has been introduced. In the proposed approach,
clusters of cloudlets and edge user nodes are formed based
on spatial proximity and similar interests in computing
results. Each cluster proactively caches computing results
in the storage of its cloudlets to minimize the computing
latency. Moreover, a matching algorithm to distribute the
computing tasks to cloudlets is presented. The matching
algorithm allows latency-critical requests to be matched
to multiple cloudlets such that their latency constraints
are met. Simulation results have shown that the pro-
posed approach strikes a balance between minimizing
the service latency and maximize the service reliability at
different network conditions.

Endnote
1 The processing density is application dependent, we

consider a variable bit rate (VBR) encoding process as an
example, reported in [28].

Funding
This research was supported by the Academy of Finland (CARMA) project,
NOKIA donation on fog (FOGGY project), and by the US Office of Naval
Research (ONR) under Grant N00014-15-1-2709.

Availability of data andmaterials
The paper is self-contained. Simulations description and parameters are
provided in details in Section 4.

Authors’ contributions
All authors have contributed to this manuscript and approved the submitted
manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Centre for Wireless Communications (CWC), University of Oulu, Oulu, Finland.
2Wireless@VT, Bradley Department of Electrical and Computer Engineering,
Virginia Tech, Blacksburg, VA, USA. 3Department of Computer Science and
Engineering, Kyung Hee University, Yongin-si, Korea.

Received: 26 March 2018 Accepted: 30 July 2018

References
1. Z Dawy, W Saad, A Ghosh, JG Andrews, E Yaacoub, Toward massive

machine type cellular communications. IEEE Wirel. Commun. 24(1),
120–128 (2017). https://doi.org/10.1109/MWC.2016.1500284WC

2. M Mozaffari, W Saad, M Bennis, M Debbah, Unmanned aerial vehicle with
underlaid device-to-device communications: Performance and tradeoffs.

https://doi.org/10.1109/MWC.2016.1500284WC

Elbamby et al. EURASIP Journal onWireless Communications and Networking (2018) 2018:209 Page 13 of 13

IEEE Trans. Wirel. Commun. 15(6), 3949–3963 (2016). https://doi.org/10.
1109/TWC.2016.2531652

3. F Bonomi, R Milito, J Zhu, S Addepalli, in Proceedings of the First Edition of
the MCCWorkshop onMobile Cloud Computing. Fog computing and its
role in the internet of things (ACM, New York, 2012), pp. 13–16. https://
doi.org/10.1145/2342509.2342513

4. Y Mao, C You, J Zhang, K Huang, KB Letaief, A survey on mobile edge
computing: The communication perspective. IEEE Commun. Surv.
Tutorials. PP(99), 1–1 (2017). https://doi.org/10.1109/COMST.2017.
2745201

5. G Lee, W Saad, M Bennis, An online optimization framework for
distributed fog network formation with minimal latency. ArXiv e-prints
(2017). http://arxiv.org/abs/1710.05239

6. S Barbarossa, S Sardellitti, P Di Lorenzo, in 2013 IEEE 14thWorkshop on
Signal Processing Advances inWireless Communications (SPAWC). Joint
allocation of computation and communication resources in multiuser
mobile cloud computing, (2013), pp. 26–30. https://doi.org/10.1109/
SPAWC.2013.6612005

7. C You, K Huang, H Chae, BH Kim, Energy-efficient resource allocation for
mobile-edge computation offloading. IEEE Trans. Wirel. Commun. 16(3),
1397–1411 (2017). https://doi.org/10.1109/TWC.2016.2633522

8. Y Mao, J Zhang, SH Song, KB Letaief, in Proc. IEEE Global Commun. Conf.
(GLOBECOM). Power-delay tradeoff in multi-user mobile-edge computing
systems, (2016), pp. 1–6. https://doi.org/10.1109/GLOCOM.2016.7842160

