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Abstract 

MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the post-transcriptional 
level and play critical roles in regulating physiological function, and are becoming worldwide research hot spot 
in brain development and diseases. However, the exact value of miRNAs in brain physiological and pathological 
processes remain to be fully elucidated, which is vital for the application of miRNAs as diagnostic, prognostic, and 
therapeutic biomarkers for brain diseases. MicroRNA-7 (miR-7), as a highly expressed miRNA molecule in the mamma-
lian brain, is well documented to play a critical role in development of various diseases. Importantly, accumulating evi-
dence has shown that miR-7 is involved in a range of developmental and pathological processes of brain. Expressively, 
miR-7, encoded by three genes located different chromosomes, is dominantly expressed in neurons with sensory or 
neurosecretory. Moreover, the expression of miR-7 is regulated at three levels including gene transcription, process 
of primary and precursor sequence and formation of mature sequence. Physiologically, miR-7 principally governs 
the physiological development of Pituitary gland, Optic nervous system and Cerebral cortex. Pathologically, miR-7 
can regulate multiple genes thereby manipulating the process of various brain diseases including neurodegenera-
tive diseases, neuroinflammation, and mental disorders and so on. These emerging studies have shown that miR-7, a 
representative member of miRNA family, might be a novel intrinsic regulatory molecule involved in the physiological 
and pathological process of brain. Therefore, in-depth studies on the role of miR-7 in brain physiology and pathol-
ogy undoubtedly not only provide a light on the roles of miRNAs in brain development and diseases, but also are 
much helpful for ultimate development of therapeutic strategies against brain diseases. In this review, we provide an 
overview of current scientific knowledge regarding the expression and function of miR-7 in development and disease 
of brain and raise many issues involved in the relationship between miR-7 and brain physiological and pathological 
processes.
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Introduction
MicroRNA-7 (miR-7), as a unique member of the miR-
NAs family, has a high degree of conserved mature 
sequences with a length of 21–23 nt in different spe-
cies (Fig. 1). In humans, three genes, including miR-7-1, 
miR-7-2 and miR-7-3 located on different chromosomes, 
respectively encode the corresponding precursor 
sequence which is processed and sheared into the same 
mature miR-7 sequence [1]. Similarly, in mice, miR-7a-1, 
miR-7a-2 and miR-7b genes are also located on three 
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different chromosomes and encode the correspond-
ing precursor sequence which is eventually spliced into 
mature miR-7. Currently, the relevant studies on miR-7 
molecule mainly focus on oncology. For example, Kabir 
et al. reported that miR-7 regulated the growth and inva-
sion of sorafenib-resistant cells in human hepatocellu-
lar carcinoma through targeting TYRO3 [2]; Zhao et al. 
found that miR-7 prevented gastric cancer cell prolif-
eration and tumorigenesis via repressing Nuclear Factor 
NF-Kappa-B P65 Subunit (P65) and Fos Proto-Onco-
gene (FOS, AP-1 Transcription Factor Subunit) expres-
sion [3]. Rodríguez-Antolín et  al. showed that miR-7 
methylation was a biomarker to predict poor survival in 
early-stage non-small cell lung cancer patients [4]. Our 
previous studies also showed that miR-7 overexpression 
could reduce the proliferation and metastatic capacity of 
human lung cancer cells in vitro and in vivo [5–8]. More-
over, the downregulation of miR-7 was closely related 
to the site mutation of the promoter region, which was 
correlated with poor prognosis of human lung cancer 
patients [9]. These foundings indicate that miR-7 might 

be used as an important potential target molecule for 
tumor diagnosis and treatment. Significantly, many 
recent studies have shown that miR-7 is highly enriched 
in brain tissue and is closely related to physiological and 
pathological process of brain [10–17], suggesting that it 
plays an important novel role in brain tissue development 
and disease occurrence, hence, it is may be a new promis-
ing therapeutic target for brain diseases.

MiR‑7 expression in brain
MiR‑7 distribution in brain
Many studies have shown that miR-7 and its precursors 
are expressed in the mammal lens [18], Nucleus accum-
bens (NACC) and suprachiasmatic nucleus (associated 
with the reward behavior and circadian rhythm of ani-
mals) [19] and neocortical and hippocampal regions [11]. 
However, the comprehensive data further show that the 
expression level of miR-7 and its precursor are higher in 
Pituitary and Hypothalamus [11, 20–22], while lower in 
Substantia nigra, Striatum, Cerebral cortex and Cerebel-
lum [23]. Researchers speculate that this phenomenon 

Fig. 1  Homologous sequences of mature miR-7 in different species. The mature sequence of miR-7 has a perfectly conserved type in many species, 
including Homo sapiens miR-7 (has-miR-7), Macaca mulatta miR-7 (mml-miR-7), Mus musculus miR-7 (mmu-miR-7), Drosophila melanogaster miR-7 
(dme-miR-7), Danio rerio miR-7 (dre-miR-7), Asacris suum miR-7 (asu-miR-7). A change in one of the bases of miR-7b (highlighted in red) exists in 
several species. The red virtual box is the seed sequence of mature miR-7
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may be related to miR-7-3 (the precursor of mature miR-
7), which remains with the Pituitary specific factor 1 
(PIT1) gene intron sequence [24]. These data suggest that 
miR-7 may play distinct roles in different brain regions.

The expression pattern of miR-7 in human brain tis-
sue is also found in Mice [16], Rats [18], Cattle [20], 
Zebrafish [11], Amphioxus [25] and other species [26, 
27]. For example, in Mice, miR-7 is also expressed in 
neurons with sensory or neurosecretory functions in the 
Hypothalamus [11, 16, 28]. Furthermore, in Amphioxus, 
miR-7 is expressed not only in the central nervous sys-
tem, but also in the most anterior end of the pharyngeal 
endoderm at the later stage of neuronal development 
(20–22  h after fertilization) [25]. Moreover, other stud-
ies have shown that, in Zebrafish and Medaka, miR-7 
has a conserved and highly restricted expression in the 
Medial forebrain at differentiation stages [29]; Besides, 
miR-7 is also restricted to be expressed in the develop-
ing forebrain with the prohormone vasotocin (vasopres-
sin/oxytocin)-neurophysin from Annelids worms and 
Zebrafish. Importantly, the cell types characterized with 
dual sensory-neurosecretory properties in the forebrain 
are the starting point for the evolution of neurosecretory 
brain centers in Bilateria [11]. These data suggest that 
miR-7 expression is closely related with the sensory or/
and neurosecretory neurons.

The regulatory mechanisms of miR‑7 expression
The expression level of mature miR-7 is affected by a 
variety of factors, including the direct or indirect regula-
tion on the precursor sequence and mature miR-7. At the 
level of gene transcription: studies have shown that tran-
scription factors Homeobox D10 (HOXD10) [30] and 
c-Myc [31] can bind to different parts of the pri-miR-7-1 
promoter core sequence respectively to regulate the level 
of mature miR-7 (the region of c-Myc binding sequence 
is  − 539 to − 534; The binding regions of HOXD10 are 
− 1028 to − 1019 and − 968 to − 958). In addition, miR-
7-1 is the intron of the Heterogeneous Nuclear Ribo-
nucleoprotein K (HNRNPK) gene, and miR-7-3 is the 
intron of PIT1 gene [16]. As an intron miRNAs molecule, 
the expression level of miR-7 is also affected by the self-
expression regulation mechanism of the host genes. For 
example, the expression of HNRNPK and PIT1 increases 
or decreases by the host under the action of certain phys-
iological development and diseases, the expression lev-
els of pri-miR-7-1 and pri-miR-7-3 will also be changed 
correspondingly, and then the level of mature miR-7 is 
affected inevitably [16].

In terms of the expression level of primary sequence 
and precursor sequence: Choudhury et al. found that the 
level of mature miR-7 enriched in specific brain regions 
was not consistent with the corresponding primary 

sequence expression [16], suggesting that there was a 
relevant regulatory mechanism during the process of the 
primary sequence of miR-7 (pri-miR-7) to the precursor 
sequence of miR-7 (pre-miR-7). Similarly, Kumar et  al. 
found that Oleic Acid (OA) could prevent RNA recogni-
tion base sequence protein, namely Musashi homologous 
body 2/human HuR protein, from binding pri-miR-7-1 
conservative terminal ring parts [32]. Thus, this process 
interferes with the formation of pre-miR-7-1 (precur-
sor sequence of miR-7-1), resulting in the inconsistency 
between the expression of pri-miR-7 sequence and the 
expression of mature miR-7 sequence.