9. YH Kao, B Krishnamachari, MR Ra, F Bai, Hermes: Latency optimal task
assignment for resource-constrained mobile computing. IEEE Trans. Mob.
Comput. 16(11), 3056–3069 (2017). https://doi.org/10.1109/TMC.2017.
2679712

10. X Lyu, H Tian, C Sengul, P Zhang, Multiuser joint task offloading and
resource optimization in proximate clouds. IEEE Trans. Veh. Technol.
66(4), 3435–3447 (2017). https://doi.org/10.1109/TVT.2016.2593486

11. C Liu, M Bennis, HV Poor, in 2017 IEEE GlobecomWorkshops (GCWkshps).
Latency and reliability-aware task offloading and resource allocation for
mobile edge computing. ArXiv e-prints, (2017), pp. 1-7. https://doi.org/10.
1109/GLOCOMW.2017.8269175

12. X Chen, L Jiao, W Li, X Fu, Efficient multi-user computation offloading for
mobile-edge cloud computing. IEEE/ACM Trans. Networking. 24(5),
2795–2808 (2016). https://doi.org/10.1109/TNET.2015.2487344

13. H Shah-Mansouri, VWS Wong, Hierarchical fog-cloud computing for IoT
systems: A computation offloading game. IEEE Internet of Things Journal,
1–1 (2018). https://doi.org/10.1109/JIOT.2018.2838022

14. G Lee, W Saad, M Bennis, in 2017 IEEE International Conference on
Communications (ICC). An online secretary framework for fog network
formation with minimal latency, (2017), pp. 1–6. https://doi.org/10.1109/
ICC.2017.7996574

15. Lee, G, Saad, W, Bennis, M, in 2017 IEEE FogWorld Congress (FWC). Online
optimization for low-latency computational caching in Fog networks,
(2017), pp. 1–6. https://doi.org/10.1109/FWC.2017.8368529

16. MS ElBamby, C Perfecto, M Bennis, K Doppler, Toward low-latency and
ultra-reliable virtual reality. IEEE Netw. 32(2), 78–84 (2018). https://doi.org/
10.1109/MNET.2018.1700268

17. SW Ko, K Huang, SL Kim, H Chae, Live prefetching for mobile computation
offloading. IEEE Trans. Wirel. Commun. PP(99), 1–1 (2017). https://doi.org/
10.1109/TWC.2017.2674665

18. SW Ko, K Huang, SL Kim, H Chae, in 2017 IEEE International Conference on
Communications (ICC). Energy efficient mobile computation offloading
via online prefetching, (2017), pp. 1–6. https://doi.org/10.1109/ICC.2017.
7997341

19. MS Elbamby, M Bennis, W Saad, in 2017 European Conference on Networks
and Communications (EuCNC). Proactive edge computing in
latency-constrained fog networks, (2017), pp. 1–6. https://doi.org/10.
1109/EuCNC.2017.7980678

20. Q Hu, C Wu, X Zhao, X Chen, Y Ji, T Yoshinaga, Vehicular multi-access
edge computing with licensed sub-6 ghz, ieee 802.11p and mmwave.
IEEE Access. 6, 1995–2004 (2018). https://doi.org/10.1109/ACCESS.2017.
2781263

21. E Baştuğ, M Bennis, M Debbah, Living on the edge: the role of proactive
caching in 5g wireless networks. IEEE Commun. Mag. 52(8), 82–89 (2014).
https://doi.org/10.1109/MCOM.2014.6871674

22. MS ElBamby, M Bennis, W Saad, M Latva-aho, in Proc. 11th Intl. Symp. on
Wireless Communications Systems (ISWCS). Content-aware user clustering

and caching in wireless small cell networks, (2014), pp. 945–949. https://
doi.org/10.1109/ISWCS.2014.6933489

23. A Anpalagan, M Bennis, R Vannithamby, Design and deployment of small
cell networks. (Cambridge University Press, UK, 2015)