In addition, multiple regulatory mechanisms also exist 
at the mature level of miR-7. Studies have found that 
long non-coding RNA-circR-7 contains about 70 bind-
ing sites of miR-7 mature sequence and can effectively 
interfere with the level of mature miR-7 in a variety of 
tissue cells [13, 33]. Meanwhile, another long non-coding 
RNA-Cyrano (linc-oip5, 1700020I14Rik) also has a con-
served binding site to mature miR-7 sequence, which can 
directly bind and reduce the level of mature miR-7, and 
indirectly regulate the expression of miR-7 target mol-
ecules [10, 34]. Interestingly, recent studies also showed 
that Cerebellar Degeneration Related protein 1 anti-
sense transcription (CDR1as, a complementary antisense 
sequence of miR-7), as a circular RNA highly expressed 
in brain neurons cell bodies, neurons axons and retina, 
could maintain miR-7 expression stability and positively 
regulate miR-7 level to ensure its regulation effect in neu-
ronal cell activity [10, 12]. In addition, other members of 
the miRNA family, such as miR-671 also can negatively 
regulate the level of CDR1as and indirectly affect miR-7 
expression [12, 35, 36]. These studies indicate that the 
regulatory mechanism of mature miR-7 expression is rel-
atively complex (Fig. 2).

The role of miR‑7 in physiological function of brain
Pituitary gland
Just as we have mentioned above, compared with other 
regions of the brain, the expression level of miR-7 is 
higher in the Pituitary gland, which is the most impor-
tant endocrine gland in the body to regulate hormone 
secretion, indicating that miR-7 plays an important reg-
ulatory role in the process of pituitary hormone secre-
tion. For example, Yuan et  al. showed that miR-7 could 
directly bind to Prostaglandin F2 receptor negative regu-
lator (PTGFRN), and then inhibit the expression of Pros-
taglandin F2 Receptor (PTGFR), thereby affecting the 
uterine contraction, ovulation, embryo implantation and 
other vital reproductive processes [20]. Recently, Ahmed 
et al. further reported that the effect of miR-7 expression 
on the Hypothalamus-Pituitary gonad axis. Their studies 
have shown that, in male and female mice, miR-7a-2 gene 
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deletion, following lower level of miR-7, leads to a low 
level of gonadotropin and sex steroid hormone, small tes-
ticular or ovarian, impaired sperm production, and lack 
of ovulation, resulting in infertility respectively. But when 
miR-7-2 overexpression in the Pituitary gland, a raised 
miR-7 level can inhibit Golgi glycoprotein 1 (GLG1) 
expression and downstream bone morphogenetic protein 
4 (BMP4) signaling pathway, and then reduce the level of 
PTGFRN and secretion of both Follicle-stimulating hor-
mone (FSH) and Luteinizing Hormone (LH) [37]. These 
results suggest that the miR-7a-2/miR-7 axis regulates 
the secretion of FSH and LH by regulating the pituitary 
prostaglandin production and BMP4 signaling path-
way, ultimately affects sexual maturity and reproductive 
function.

Optic nervous system
MiR-7 also has an important regulating role in the vis-
ual system [18, 38–41]. Medullary neurons, as the larg-
est visual processing center of the Drosophila brain, are 

derived from a sheet of neuroepithelial cells. During lar-
val development, a wave of differentiation sweeps across 
the neuroepithelium, converting neuroepithelial cells 
into neuroblasts that sequentially express transcription 
factors specifying different neuronal cell fates. The switch 
from neuroepithelial cells to neuroblasts is controlled by 
a complex gene regulatory network. Caygill et  al. found 
that during this transformation process, the expression 
level of miR-7 in neuroepithelial cells gradually increased, 
and the continuously up-regulated miR-7 promoted the 
stable transformation of neuroepithelial cells into neuro-
blasts by targeting Notch effector [39]. It is worth noting 
that miR-7 plays a key buffer and regulatory role in this 
process to ensure that a precise and rigorous transforma-
tion process which can be also maintained even under 
conditions of environmental stress, echoing the role of 
miR-7 in the eye imaginal disc [39]. Subsequent stud-
ies have shown that miR-7 expression is activated when 
progenitor cells begin to differentiate into photoreceptor 
cells, the process that is dependent on the EGF receptor 

Fig. 2  Schematic diagram of the regulatory mechanism of miR-7 expression. MiR-7 is transcribed from three different genomic loci on 
chromosomes 9, 15, 19 into primary miR-7 transcripts (pri-miR-7-1, pre-miR-7-2, pri-miR-7-3 respectively), which are processed into hairpin precursor 
molecules pre-miR-7, and then further into the same mature miR-7 sequences. There are always some molecules which affect miR-7 transcription 
involved in this process. Mature miR-7 sequence can target mRNAs to repress their expression, on the contrary, other antisense sequences interfere 
with miR-7 level
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(EGFR) signal which triggers ERK-mediated degradation 
of transcription factor Yan (a retinal cell differentiation 
inhibitor). In progenitor cells, Yan can prevent the tran-
scription of miR-7, meanwhile miR-7 can bind with Yan 
mRNA 3′UTR sequences to inhibit Yan protein expres-
sion in the photoreceptor cells. These data have shown 
that Yan interacts with miR-7 to form a strict feedback 
effect model, in which Yan is highly expressed in the 
progenitor cells, while the miR-7 level is higher in the 
photoreceptor cells; when the EGFR signal shortly trig-
gers Yan degradation in progenitor cells, companied with 
gradually increased miR-7 level to ensure accurate differ-
entiation of photoreceptor cells [42], indicating that the 
spatiotemporal expression patterns of Yan and miR-7 are 
difference. In addition, human Paired box 6 (PAX6) is an 
important mediator of ocular development and forma-
tion. Needhamsen et al. further showed that miR-7 could 
inhibit the expression of PAX6 protein by directly bind-
ing with the 3′UTR of PAX6 [43]. These above studies 
have proved that miR-7 plays a key regulatory role in the 
development and formation of visual nerve cells through 
a sophisticated feedback regulatory network. However, 
whether miR-7 is involved in the functional regulation of 
visual neurons remains to be clarified.

Cerebral cortex
Studies have found that, similar to photoreceptor cells, 
the expression level of miR-7 increases during the dif-
ferentiation of cerebral cortical nerve cells or the devel-
opment of Cortex after birth. However, compared with 
early differentiation of embryonic stem cells into nerve 
cells in mice, in the early development of cortex cell dif-
ferentiation, miR-7 level is lower. However, in the seventh 
day of differentiation, 60–80% of the cells express higher 
level of miR-7 and neural precursor cells markers (CD57 
and SOX1), suggested that miR-7 is closely related to the 
development of cerebral cortex cells [44]. Subsequent 
studies have showed downregulated expression of miR-7 
in the mouse embryo cortical cells by miRNA-Sponge 
technology results in brain defect in mice. The mecha-
nism is that when miR-7 is reduced, its target genes 
related to the p53 pathway, such as the upregulation of 
adenylate kinase 1 (AK1) and Cyclin dependent kinase 
inhibitor 1a (Cdkn1a), affects the normal transmission 
of p53 pathway and leads to the decreased production 
of cortical progenitor cells during brain development 
[45]. In addition, Sarangdhar et  al. also found that the 
reduction of miR-7 level during embryonic development 
resulted in the change of brain morphology of mouse 
embryos, which was related to the increased expres-
sion of Cyrano, a lncRNA that is conservative expres-
sion in fertilized egg cells but closely related to brain 
development. Conversely, lowering the level of Cyrano 