24. J Dean, LA Barroso, The tail at scale. Commun. ACM. 56(2), 74–80 (2013).
https://doi.org/10.1145/2408776.2408794

25. A Mukherjee, in IEEE GlobecomWorkshops (GCWkshps). Queue-aware
dynamic on/off switching of small cells in dense heterogeneous networks,
(2013), pp. 182–187. https://doi.org/10.1109/GLOCOMW.2013.6824983

26. Y Gu, W Saad, M Bennis, M Debbah, Z Han, Matching theory for future
wireless networks: fundamentals and applications. IEEE Commun. Mag.
53(5), 52–59 (2015). https://doi.org/10.1109/MCOM.2015.7105641

27. J Cranshaw, R Schwartz, JI Hong, N Sadeh, in Proc. International AAAI
Conference onWeblogs and Social Media. The livehoods project: utilizing
social media to understand the dynamics of a city, (2012), p. 58

28. AP Miettinen, JK Nurminen, in Proceedings of the 2Nd USENIX Conference
on Hot Topics in Cloud Computing. HotCloud’10. Energy efficiency of
mobile clients in cloud computing (USENIX Association, Berkeley, 2010),
pp. 4–4. http://dl.acm.org/citation.cfm?id=1863103.1863107

29. X Ma, C Lin, X Xiang, C Chen, in Proceedings of the 18th ACM International
Conference onModeling, Analysis and Simulation of Wireless andMobile
Systems. MSWiM ’15. Game-theoretic analysis of computation offloading
for cloudlet-based mobile cloud computing (ACM, New York, 2015),
pp. 271–278. https://doi.org/10.1145/2811587.2811598

https://doi.org/10.1109/TWC.2016.2531652
https://doi.org/10.1109/TWC.2016.2531652
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/COMST.2017.2745201
http://arxiv.org/abs/1710.05239
https://doi.org/10.1109/SPAWC.2013.6612005
https://doi.org/10.1109/SPAWC.2013.6612005
https://doi.org/10.1109/TWC.2016.2633522
https://doi.org/10.1109/GLOCOM.2016.7842160
https://doi.org/10.1109/TMC.2017.2679712
https://doi.org/10.1109/TMC.2017.2679712
https://doi.org/10.1109/TVT.2016.2593486
https://doi.org/10.1109/GLOCOMW.2017.8269175
https://doi.org/10.1109/GLOCOMW.2017.8269175
https://doi.org/10.1109/TNET.2015.2487344
https://doi.org/10.1109/JIOT.2018.2838022
https://doi.org/10.1109/ICC.2017.7996574
https://doi.org/10.1109/ICC.2017.7996574
https://doi.org/10.1109/FWC.2017.8368529
https://doi.org/10.1109/MNET.2018.1700268
https://doi.org/10.1109/MNET.2018.1700268
https://doi.org/10.1109/TWC.2017.2674665
https://doi.org/10.1109/TWC.2017.2674665
https://doi.org/10.1109/ICC.2017.7997341
https://doi.org/10.1109/ICC.2017.7997341
https://doi.org/10.1109/EuCNC.2017.7980678
https://doi.org/10.1109/EuCNC.2017.7980678
https://doi.org/10.1109/ACCESS.2017.2781263
https://doi.org/10.1109/ACCESS.2017.2781263
https://doi.org/10.1109/MCOM.2014.6871674
https://doi.org/10.1109/ISWCS.2014.6933489
https://doi.org/10.1109/ISWCS.2014.6933489
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1109/GLOCOMW.2013.6824983
https://doi.org/10.1109/MCOM.2015.7105641
http://dl.acm.org/citation.cfm?id=1863103.1863107
https://doi.org/10.1145/2811587.2811598

	Abstract
	Keywords

	Introduction
	System model
	Computing model

	The proposed method
	Network clustering and task popularity matrix
	Distance-based Gaussian similarity
	Task popularity-based similarity
	UN clustering and popularity matrix calculation

	Computing caching scheme
	UN task distribution

	Simulation results
	Delay tail performance
	Impact of network density
	Impact of caching capability
	Impact of popularity distribution

	Conclusions
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