can increase miR-7 level to improve the morphological 
abnormalities of fetal brain [34]. Similar studies have also 
shown that the loss of GLI Family Zinc Finger 3 (GLI3) 
in mouse embryonic cortex can increase the propor-
tion of neural progenitor cells and newborn neurons in 
the brain, which resulting in the brain enlargement after 
birth and the abnormal folding structure of cortical mid-
line. However, altered expression of miR-7 can restore 
the abnormal brain morphology in mice, as well as the 
production and migration of neurons. This mechanism 
is related to the up-regulation of the target molecule 
PAX6 expression after miR-7 change [46]. However, the 
relationship between PAX6 and GLI3 remains unclear. 
In conclusion, it has been proved that miR-7 is a stabi-
lizer of these complex chain feedback and circulatory 
regulatory network, which is critical for stabilizing gene 
expression and determining cell fate. However, the com-
plex molecular mechanism of its regulation needs to be 
further explored.

Other brain functions
The enriched expression of miR-7 in brain regions indi-
cates that it may have other potentially unknown impor-
tant roles in the brain. Such as Li et al. have shown that 
miR-7 is involved in the development and functional 
maintenance of various receptors in the body [41]. 
Recent studies have shown that miR-7 can enhance the 
formation of neurons in the subventricular region by 
inhibiting the Nod-like Receptor Protein 3 (NLRP3)/
Caspase-1 pathway in human stem cells, and has a nice 
repair effect on neurons [47]. Other studies have also 
shown that miR-7 can be involved in synaptic plasticity 
in the Hippocampus through targeting the expression of 
Selenoprotein P (Sepp) [48] and Nuclear Receptor Sub-
family 4 Group A Member 3 (NR4A3) [49, 50]. In addi-
tion, in Drosophila, mutations in miR-7 sequence do not 
cause a difference in appearance, but lead to abnormali-
ties in sensory structures in stressful conditions [42, 44]. 
These researches indicate the potential role of miR-7 in 
physiological process of brain, which remains to be fully 
illuminated (Fig. 3).

The role of miR‑7 in brain diseases
Accumulating evidence has shown that abnormal expres-
sion of miR-7 is involved in the development of various 
brain diseases, indicating miR-7 has an important role in 
pathological processes of brain (Fig. 4).

Neurodegenerative diseases
Parkinson’s disease
The incidence of Parkinson’s disease (PD) accounts for 
1% in people over 65  years old. The main characteris-
tics of PD is the gradual loss of dopaminergic neurons 
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in the Substantia nigra, in which abnormal expression of 
α-synuclein (α-syn) gathered in the form of fiber aggre-
gates in the Substantia nigra and then mediates neuro-
toxicity to damage the function of dopaminergic neurons 
[51]. Studies have shown that the level of miR-7 in brain 
tissues of PD patients and PD animal models decreased 
significantly [52]. Currently, the mechanism of miR-7 is 
mainly focused on its regulatory effect on α-syn through 
multiple ways. Some studies have shown that the lack of 
miR-7 in brain tissues of PD patients is closely related to 
the accumulation of α-syn and the loss of dopaminergic 
neurons in the Substantia nigra, as well as the decreased 
dopamine secretion in the Striatum [53–55]. Choi et al. 
reported that miR-7 could accelerate the clearance of 
α-syn and its polymers, thereby promoting differentiation 
of ReNcell VM cells (human neural precursor cells) [55]. 
Junn et al. further found that miR-7 could inhibit α-syn 
protein level by directly acting on the 3′UTR of α-syn 
mRNA, thus protecting neurons from oxidative stress 

and proteasomal damage in MTPT-induced in vitro PD 
neurotoxin cell model and mouse model [23]. Mean-
while, other studies have shown that miR-7 can bind to 
the Synuclein Alpha (SNCA) 3′UTR of the Amyloid Pre-
cursor and then modulate the expression of α-syn [54]. In 
addition, miR-7 has been shown to promote the degrada-
tion of extracellular synthetic fibers of α-syn [55].

Microglia mediated inflammation reaction is involved 
in pathogenesis of PD [56, 57]. Studies have shown that 
miR-7 might regulate the activation of microglia, thereby 
controlling pathogenesis of PD. For example, in PD 
patients and dopaminergic SH SY5Y cells treated with 
MPPT, the expression of Small Nucleolar RNA Host 
Gene 1 (SNHG1) is increased, while miR-7 expression is 
decreased. Interestingly, downregulated SNHG1 in vitro 
can raise the level of miR-7 and inhibit LPS-induced 
BV2 microglial cells activation and inflammatory effect, 
and then prevent a potential loss of dopaminergic neu-
rons in the Substantia nigra. Mechanistically, miR-7, as 

Fig. 3  The targets of miR-7 and their function in physiological function of brain. The biological function of miR-7 target molecules in the Pituitary 
gland, Hypothalamus, Optic thalamus, Cerebral cortex and Hippocampus, respectively. PTGFRN prostaglandin F2 receptor negative regulator, GLG1 
golgi glycoprotein 1, BMP4 bone morphogenetic protein 4, FSH follicle-stimulating hormone, EGFR EGF receptor, PAX6 paired box 6, AK1 adenylate 
kinase 1, Cdkn1a cyclin dependent kinase inhibitor 1a, GLI3 GLI family zinc finger 3, Sepp selenoprotein P, NR4A3 Nuclear Receptor Subfamily 4 
Group A Member 3
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a regulator of SNHG1/NLRP3 axis, has an important 
regulating role in the inflammatory effect of microglia 
[58]. Besides, miR-7 can also inhibit the NF-κB signal-
ing pathways to protect neurons from MTPT-induced 
cytotoxicity (dopaminergic SH SY5Y cells, human neural 
progenitor cells ReNcell VM cells and primary neurons 
in mice) [59]. In addition, miR-7 can restore anti-apop-
totic protein molecule BCL2 level by inhibiting mTOR 
signaling pathway, thus protecting the neuron cells dam-
age induced by MTPT in PD model [60]. These stud-
ies suggest that miR-7 has a great potential role in the 
pathogenesis of PD though regulating multiple cells and 
molecules.

Alzheimer’s disease
Recently, miR-7 has also been found to play an impor-
tant regulatory role in the development of Alzhei-
mer’s disease (AD). For example, Puthiyedth et  al. 
analyzed the differentially expressed genes in different 
brain regions, including the Entorhinal Cortex, Hip-
pocampus, Middle temporal gyrus, Posterior cingulate 

cortex, Superior frontal gyrus and visual cortex brain 
regions, from 161 clinical brain tissue samples (74 non-
demented controls, 87 AD). They found that miR-7-1, 
a precursor of miR-7, was significantly upregulated in 
the all regions of brain tissue from AD patients, sug-
gesting that miR-7 was closely related to the occurrence 
of AD [61]. The abnormal accumulation of beta-amy-
loid proteins (Aβ) in the brain is a key feature of AD 
progression. Beta Secretase 1 (BACE1) is a rate-limit-
ing enzyme that forms Aβ and Amyloid beta Precur-
sor Protein (APP) which is a precursor that forms Aβ. 
Shi et  al. showed that Cirs-7, a regulator of BACE1 
and APP expression, was significantly down-regulated 
in the brain tissue of AD patients [62]. Further stud-
ies have shown that low CDR1as level can lead to the 
increased expression of miR-7 which downregulates the 
activity of ubiquitin conjugating enzyme E2 A (UBE2A), 
thereby resulting in impaired clearing of toxic amyloid 
peptides from brain in AD, suggesting that miR-7 may 
be a new target for AD treatment [36, 63].

Fig. 4  The targets of miR-7 and their function in brain diseases. The effects of miR-7 target molecules in the brain diseases including Parkinson’s 
disease, Alzheimer’s disease, Psychiatric disorders and Neuroinflammation respectively. The genes highlighted in red are the antisense interfering 
gene of miR-7. PD Parkinson’s disease, AD Alzheimer’s disease, α-syn α-synuclein, SNCA synuclein alpha, SNHG1 small nucleolar RNA host gene 1, 
NLRP3 nod-like receptor protein 3, Aβ beta-amyloid proteins, BACE1 beta secretase 1, APP amyloid beta precursor protein, UCHL1 ubiquitin carboxyl‐
terminal hydrolase L1, UBE2A ubiquitin conjugating enzyme E2 A, SHANK3 SH3 and multiple ankyrin repeat 3 domains
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Psychiatric disorders
The abnormal miR-7 expression has been also linked 
with a neurological disorder called Schizophrenia which 
affects about 1 percent of adults worldwide and has the 
greatest impact on quality of life compared to other neu-
rological disorders. However, the exact etiology of Schiz-
ophrenia is still unknown. Studies have shown that miR-7 
expression is up-regulated in the plasma and the frontal 
lobe of brain in patients with Schizophrenia; Moreover, 
the effect of miR-7 on Schizophrenia might be linked 
to directly target SH3 and Multiple Ankyrin Repeat 3 
Domains (SHANK3) which is closely related to synaptic 
plasticity and memory [64–66]. Furthermore, the abnor-
mal level of miR-7 in Schizophrenia is associated with its 
primary sequence pri-miR-7-3 [67]. These findings indi-
cate that miR-7 might be involved in the development of 
Schizophrenia, which still need to be further illustrated.

Neuroinflammation
It is well known that inflammation is a common patho-
logical basis for various neurological diseases. Recently, 
a large number of studies have shown that miR-7 is 
involved in the occurrence of neuroinflammation [58, 
68]. Such as, Cao’s study found that long noncoding RNA 
SNHG1 promoted neuroinflammation in the pathogen-
esis of PD via modulating miR-7/NLRP3 pathway [58]; 

Dong et al. also proved that miR-7 could target the 3′UTR 
of Herpud2 which encoded Endoplasmic Reticulum (ER) 
stress protein-HERP2, indicating miR-7-targeted ER 
stress acted as a molecular brake on neuroinflammation 
[68]. Furthermore, Zhang et al. showed that miR-7 could 
inhibit EGFR/STAT3 pathway and TLR4 expression to 
block brain microglia activation, cytokine production and 
slow the secondary damage of brain tissue in a Cerebral 
Hemorrhage model [69]. Separately, in our recent study, 
we found that miR-7 could govern the pathology of brain 
tissue inflammation through controlling the inflamma-
tory reaction of neuronal cells in brain tissue inflamma-
tion model (BTI) [70]. Therefore, these current findings 
might highlight not only the important role of miR-7 but 
also the relationship among neurons and other cells such 
as microglia in pathogenesis of neuroinflammation.

Other brain diseases
MiR-7 also plays an important regulatory role in other 
brain diseases. For instance, Nelson et  al. found that 
there was abnormal expression of miR-7 in brain tissue 
from the patients with Lewy body dementia (DLB), which 
is characterized by fluctuating cognitive dysfunction, 
visual hallucinations and Parkinson’s disease syndrome 
[71]. Moreover, other studies have shown that miR-7 is 
significantly increased in the peripheral blood of patients 

Table 1  The effects of miR-7 target in physiological and pathological processes of brain

PTGFRN Prostaglandin F2 receptor negative regulator; PTGFR prostaglandin F2 receptor; LH luteinizing hormone; GLG1 golgi glycoprotein 1; BMP4 bone 
morphogenetic protein 4; FSH follicle-stimulating hormone; PAX6 paired box 6; AK1 adenylate kinase 1; Cdkn1a cyclin dependent kinase inhibitor 1a; GLI3 GLI family 
zinc finger 3; Sepp selenoprotein P; NR4A3 Nuclear Receptor Subfamily 4 Group A Member 3; α-syn α-synuclein; SNCA synuclein alpha; SHANK3 SH3 and multiple 
ankyrin repeat 3 domains

Targets Brain regions Expression Effects Refs.

PTGFRN Pituitary gland Downregulation lower level of PTGFR and LH release; the decrease of uterine contraction, ovu-
lation, embryo implantation and other vital reproductive processes

[20]

GLG1, BMP4 Pituitary gland Downregulation The lower secretion of PTGFRN, FSH and LH [37]

Notch effector Optic nerve epithelial cells Downregulation The more stable transformation of neuroepithelial cells to neuroblastocytes [39]

Yan Visual progenitor cell Downregulation The inhibition of miR-7 transcription, ensure that photoreceptors are success-
fully and accurately differentiated

[42]

PAX6 Eye and brain Downregulation The maintenance of ocular development and formation [43]

Ak1, Cdkn1a Embryo cortical Upregulation Decreased production of cortical progenitor cells during brain development [45]

GLI3 Embryonic cortex Loss The increased proportion of neural progenitor cells and newborn neurons 
in the brain, which resulting in the brain enlargement after birth and the 
abnormal folding structure of cortical midline

[46]

Sepp, NR4A3 Hippocampus Loss Deficience in the synaptic plasticity in the hippocampus [48, 49]

α-syn Substantia nigra Upregulation Increased neurons from oxidative stress and proteasomal damage, [23]

SNCA Substantia nigra Upregulation The increased expression of α-syn [54]

mTOR Substantia nigra Downregulation Protecting the neuron cells damage [60]

SHANK3 Cerebral cortex Downregulation Deficience in synaptic plasticity and relation with memory and learning [66]

Herpud2 Brain tissue Upregulation Brake on neuroinflammation [68]

TLR4 Microglia Downregulation Block of brain microglia activation, cytokine production and slow the second-
ary damage of brain tissue

[69]

RORα Neuron Downregulation aggravated pathology of brain tissue inflammation [70]
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with Cerebral artery malformation and is involved in the 
pathological development of Cerebral artery malforma-
tion through targeting VEGF pathway [72]. Recently, Lee 
et al. also found that the serum expression level of miR-
7-5p was significantly increased in Bipolar II disorder 
patients [73]. Besides, miR-7 expression in peripheral 
blood from patients with Acute ischemic stroke is higher 
than healthy controls [74]. Furthermore, inhibition of 
miR-7 level, in the process of ischemic postconditioning, 
can prevent mitochondria damage and restore the ATP 
activity, thereby improving neuron function after focal 
ischemia, suggesting miR-7 may be a potential therapeu-
tic target in Acute ischemic stroke [74].

Conclusions
Up to now, the important progression on biological role 
of miR-7 in brain development and diseases has been 
reached. Among all of miRNA family members, miR-7 
is dominantly expressed in brain tissue and plays impor-
tant roles in the development of brain tissue and the 

progression of brain diseases (Table  1), suggesting that 
miR-7 may be a promising novel intrinsic regulator for 
brain development and disease occurrence. Alongside, 
many important scientific issues, at least three major 
aspects, still need to be further illustrated in the future 
(Fig. 5). Firstly, what are the spatial and temporal expres-
sion patterns of miR-7 and their regulatory mechanisms 
in the physiological and pathological processes of brain? 
Especially, the expression patterns of miR-7 in different 
types of cells in the process of brain development and 
disease occurrence are still largely unknown. Secondly, 
the current knowledge thus far on the underlying inter-
actions among miR-7 and its target molecules in brain 
development and diseases are still limited. Interestingly, 
in our most recent work, we found that miR-7 synergizes 
with, but not antagonizes, its target RORα to control the 
pathology of BTI [70], indicating the complexity of net-
work among miRNAs and their targets in biological pro-
cess. Therefore, what are the exact connections among 
miR-7 and its multiple targets in distinct types of cells 

Fig. 5  A sketch of scientific issues of miR-7 in the physiological and pathological processes of brain. Currently, there are still many unclear scientific 
issues, belongs to basic and applied research fields, on the role miR-7 in the development and diseases of brain
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in different brain diseases? Thirdly, the potential value 
of miR-7 in the diagnosis and therapeutic strategies of 
brain diseases need to be further clarify. For instance, the 
expression level of miR-7 is variable in different brain dis-
eases. We propose it reflects the complexity of the role 
of miR-7, especially in distinct regions of brain, in differ-
ent brain diseases. Therefore, the combination of miR-7 
expression and other factors, including clinical charac-
ters, of different diseases might be much valuable for the 
application of miR-7 as a bio-maker in diagnosis of brain 
diseases. 

In all, the in-depth studies on the expression patterns 
of miR-7, the networks among miR-7 and its targets, 
and the role of miR-7 in different types of cells, as well 
as the prognostic and therapeutic value of miR-7 in 
brain diseases, will undoubtedly throw a new light on 
the knowledge on biological roles of miRNAs in physio-
logical and pathological process of brain and ultimately 
benefit clinical outcome of patients with brain diseases.
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